Mathematik 1 für Informatik
|
|
|
- Nadine Braun
- vor 7 Jahren
- Abrufe
Transkript
1 Guter Ochs. Juli 203 Mathematik für Iformatik Probeklausur Lösugshiweise. a Bestimme Sie per NewtoIterpolatio ei Polyom px mit möglichst kleiem Grad, so dass p = p0 = p = sowie p2 = 7. i x i y i d i,i d i 2,i d i 3,i 0 = c = c = c = c 3 px = c 0 + c x x 0 + c 2 x x 0 x x + c 3 x x 0 x x x x 2 = + x + x x = + x x 2 = x 3 x + b Ist px aus a als Fuktio p : R R i ijektiv, ii surjektiv, iii bijektiv? p ist icht ijektiv, da z. B. p0 = p = ud somit auch icht bijektiv. p ist surjektiv, da p das Itervall [; auf [; ud das Itervall ; ] aus ; ] abbildet. 2. Beweise Sie durch vollstädige Iduktio k k + = = + für N. Iduktiosafag: Für = ist k k+ = 2 = 2 = 2 = + Iduktiosschritt: + k k+ = k k = = = = = +2 = ++ Im zweite Umformugsschritt wurde die Iduktiosvoraussetzug beutzt, dass die Aussage für gilt. 3. a Bereche Sie de Grezwert [ ] [ lim + 4 = lim ] 4 3 = lim = lim = = 4. b Gilt i a = O 2, ii a = o 2 für a = + 2 l? Es ist a = + 2 l 2 = + lim + = lim + lim 2 l = lim 2 + l 2 l mit = + 0 = ud = = 2 dabei beutzt: l = o l lim = 0. Es folgt lim a 2 = 2 = 2. Da die Folge der Quotiete koverget ist, ist sie beschräkt ud somit gilt a = O 2. Da die Quotiete icht gege 0 kovergiere, gilt icht a = o.
2 4. a Wie viele sechsstellige Zahle gibt es, die ur aus ugerade Zier bestehe ud bei dee die Zier geau viermal vorkommt? Es gibt 6 4 = 5 Möglichkeite, die 4 Eise auf 6 Stelle zu verteile. Für die beide übrige Stelle gibt es jeweils 4 Möglichkeite 3,5,7,9. Zusamme gibt es damit = 240 verschiedee Möglichkeite, eie Zahl mit de geforderte Eigeschafte zu bilde. b Wie viele der Zahle aus a begie mit der Zier? Da sid och 3 Eise ud zwei adere Zier auf die 5 restliche Stelle zu verteile. Mit der gleiche Überlegug wie i a erhält ma 4 2 = 60 Möglichkeite Gegebe sei die lieare Rekursio x + = 5x 6x. a Bereche Sie x 2 ud x 3, we die Startwerte x 0 = ud x = 2 sid. x 2 = 5 x 6 x 0 = 0 6 = 4 ud x 3 = 5 x 2 6 x = = 8. b Löse Sie die charakteristische Gleichug ud bestimme Sie die allgemeie Lösug der Rekursio. λ 2 5λ + 6 = 0 λ = 5 2 ± = 5 2 ± 4 = 5 2 ± 2. Die charakteristische Gleichug hat somit die Lösuge λ = 2 ud λ 2 = 3, womit die allgemeie Lösug der Rekursio die Form hat x = r 2 + s 3 mit r, s R beliebig. c Fide Sie eie statioäre Lösug x = x der ihomogee Rekursio x + = 5x 6x + 4. Nach der allgemeie Formel ist x = = 4 2 = 2 statioäre Lösug. d Gebe Sie die allgemeie Lösug der ihomogee Rekursio aus c a. Diese setzt sich zusamme aus der statioäre Lösug x = 2 ud der allgemeie Lösug der homogee Rekursio aus b: x = 2 + r 2 + s 3 mit r, s R beliebig. 6. a Bereche Sie im Galoiskörper Z 2 [x] x 4 +x+: i = 00 bitweises exklusives oder ii = 0 Rechug,. Schritt: Multiplikatio der etsprechede Polyome x 3 + x 2 + = x 5 + x 3 + x 2 + = Schritt: Awedug des Moduloperators mit dem Modulpolyom mx = x 4 + x + = 00: 0 0 mod 00 = iii = 00 0 = 00 Rechug,. Schritt: Multiplikatio der etsprechede Polyome x 3 + x 2 + x 3 + x 2 = x 6 + x 5 + x 3 + x 5 + x 4 + x 2 = x 6 + x 4 + x 3 + x 2 = Schritt: Awedug des Moduloperators mod 00 = b Fide Sie p Z 2 [x] x 4 +x+ mit p + 0 = 0. Wege mius gleich plus folgt p = = 00
3 7. Der rechte Graph stellt eie Relatio R auf der Mege M = {A, B, C, D, E} dar. a Gebe Sie R i Megeschreibweise als Teilmege vo M M a. R = {A, B, C, A, C, B, C, D, D, B, D, E, E, C, E, E} b Ist R relexiv / symmetrisch / atisymmetrisch / trasitiv? R ist icht reexiv, da z. B. A, A R,... icht symmetrisch, da z. B. A, B R, aber B, A R,... atisymmterisch, da es keie zwei Kote i j gibt mit i, j R ud j, i R,... icht trasitiv, da z. B. C, D R ud D, E R, aber C, E R. c Gege Sie die refexive Hülle [R] re ud die symmetrische Hülle [R] symm vo R a. Zur reexive Hüller werde alle och fehlede Schlige hizugefügt: [R] re = R {A, A, B, B, C, C, D, D} = {A, A, A, B, B, B, C, A, C, B, C, C, C, D, D, B, D, D, D, E, E, C, E, E} Zur symmterische Hülle wird zu jder Kate die Gegerichtug hizugefügt: [R] symm = R {B, A, A, C, B, C, D, C, B, D, E, D, C, E} = {A, B, A, C, B, A, B, C, B, D, C, A, C, B, C, D, C, E, D, B, D, C, D, E, E, C, E, D, E, E} d Gebe Sie die iverse Relatio R a. Hier werde alle Kate umgedreht: R = {B, A, A, C, B, C, D, C, B, D, E, D, C, E, E, E} 8. a Prüfe Sie, ob im rechts abegbildete Graphe ei EulerZug existiert ud gebe Sie ih gegebeefalls a dabei spiele die Gewichte keie Rolle. Die Kote A ud F habe ugerade Grad 3 bzw. 5, alle adere Kote habe gerade Grad B, C ud D jeweils 4, E ud G jeweils 2. Somit existiert ei oeer EulerZug, der i A begit ud i E edet bzw. umgekehrt. Eie Möglichkeit vo viele ist der Weg FEBFGDFCBADCA b Kostruiere Sie mit dem Algorithmus vo Kruskal ei miimales Gerüst. rot markiert: Zuächst werde die beide Kate mit Gewicht AC ud AD ausgewählt. Vo de Kate mit Gewicht 2 werde DF ud DG ausgewählt. CD wird verworfe, da sost ei Kreis ACDA etstehe würde. Diese Auswahl ist uabhägig vo der Reihefolge, i der die drei Kate CD, DG ud DG abgearbeitet werde. Da wird BE ausgewählt ud CF verworfe wege Kreis ACFGDA. Nachdem im ächste Schritt die Kate BF ausgewählt wird, sid alle Kote miteiader verbude ud das miimale Gerüst ist komplett. Die Kate mit Gewicht > 4 müsse icht mehr betrachtet werde. c Ist das miimale Gerüst eideutig? Ja, siehe Erläuterug zu b
4 9. a Bestimme Sie mit dem Algorithmus vo Dijkstra im Graphe rechts de kürzeste Weg vom Kote A zu alle adere Kote. Die graphische Lösug ist rot markiert. Eie vollstädige Lösug der Aufgabe muss auch die durchgestrichee Zahle ethalte, da sie im Laufe des Algorithmus auftretede temporäre Markieruge darstelle. Die Lösug wurde wie folgt erhalte: Zuächst wurde ausgehed vom Startkote A als aktuelle Kote die Kote B mit 2 ud C mit 6 temporär markiert. B als Kote mit der kleiste temporäre Markierug wird zum eue aktuelle Kote ud erhält A als Vorgäger d. h. die Kate AB wird markiert. Vo B ausgehed wird die Markierug vo C zu 5 geädert, D ud E bekomme die Markieruge 7 ud 9. Kote C hat die kleiste temporäre Markierug ud wird zum dritte aktuelle Kote, der Vorgäger wird B. Die Markierug vo E bleibt uverädert, die vo D wird zu 6. Damit ist D der eue aktuelle Kote ud bekommt C als Vorgäger. E bekommt jetzt die marjierug 8, F wird mit 0 markiert. E wird aktuell ud bekommt D als Vorgäger, F bekommt die Markierug 9. Damit wir E zum Vorgäger vo F, womit der Algorithmus beedet ist. I Tabelleform sieht die Löaug wie folgt aus: Kote Etferug Vorgäger A B C D E F A B 2 A C 5 B D 6 C E 8 D 8 9 F 9 E 9 b Liefert die Rechug i a auch de kürzeste Weg vo B ach E? Ja, da der Weg BCDE mit Läge 6 ei Teilstück des kürzeste Weges vo A ach F ist, muss es sich um de kürzeste Weg vo B ach E hadel.
5 0. a Bestimme Sie mit dem Algorithmus vo FordFulkerso im Graphe rechts eie maximale Fluss. Dabei sid alle beutzte augmetierede Wege azugebe. Mit de augmetierede Wege QACS Fluss 3, QBDS Fluss +2, QBADS Fluss +2 erhält ma eie maximale Fluss mit Wert 7, der im obere Bild blau markiert ist. Dieser Fluss ist maximal, de beim Versuch, eie weitere augmetierede Weg zu kostruiere, hat ma vo Q ur die Möglichkeit ach B zu gehe, vo dort geht es ur ach C, vo dort ach A ud vo dort ur zurück ach Q oder ach B. Somit ka S icht erreicht werde. Der maximale Fluss ist jedoch icht eideutig, zwei weitere Möglichkeite sid im mittlere ud im utere Bild blau markiert. Welche dieser Flüsse der Algorithmus vo FordFulkerso erreicht, hägt vo der icht eideutige Auswahl der jeweilige augmetierede Wege ab. Dass die Flüsse jeweils maximal sid, lässt sich auch dara erkee, dass der ute rot markierte Schitt durch die Kate CS, AD ud BD ei Schitt mit miimaler Kapazität 7 ist, die de Schitt kreuzede Kate sid bei alle drei maximale Flüsse voll ausgelastet. b Köte durch Hizufüge eier Kate zwische C ud D ei gröÿerer Gesamtuss erreicht werde? We ja, welche Richtug müsste diese Kate habe? Ja, i bei eier Kate vo C ach D mit positiver Kapazität würde im obere Fluss eie euer augmetiereder Weg QBCDS etstehe, durch de der Fluss um bis zu eie EIheit erhöht werde ka. Im mittlere Graphe der Weg QACDS diese Fuktio überehme, im utere Graphe QBACDS. Eie Kate vo D ach C würde dagege icht zu eue augmetierede Wege führe.
Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09
Musterlösug zu Blatt 8 der Vorlesug Aalysis I WS08/09 Schriftliche Aufgabe Aufgabe. Voraussetzuge: Für alle N setze a : +2 ud b : ( 2. [Amerkug: I der Aufgabestellug heiÿe die Reihe beide gleich. Es steht
1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig.
1.3 Fuktioe Seie M ud N Mege f : M N x M : 1 y N : y fx et ma Fuktio oder Abbildug. Beachte: Zuordug ist eideutig. Bezeichuge: M : Defiitiosbereich N : Bildbereich Zielmege vo f Der Graph eier Fuktio:
Aufgaben zur Analysis I
Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.
Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 3 Peter Hartmann
Lösugsskizze Mathematik für Iformatiker 5. Aufl. Kapitel 3 Peter Hartma Verstädisfrage. Ka ma ei Axiom beweise? Nei!. Ka ei Beweis eier Aussage richtig sei, we im Iduktiosschluss die Iduktiosaahme icht
n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =
Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:
Zahlenfolgen und Konvergenzkriterien
www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit
6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $
Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum
4 Konvergenz von Folgen
4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder
6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung
6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez
5.7. Aufgaben zu Folgen
5.7. Aufgabe zu Folge Aufgabe : Lieares ud beschräktes Wachstum Aus eiem Quadrat mit der Seiteläge dm gehe auf die rechts agedeutete Weise eue Figure hervor. Die im -te Schritt agefügte Quadrate sid jeweils
Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.
ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede
Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr
ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische
Beweistechniken Vollständige Induktion - Beispiele, Erweiterungen und Übungen
Beweistechike Vollstädige Iduktio - Beispiele, Erweiteruge ud Übuge Alex Chmelitzki 15. März 005 1 Starke Iduktio Eie etwas abgewadelte Form der Iduktio ist die sogeate starke Iduktio. Bei dieser Spielart
von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:
Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes
... a ik) i=1...m, k=1...n A = = ( a mn
Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,
Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0
UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,
4. Die Menge der Primzahlen. Bertrands Postulat
O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p
Musterlösung zu Übungsblatt 2
Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.
Klausur 1 über Folgen
www.mathe-aufgabe.com Klausur über Folge Hiweis: Der GTR darf für alle Aufgabe eigesetzt werde. Aufgabe : Bestimme eie explizite ud eie rekursive Darstellug! a) für eie arithmetische Folge mit a = 6, ;
1 Analysis T1 Übungsblatt 1
Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.
1. Zahlenfolgen und Reihen
. Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,
Tutorium Mathematik I, M Lösungen
Tutorium Mathematik I, M Lösuge 16. November 2012 *Aufgabe 1. Ma utersuche die folgede Reihe auf Kovergez (a) ( 1) (1 ) (b) ( ) 2 +1 (c) (!) 3 10 (3)! (d) (e) (f) 2 +3 3 2 +1 3 ( 2 +1) 2 + 3 ( 2 +3) (g)
AT AB., so bezeichnet man dies als innere Teilung von
Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM
Lernhilfe in Form eines ebooks
Ziseszisrechug Lerhilfe i Form eies ebooks apitel Thema Seite 1 Vorwort ud Eiführug 2 2 Theorie der Ziseszisrechug 5 3 Beispiele ud Beispielrechuge 12 4 Testaufgabe mit Lösuge 18 Zis-Ziseszis.de 212 Seite
Aufgaben zu Kapitel 8
Aufgabe zu Kapitel 8 Aufgabe zu Kapitel 8 Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe
Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I
Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik
Einführung in die Grenzwerte
Eiführug i die Grezwerte Dieser Text folgt hauptsächlich der Notwedigkeit i sehr kurzer Zeit eie Idee ud Teile ihrer Awedug zu präsetiere, so dass relativ schell mit dieser Idee gerechet werde ka. Der
Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I
Aufgabe ud Lösuge Weihachtsgescheke zur Vorlesug Aalysis I Der Witersemester 008/009 Übug am 4.., 5..008 sowie 0.0.009 Aufgabe. Folge Aufgabe Ma bestimme, ob die Folge (a ) mit a = + 3 + 4 kovergiert ud
Kapitel 4: Stationäre Prozesse
Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud
$Id: reihen.tex,v /06/14 13:59:06 hk Exp $
Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,
Kapitel 6: Quadratisches Wachstum
Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =
Klasse: Platzziffer: Punkte: / Graph zu f
Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25
1 Lösungen zu Analysis 1/ 12.Übung
Lösuge ausgewählter Beispiele zu Aalysis I, G. Bergauer, Seite Lösuge zu Aalysis / 2.Übug. Eileitug Gleichmäßige Kovergez ist eie starke Eigeschaft eier Fuktioefolge. Formuliert ma sie für Netze, statt
Arbeitsblatt A 8-4 Polynom-& Wurzel-& Winkelfunktionen Teil 1/2
Schule Budesgymasiu um ür Berustätige Salzburg Modul Thema Mathematik 8 Arbeitsblatt A 8-4 Polyom-& Wurzel-& Wikeluktioe Teil 1/2 Polyomuktioe Eie wichtige Klasse vo Fuktioe bilde die Polyomuktioe (x =
Exponentialfunktionen und die e- Funktion. Bei den bisher betrachteten Funktionen traten Exponenten nur als Zahlen auf.
R. Brikma http://brikma-du.de Seite.. Eiführug Epoetialfuktioe ud die e- Fuktio Bei de bisher betrachtete Fuktioe trate Epoete ur als Zahle auf. q Potezfuktio : f a mit q Beispiel: f Fuktioe mit positiver
α : { n Z n l } n a n IR
1 KAPITEL VI. ZAHLENFOLGEN UND REIHEN 1) REELLE ZAHLENFOLGEN: i) Jede Abbildug α : IN a IR heiÿt 'reelle Zahlefolge' bzw. 'Folge i IR'. Ma otiert diese i der Form α = a ) IN = a ) =0 = a 0, a 1, a 2,...)
Fehlerrechnung. 3. Genauigkeit von Meßergebnissen am Beispiel der Längenmessung
1 Gie 11/000 Fehlerrechug 1. Physikalische Größe: Zahlewert ud Eiheit. Ursache vo Meßfehler 3. Geauigkeit vo Meßergebisse am Beispiel der Lägemessug 4. Messug eier kostate Größe ud Mittelwert 5. Messug
Abschlussprüfung 200X Wahlteil Mathematik I Aufgabe A 1
Abschlussprüfug 200X Wahlteil Mathematik I Aufgabe A 1 Vorame: Klasse: Platzziffer: Pukte: / A 1.0 A 1.1 Gegebe ist die Fuktio f mit der Gleichug 0,5 y 2 ( 3) 4,5 ( GI IR IR ). Begrüde Sie, warum ma bei
Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I
Aufgabe ud Lösuge Ausarbeitug der Übugsstude zur Vorlesug Aalysis I Witersemester 2008/2009 Übug am 09.2.2008 Übug 8 Eileitug Es soll och eimal auf die agebotee Sprechstude higewiese werde, sowie auf mögliche
1 = 1. 6 Induktionsannahme: Die Formal gelte für n = k. Induktionsschritt: Gültigkeit der Formel für k+1: 1 2 + 2 2 +... + k 2 + (k + 1) 2 = 2 = 6 = 6
65 Eric Müller Vollstädige Iduktio Nach GIUSEPPE PEANO (858-93) ka ma die Mege N der atürliche Zahle durch folgede Axiome defiiere []:. ist eie atürliche Zahl.. Zu jeder atürliche Zahl gibt es geau eie
Zahlenlehre 1. Die Mathematik ist die Königin der Wissenschaften und die Zahlentheorie ist die Königin der Mathematik (Carl Friedrich Gauß)
Die Mathematik ist die Köigi der Wisseschafte ud die Zahletheorie ist die Köigi der Mathematik (Carl Friedrich Gauß) Zahlelehre. Termi, Wie 04 Mag. a Dagmar Kerschbaumer Letzter Termi Eiführug i die Zahletheorie
Innerbetriebliche Leistungsverrechnung
Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der
BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008
Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe
Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln
6 Kovergete Folge Lerziele: Kozepte: Grezwertbegriff bei Folge, Wachstumsgeschwidigkeit vo Folge Resultat: Mootoe beschräkte Folge sid koverget. Methode: Hero-Verfahre, Erweiterug vo Differeze vo Quadratwurzel
Nachklausur - Analysis 1 - Lösungen
Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:
Mathematik Funktionen Grundwissen und Übungen
Mathematik Fuktioe Grudwisse ud Übuge Potezfuktio Hyperbel Epoetialfuktio Umkehrfuktio Stefa Gärter 004 Gr Mathematik Fuktioe Seite Grudwisse Potezfuktio Defiitio Durch die Zuordugsvorschrift f: Æ mit
Aufgaben und Lösungen der Probeklausur zur Analysis I
Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur
Nennenswertes zur Stetigkeit
Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit
Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable
Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex
Ungleichungen werden mit Äquivalenzumformungen gelöst. Hierzu werden die sogenannten Monotoniegesetze angegeben.
Floria Häusler Ugleichuge. Grudsätzliches I folgede ist ur vo reelle Zahle die Rede, ohe daß dies im eizele betot wird. Es seie A, B, C,... Terme reeller Zahle, u. U. auch mit Variable. Für Ugleichuge
Zusammenfassung Wirtschaftsinformatik Stefan Käßmann
I. Iformatio ud Nachricht 1. Iformatio ud Nachricht - Nachricht (Sytax), Sigale, Zeiche - Iformatio (Sematik), bit - Rausche 2. digitale Nachrichte - digitale Sigale (Sigalparameter aus edlicher Zeichevorrat)
Analysis I Probeklausur 2
WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch
Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE
Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug
Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge
1 Beispiel 4 (Die Ure zu Fall 4 mit Zurücklege ud ohe Beachte der Reihefolge ) das Sitzplatzproblem (Kombiatioe mit Wiederholug) 1. Übersicht Ziehugsmodus ohe Zurücklege des gezogee Loses mit Zurücklege
1 Funktionen und Flächen
Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,
Klausur vom
UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Domiik Faas Stochastik Witersemester 00/0 Klausur vom 7.0.0 Aufgabe 3+.5+.5=6 Pukte Bei eier Umfrage wurde 60 Hotelbesucher ach ihrer Zufriedeheit
2. Diophantische Gleichungen
2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze
Sinus- + Cosinus-Funktion und komplexe Wurzel
Dr. Siegfried Echterhoff Aalysis 1 Vorlesug WS 08 09 6 Polarkoordiate Sius- + Cosius-Fuktio ud komplexe Wurzel 6.1 Im folgede seik 1 1 := {z C z = 1} der Kreis i C mit Radius 1 ud Mittelpukt 0. Wir defiiere
Abiturprüfug Mathematik 008 Bade-Württemberg (ohe CAS) Wahlteil - Aufgabe Aalysis I Aufgabe I.: Ei Tal i de Berge wird ach Weste vo eier steile Felswad, ach Oste vo eiem flache Höhezug begrezt. Der Querschitt
Einige wichtige Ungleichungen
Eiige wichtige Ugleichuge Has-Gert Gräbe, Leipzig http://www.iformatik.ui-leipzig.de/~graebe 1. Februar 1997 Ziel dieser kurze Note ist es, eiige wichtige Ugleichuge, die i verschiedee Olympiadeaufgabe
Aufgaben zur vollständigen Induktion
c 7 by Raier Müller - Aufgabe zur vollstädige Idutio We ichts aderes agegebe ist, da gelte die Behauptuge für IN {; ; ;...}. A) Teilbareit: ) ist gerade (d.h. durch teilbar). ) ist durch teilbar. ) ist
Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 5
Prof. Dr. Holger Dette Musterlösug Statistik I Sommersemester 009 Dr. Melaie Birke Blatt 5 Aufgabe : 4 Pukte Sei X eie Poissoλ verteilte Zufallsvariable mit λ > 0, ud die Verlustfuktio L sei defiiert durch
Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares
4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus
Mengenbegriff und Mengendarstellung
R. Brikma http://brikma-du.de Seite 1 05.10.008 Megebegriff ud Megedarstellug Eie Mege, ist die Zusammefassug bestimmter, wohluterschiedeer Objekte userer Aschauug ud useres Dekes welche Elemete der Mege
Stetigkeit und Differenzierbarkeit. Vorlesung zur Didaktik der Analysis
Stetigkeit ud Dierezierbarkeit Vorlesug zur Didaktik der Aalysis Ihalt Nachtrag: Fuktioegrezwert Stetigkeit Aschauliche Bedeutug Mathematische Präzisierug Topologische Charakterisierug Gleichmäßige Stetigkeit
2 Vollständige Induktion
8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes
Logik. Wahrheitstafeln - für verschiedene Belegungen der logischen Variable wird der Wahrheitswert logischer Ausdrücke angegeben
. Eiführug Logik Defiitio: Uter eier ussage versteht ma die gedakliche Widerspiegelug eies Sachverhaltes der objektive Realität, bei dem eideutig etschiede werde ka, ob er wahr oder falsch ist. Operatioe
Thermodynamik von Legierungen
Thermodyamik vo Legieruge Ei System verädert sich solage, bis es das thermodyamische Gleichgewicht erreicht hat, wobei die Eistellug des Gleichgewichtes kietisch möglich sei muß. Das thermodyamische Gleichgewicht
Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.
Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,
Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Serie 10
Humboldt-Uiversität zu Berli Istitut für Mathematik Prof. A. Griewak Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jase Übugsaufgabe zur Vorlesug ANALYSIS I (WS 2/3) Serie 0 Musterlösug S.
15.4 Diskrete Zufallsvariablen
.4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet
Lösung: Die Zahl ist die größte Zahl mit der in der Aufgabenstellung genannten Eigenschaft.
Ladeswettbewerb Mathematik ade-württemberg 005 Rude ufgabe Eie atürliche Zahl besteht aus paarweise verschiedee Ziffer, vo dee keie Null ist. Streicht ma i dieser Zahl eie beliebige Ziffer k, so ist die
SUCHPROBLEME UND ALPHABETISCHE CODES
SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich
3 Das Pascalsche Dreieck
Goldeer Schitt Fiboacci Pascalsches Dreiec 3 Das Pascalsche Dreiec 3. Hocey, Taxifahre ud das Pascalsche Dreiec Was hat es mit dem Hoceyschläger auf sich? Wie viele Möglicheite hat ei Taxifahrer i New
mathphys-online GANZRATIONALE FUNKTIONEN y-achse x-achse
GANZRATIONALE FUNKTIONEN 7 0 7 7 Gazratioale Futioe Ihaltsverzeichis Kapitel Ihalt Seite Eiührug. Das Pascal sche Dreiec. Verschobee Potezutioe Verlau der Graphe gazratioaler Futioe im Koordiatesystem.
Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11
Mrek Kubic, [email protected] Diskrete Strukture Übugsbltt Gruppe Pukteverteilug: Σ Aufgbe () 8 () 7 Der Grph B ht de Prüfer-Code,,,,, der zustde kommt, we m de kleiste Kote vom Grd streicht ud de dere, übrig
1.2. Taylor-Reihen und endliche Taylorpolynome
1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg
Folgen und Reihen Glege 03/01
Folge ud Reihe Glege 03/0 I diesem Script werde folgede Theme behadelt: Folge (Eiführug)... Arithmetische Folge... Geometrische Folge...3 Mootoie...4 Kovergez...5 Grezwert...6 Schrake...7 Arithmetische
Grundwissenkatalog Mathematik Klasse 6
Grudwissekatalog Mathematik Klasse Thema. Brüche Grudbegriffe Bruchahle Grudbegriffe Brüche habe die Form mit N 0, N, heisst der Zähler, der Neer des Bruches. Bedigug Beeichug > Uechter Bruch < Echter
