: 3 2 ; (2 : (3+2)) 3 : (4 +2 : (7 3)) = 3. (2 : 5) 3 : (4 +2 : 4) 3 : (4 + )=

Größe: px
Ab Seite anzeigen:

Download ": 3 2 ; (2 : (3+2)) 3 : (4 +2 : (7 3)) = 3. (2 : 5) 3 : (4 +2 : 4) 3 : (4 + )="

Transkript

1 0. Zahlemege Reelle Zahle IR IQ II, also alle Zahle, die wir kee.. Recheoperatioe Additio / Subtraktio Produkt / Quotiet Quadrat / Potez. Klammer Die Reihefolge, i der die Recheoperatioe durchgeführt werde müsse, wird durch Klammer festgelegt. Die Klammer werde vo ie ach auße abgearbeitet. Natürliche Zahle IN {0; ; ; ;...} Gaze Zahle /Z {0; ±; ±; ±;...} Ratioale Zahle IQ: Bruchzahle 7 Eigabe mit : 7 ; ; ; ;... 8 F D Bruch i Dezimalzahl umwadel ud umgekehrt. Irratioale Zahle II: Zahle, die sich icht als Brüche darstelle lasse. ; 5; 5 7;.... Term Ei Term ist ei Ausdruck der Rechezeiche, Zahle ud Variable ethält 4. Arte vo Terme Ei Term wird ach der zuletzt auszuführede Recheart beat. 5. Rechehierarchie Potez vor Pukt vor Strich Um Klammer zu spare, wird eie Rechehierarchie festgelegt, die es erlaubt eiige Klammer wegzulasse. +. : ;. ( : (+)) : (4 + : (7 )). ( : 5) : (4 + : 4). : (4 + ) : a + b a (a b ) +. 5 Summe ( + ). 5 Produkt (. ) Quadrat + 5 Quotiet 4 0,5 + 5 Produkt ( ) : (4 ) Summe Summe Produkt ( + ) Quadrat (. ) , Die Bruchtaste bidet eger als alle adere Operatioe. 5 si 5 si aber si5 si 5 Maurer: Zusammefassug / Seite (Stad: )

2 Der Bruchstrich ist ebeberuflich Klammer. Quotiet ( + 5) 6. Bruchrechug Echter/uechter Bruch Echter Bruch: Zähler kleier als Neer. Uechter Bruch: Zähler größer oder gleich Neer. Gemischte Zahl: Gaze + echter Bruch Erweiter Zähler ud Neer mit derselbe Zahl multipliziere Kürze Zähler ud Neer durch dieselbe Zahl dividiere Summe vo Brüche Haupteer bestimme Brüche erweiter auf Haupteer brige Produkt Zähler mal Zähler ud Neer mal Neer Quotiet Multiplikatio mit dem Kehrwert Multiplikatio/ Divisio vo Bruch ud Zahl Zahl als Bruch schreibe, da die Bruchrecheregel verwede ; ; ; ; : N 5 Haupteer: N 9 HN : : : Maurer: Zusammefassug / Seite (Stad: )

3 7. Termumformug Gleichamige/ugleichamige Glieder Gleichamige Glieder ka ma zusammefasse, ugleichamige icht. Miusklammer Beim Auflöse eier Miusklammer werde alle Vorzeiche i der Klammer umgedreht. Quadriere eies Produkts Ma ka zuerst multipliziere ud Quadriere eier Summe Biomische Formel. Biomische Formel a b aba + 4ab + 5ba a b a b + 5a b + 4ab a b + 4 ab (a b + 5c) a + b 5c (a. b) a. b Der Koeffiziet muss auch (x) 4 x quadriert werde. da quadriere oder umgekehrt. Hier ka ma die Reihefolge der Operatioe icht vertausche! (a+b) a + ab + b (x + 4y ) (x) +. x. 4y +(4y ) 4x + 6xy + 6y 4. Biomische Formel (a b) a ab + b (t 5z) (t). t. 5z + (5z) 9t 0 tz + 5 z. Biomische Formel (a+b)(a b) a b (q+p) (q p) (q) (p) 0. Biomische Formel (a-b) (b-a) Spezialfall der Miusklammer 8. Faktorisiere. Typ: Ausklammer Umkehrug des Distributivgesetzes: ab + ac a. (b+c). Typ: Umkehrug der. ud. biomische Formel. Typ: Umkehrug der. biomische Formel a ± ab + b (a±b) Voraussetzug: Quadrate ud ei passedes doppeltes Produkt a b (a+b) (a b) Voraussetzug: Differez vo Quadrate. Sost ichts. 9q 4p x ( x), de ( x) + x x a) 4 a b a b 7a b (b a) b) x y +6x y+x y x y (4y+x+) 4a 0 ab + 5 b (a) 0 ab + (5b) (a 5b) 49 p 44 q (7 p) ( q) (7 p + q) (7 p q) 4. Typ: Gemischt Zuerst ausklammer 8 k m 8 km km (9k 4m ) km (k + m) (k m) 5. Typ: Im Geiste Vietas (x+a) (x+b) x +(a+b) x + ab x 6 x + 8 (x 4) (x ), da bei a 4 ud b i der Tat gilt: a b ( 4). ( ) 8 ud a + b 4 6 Maurer: Zusammefassug / Seite (Stad: )

4 9. Pascalsches Dreieck 4 5 Koeffiziete vo (a+b) (a+b) a +a b+ab +b (a+b) 5 a 5 +5a 4 b+0a b +0a b +5ab 4 +b 5 Bauart der Glieder: Die Hochzahl vo a immt vo Glied zu Glied ab, die Hochzahl vo b immt zu. Die Summe der Hochzahle ist immer gleich. 0. Lieare Gleichug Nach x umstelle. x 5 x Isoliere x 7 7 x Produktgleichug Satz vom Nullprodukt. a. b 0 a 0 ud/oder b0: Midestes ei Faktor muss Null sei. x. (x ). (x +) 0 x 0; x ; x Bruchgleichug Haupteer bestimme Defiitiosbereich bestimme Mit HN multipliziere. Lieare oder quadratische Gleichug löse. Prüfe, ob die errechete Lösug im Defiitiosbereich liegt.. Quadratische Gleichug Rei-quadratische Gleichug Eie rei-quadratische Gleichug ka ma auf die Form x c brige. Lösugsformel: x, ± c 5 + HN: x xx (x-) x x x x ID IR\{0,} Multiplikatio mit dem HN: (x-) + x 5 x 4 + x 5 x 9 x IL {} a) x 9, also x, ± ( Lösuge) b) x +4 4, also x, 0 (doppelte Lös.) c) x + 4, oder x bzw. x, x, ±, also keie Lösug Lösug mit GRT Meü Equatio F: Polyomial Maurer: Zusammefassug / Seite 4 (Stad: )

5 Gemischt-quadratische Gleichug Allgemeie Form Allgemeie Form a x + bx + c 0 Lösugsformel (Mitterachtsformel) x, b ± b 4ac a x 5x ± 5 0 x, 5 ± 5 Produktform a (x x ) (x x ) 0. Siehe Faktorisiere, isbesodere 5. Typ. Biquadratische Gleichug Substitutio. Damit auf quadratische Gleichug zurückführe. Diskrimiatemethode Gesucht ist icht die Lösug eier Gleichug, soder aus eier Mege vo Gleichuge werde solche mit bestimmte Eigeschafte herausgesucht. Die Zahl der Lösuge hägt vo der Diskrimiate D b 4ac ab. D > 0 Lösuge D 0 geau eie Lösug D < 0 keie Lösug x + 5 x 4 0 (x+7) (x ) 0 x 7; x 4 x x 4 0 Subst.: u x u u 4 0 (u 4) (u +) 0 u 4 oder u Rücksub.: x 4 x, ± x keie Lösug Für welche Werte vo k IR hat die Gleichug x + (k+) x k 0 geau eie Lösug? Lösug: Gleichug auf die allgemeie Form brige: x + (k+) x (k +) 0 Bedigug für geau eie Lösug: Diskri 0 ( k + ) 4 ( k + ) 0 k +k+ 4k 4 0 k k 0 (k ) (k+) 0 k ; k Für k bzw. k hat die Gleichug geau eie Lösug. Maurer: Zusammefassug / Seite 5 (Stad: )

6 . Lieare Gleichugssysteme Lösug zu Fuß mit dem Gauß- Algorithmus oder mit dem GTR Mit dem GTR ka ma aber ur,- LGSe löse, die eideutig lösbar sid. x x x ( ) ( ) + x + x 0 Lösug mit GRT + 4 x + x 4 Meü Equatio F: Simultaeous + x + 7 x x 4 x x ( ) IL ; ; Maurer: Zusammefassug / Seite 6 (Stad: )

7 . Potezreche Poteze mit atürlicher Hochzahl a a. a... a, a wird also -mal mit sich selbst multi. Poteze mit gazer Hochzahl a 0 a a Poteze mit gebrocheer Hochzahl a) a a a) ; Poteze mit gleicher Basis m + m a a a + a a [ ] m a [: ] m Poteze mit gleicher Hochzahl a b ( ab) a a b b Poteziere vo Poteze m m ( a ) a () Logarithmus Defiitio log a x y Nat. Log: l x y x e y x a [ ] Logarithmusgesetze log a a log a 0 log (uv) log u + log v u log logu logv v log u log u y 5 b) b) a) t t t+ t t b) e e e e t+ t t c) e e e e e t e t ( t+ ) t t t d) e e e t+ e a) (. 4) b) c) ( ) a) l 0 b) l e, da e e c) l lu u d) l 8 l (.. ) l + l + l l e) l 8 l l f) l e le Maurer: Zusammefassug / Seite 7 (Stad: )

8 4. Expoetialgleichuge -gliedrige Summe Faktorisiere oder Potez isoliere a) e x 5 0 Isoliere e x 5 Logarithmiere x l 5 x + l 5 b) e x -e x 0 e x (e x ) 0 e x > 0, also keie Lösug e x 0, also e x ud damit x l c) e +x 4. e -x+ 0 Isoliere e +x 4. e -x+ Logarithmiere +x l (4. e -x+ ) l 4 + l e -x+ +x l 4 x+ 5 x l 4 l4 x 5 -gliedrige Summe Substitutio e tx 4e tx Alles ach liks e tx 4e tx 0. e tx e tx 4 e tx 0 Subst.: u e tx u u 4 0 (u +) (u 4) 0 u ; u 4 Rücksubstitutio e tx keie Lösug, da e... > 0 e tx 4, daher tx l 4 ud x l4 t x-glieder ud e x -Glieder gemischt Lässt sich im allgemeie ur mit GTR e x x +. löse Nicht exakt lösbar. Newto-Verfahre oder gleich GTR l-gleichug Poteziere mit Basis e a) l x Poteziere mit e x e Lässt sich wege des Parameters icht mit GTR löse. Meü Equatio Solver (F) Maurer: Zusammefassug / Seite 8 (Stad: )

9 5. Fuktioe Eie Fuktio ist eie Zuordug. Jedem x-wert wird geau ei y-wert zugeordet. kostate Fuktio / Gerade y c, c IR y Meü Graph lieare Fuktioe / Gerade Hauptform: y mx + c, wobei m die Steigug ud c der Abschitt auf der y-achse ist. Allgemeie Form: ax+byd Ist b 0 ud a 0, erhält ma eie sekrechte Gerade. Ist a 0 ud b 0, erhält ma eie kostate Fuktio. Pukt-Steigugsform: y m (x-x )+y wobei P(x Iy ) ei Pukt auf der Gerade ist. quadratische Fuktio / Normalparabel Hauptform Schaubild Normalparabel Die Normalparabel hat im Ursprug eie doppelte Nullstelle, berührt dort die x-achse ud hat dort keie Vorzeichewechsel. y x y x quadratische Fuktio / Parabel. Ordug Allgemeie Form: y ax +bx+c Produktform: y a (x-x )(x-x ), wobei x, x Nullstelle sid. Scheitelform: y a (x-x S ) + y S, wobei S(x S Iy S ) Scheitel der Parabel ist. y x x Maurer: Zusammefassug / Seite 9 (Stad: )

10 kubische Fuktio Wedeparabel Das Schaubild hat eie dreifache Nullstelle y x kubische Fuktio / Parabel. Ordug Allgemeie Form: y ax +bx +cx+d y x -6x +9xx(x-) Potezfuktio Hyperbel Rechtwiklige Hyperbel: x-achse waagrechte Asymptote für x ± y-achse Pol mit Vorzeichewechsel, also sekrechte Asymptote Hyperbel puktsymmetrisch zum Ursprug Hyperbel Hyperbel x-achse waagrechte Asymptote für x ± y-achse Pol ohe Vorzeichewechsel, also sekrechte Asymptote Hyperbel achsesymmetrisch zur y- Achse Expoetialfuktio Natürliche Expoetialfuktio: f(x) e x dabei ist die Eulersche Zahl e,78... y x x y y e x x x Maurer: Zusammefassug / Seite 0 (Stad: )

11 Logarithmusfuktio Natürliche Logarithmusfuktio: f(x) l x Basis e y-achse sekrechte Asymptote Sius-Fuktio Periode P π Symmetrie zum Ursprug y si x Cosius-Fuktio Periode P π Symmetrie zur y-achse y cos x Ruhefuktioe 6. Eifache Trasformatioe Spiegelug a der x-achse Miuszeiche vor de gaze Term Spiegelug a der x-achse f(x) x 4x + g(x) f(x) x + 4x Maurer: Zusammefassug / Seite (Stad: )

12 Spiegelug a der y-achse Im Term alle x durch ( x) ersetze Spiegelug a der y-achse f(x) x 4x + g(x) f(-x) x 4 ( x) g(x) x + 4x Streckug i y-achse Faktor vor de Term Streckug mit Faktor f(x) x g(x) x Streckug (Stauchug) mit Faktor Verschiebug i y-richtug um y 0 y 0 zum Term addiere Verschiebug um ach ute f(x) cos x h(x) x g(x) cos x Verschiebug i x-richtug um x 0 x ersetze durch (x x 0 ) Verschiebug um 4 ach rechts f(x) x - g(x) (x-) - Wa geht s edlich weiter? Maurer: Zusammefassug / Seite (Stad: )

13 7. Differezialrechug Ableitugsregel Maurer: Zusammefassug / Seite (Stad: )

LGÖ Ks VMa 12 Schuljahr 2017/2018

LGÖ Ks VMa 12 Schuljahr 2017/2018 LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge

Mehr

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand:

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand: M 9.1 Quadratwurzel a ist diejeige ichtegative Zahl (a 0), die quadriert a ergibt: a 2 = a Die Zahl a uter der Wurzel heißt Radikad: a Quadratwurzel sid ur für ichtegative Zahle defiiert: a 0 25 = 5; 81

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud -ugleichuge 6 Für Eperte 9 Polyomgleichuge ud -ugleichuge Defiitio: Ei Term

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge

Mehr

Die Wurzel einer Zahl a ist die Zahl, die mit sich selbst malgenommen wieder a ergibt.

Die Wurzel einer Zahl a ist die Zahl, die mit sich selbst malgenommen wieder a ergibt. Wurzel Wurzelexpoet Radikad oder auch Basis Die Wurzel eier Zahl a ist die Zahl, die mit sich selbst malgeomme wieder a ergibt. Die -te Wurzel et ma auch Quadratwurzel, dabei lässt ma die (als Wurzelexpoet)

Mehr

Arten von Gleichungen. (C) Gleichungen vom Grad n 3. (D) Exponentiale Gleichungen. ax² + bx + c = d [mit a 0]

Arten von Gleichungen. (C) Gleichungen vom Grad n 3. (D) Exponentiale Gleichungen. ax² + bx + c = d [mit a 0] Eiführug. GLEICHUNGEN UND GLEICHUNGSSYSTEME Arte vo Gleichuge (A) lieare Gleichuge/ Gleichugssysteme (LGS) (B) quadratische Gleichuge (C) Gleichuge vom Grad (D) Epoetiale Gleichuge (E) Wurzelgleichuge

Mehr

a ist die nichtnegative Lösung der Gleichung a 0 a, b 0 : a 0 und b > 0 Beispiele:

a ist die nichtnegative Lösung der Gleichung a 0 a, b 0 : a 0 und b > 0 Beispiele: Zahle. Die Quadratwurzel Die Quadratwurzel a heißt Radikad Beachte: 0 = 0 a ist die ichtegative Lösug der Gleichug = a, wobei a 0. 4 Ei Teil der Quadratwurzel sid ratioale Zahle (bspw. 6, 0, 09, ), adere

Mehr

Christoph Hindermann. Vorkurs Mathematik Wichtige Rechenoperationen

Christoph Hindermann. Vorkurs Mathematik Wichtige Rechenoperationen Kapitel 2 Christoph Hiderma 1 2.1 Wiederholug: Die gebräuchlichste Zahlebegriffe Natürliche Zahle: N bzw. N 0 N ={1,2,3,...} N 0 ={0,1,2,3,...} Gaze Zahle: Z, Erweiterug der atürliche Zahle um die egative

Mehr

Mathematik Funktionen Grundwissen und Übungen

Mathematik Funktionen Grundwissen und Übungen Mathematik Fuktioe Grudwisse ud Übuge Potezfuktio Hyperbel Epoetialfuktio Umkehrfuktio Stefa Gärter 004 Gr Mathematik Fuktioe Seite Grudwisse Potezfuktio Defiitio Durch die Zuordugsvorschrift f: Æ mit

Mehr

Kapitel 2. Terme. oder (x + 1)(x 1) = x 2 1

Kapitel 2. Terme. oder (x + 1)(x 1) = x 2 1 Kapitel 2 Terme Josef Leydold Auffrischugskurs Mathematik WS 207/8 2 Terme / 74 Terme Ei mathematischer Ausdruck wie B R q q (q ) oder (x + )(x ) x 2 heißt eie Gleichug. Die Ausdrücke auf beide Seite des

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Gazratioale Fuktioe 9. Defiitio gazratioaler Fuktioe Im Folgede werde ebe lieare ud quadratische Fuktioe auch solche betrachtet, bei dee die Variable i der dritte, vierte oder auch i eier och höhere Potez

Mehr

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014 Herzlich Willkomme zur Vorlesug Aalysis I SoSe 2014 Prof. Dr. Berd Dreseler Lebediges Lere: Aufgabe Ich Wir 2 Reelle Zahle 2.1 Körperstruktur vo (K1) Additio ud Multiplikatio kommutativ: a b b a, ab ba.

Mehr

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig.

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. 1.3 Fuktioe Seie M ud N Mege f : M N x M : 1 y N : y fx et ma Fuktio oder Abbildug. Beachte: Zuordug ist eideutig. Bezeichuge: M : Defiitiosbereich N : Bildbereich Zielmege vo f Der Graph eier Fuktio:

Mehr

1 a+ 5 a b + 5a b 5ab(a+ = 10 a + 10a b 10a (a+ 2 3a. b a ab a. a a ab+ ab b b

1 a+ 5 a b + 5a b 5ab(a+ = 10 a + 10a b 10a (a+ 2 3a. b a ab a. a a ab+ ab b b 8. Jahrgagsstufe (G8) Zahle Bruchterme sid um Beispiel: + a b,, a c+ d.. Erweiter ud Küre Ei Bruchterm wird erweitert (gekürt), idem ma Zähler ud Neer mit dem selbe Term multipliiert (durch de selbe Term

Mehr

Index. Majorante, 24 Minorante, 23. Partialsumme, 17

Index. Majorante, 24 Minorante, 23. Partialsumme, 17 Folge, Reihe Idex Kovergezkriterie Hauptkriterium, Leibiz-Kriterium, Majoratekriterium, 4 Mioratekriterium, otwediges Kriterium, 0 Quotietekriterium, teleskopierede Summe, Wurzelkriterium, Majorate, 4

Mehr

Repetitionsaufgaben Potenzfunktionen

Repetitionsaufgaben Potenzfunktionen Repetitiosaufgabe Potezfuktioe Ihaltsverzeichis A) Vorbemerkuge/Defiitio 1 B) Lerziele 1 C) Etdeckuge (Graphe) 2 D) Zusammefassug 7 E) Bedeutug der Parameter 7 F) Aufgabe mit Musterlösuge 9 A) Vorbemerkuge

Mehr

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2013

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2013 Herzlich Willkomme zur Vorlesug Aalysis I SoSe 2013 Prof. Dr. Berd Dreseler Lebediges Lere: Aufgabe Ich Wir Überblick Mittelwertsatz Differetialrechug Natürliche Zahle Iduktiosprizip Kombiatorik Körper

Mehr

mathphys-online GANZRATIONALE FUNKTIONEN y-achse x-achse

mathphys-online GANZRATIONALE FUNKTIONEN y-achse x-achse GANZRATIONALE FUNKTIONEN 7 0 7 7 Gazratioale Futioe Ihaltsverzeichis Kapitel Ihalt Seite Eiührug. Das Pascal sche Dreiec. Verschobee Potezutioe Verlau der Graphe gazratioaler Futioe im Koordiatesystem.

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

Positiv denken! Lösungen

Positiv denken! Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Positiv deke! Lösuge Aufgabe 1 (GMAMQM (ur für die Klasse 7/8) [ Pukte]). Seie a, b reelle Zahle. 1. Sei a 0 ud b 0. Zeige, dass a

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Zusammenfassung: Mathe 1

Zusammenfassung: Mathe 1 Zusammefassug: Mathe 1 Beispiel zur Iduktio Behauptug: es gilt k 2 = 6 (+1) (2+1) Beweis: Iduktio über Iduktiosafag: = 1 k 2 + 1: für = 1: k 2 =1 2 =1 1 Aahme: Für ei N gilt Zu zeige: da muss auch gelte

Mehr

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS vo Rolf Waldi 1 Kapitel I. Elemetare Zahletheorie 1 Grudlegede Regel ud Prizipie Es wird vorausgesetzt, daß der Leser mit gaze Zahle reche ka ud

Mehr

Einige Beispiele für Mengen im R n.

Einige Beispiele für Mengen im R n. Eiige Beispiele für Mege im R. Itervalle i R. Seie a, b R mit a < b. [a, b] : {x a x b} abgeschlossees Itervall (a, b : {x a < x < b} offees Itervall [a, b : {x a x < b} halboffees Itervall (a, b] : {x

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

Streifzug durch die Welt der Binome und darüber hinaus

Streifzug durch die Welt der Binome und darüber hinaus www.mathemati-etz.de Copyright, Page 1 of 6 Streifzug durch die Welt der Biome ud darüber hiaus Die biomische Formel sid ützliche Istrumete, welche i viele Gebiete der Mathemati gewibriged eigesetzt werde

Mehr

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung... KAPITEL 7 Zahlefolge 7. Kovergete Zahlefolge.............................. 30 7.2 Grezwertbestimmug............................... 32 7.3 Grezwertbestimmug durch Abschätzug..................... 35 7.4

Mehr

Einführung in das Mathematikstudium und dessen Umfeld

Einführung in das Mathematikstudium und dessen Umfeld Eiführug i das Mathematikstudium ud desse Umfeld (Uterrichtsfach) LVA 05.700 C. Fuchs, K. Fuchs, C. Karolus Wiederholug Schulstoff II WS 2015/16 Die komplexe Zahle Wie wir bereits im erste Teil bemerkt

Mehr

Verschiedenes, S. 2. (Das Element x wird mit a b bezeichnet. Gilt a = 0, so schreibt man kurz b.)

Verschiedenes, S. 2. (Das Element x wird mit a b bezeichnet. Gilt a = 0, so schreibt man kurz b.) Verschiedees Oktober 00 Das Kapitel Verschiedees des Skripts ethält Themegebiete, die sich schlecht eiorde lasse Die folgede Folie behadel Etwas elemetare Mathematik Edliche Summe ud Produkte Vollstädige

Mehr

Grundbegriffe der Differentialrechnung

Grundbegriffe der Differentialrechnung Wirtschaftswisseschaftliches Zetrum Uiversität Basel Mathematik für Ökoome 1 Dr. Thomas Zehrt Grudbegriffe der Differetialrechug Referez: Gauglhofer, M. ud Müller, H.: Mathematik für Ökoome, Bad 1, 17.

Mehr

KAPITEL 2. Zahlenfolgen

KAPITEL 2. Zahlenfolgen KAPITEL Zahlefolge. Kovergete Zahlefolge...................... 35. Grezwertbestimmug....................... 38.3 Grezwertbestimmug durch Abschätzug............. 4.4 Mootoe Folge..........................

Mehr

Demo-Text für Potenzfunktionen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL.

Demo-Text für   Potenzfunktionen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.   FRIEDRICH W. BUCKEL. Potezfuktioe Theme:. Grudeigeschafte, Schaubilder. Kurvegleichuge aufstelle Datei Nr. 8005 Stad 7. Juli 0 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Demo-Tet für 8005 Potezfuktioe Hiweis

Mehr

Einführung in das Mathematikstudium und dessen Umfeld

Einführung in das Mathematikstudium und dessen Umfeld Eiführug i das Mathematikstudium ud desse Umfeld (Uterrichtsfach) LVA 05.700 C. Fuchs, K. Fuchs, C. Karolus Wiederholug Schulstoff II WS 2017/18 Die komplexe Zahle Wie wir bereits im erste Teil bemerkt

Mehr

Kapitel 6 Differenzierbarkeit

Kapitel 6 Differenzierbarkeit Kapitel 6 Differezierbarkeit Ihalt 6.1 6.1Die Defiitio 6.2 6.2Die Eigeschafte 6.3 6.3Extremwerte Seite 2 Was heißt differezierbar? Differezierbare Fuktioe sid sid glatte Fuktioe. Wir Wir beschreibe diese

Mehr

118 Maurer: Mathe macht Spaß

118 Maurer: Mathe macht Spaß 8 Maurer: Mathe macht Spaß 8 Epoettiiallffukttiioe Bei de bisherige Fuktioe sid ausgiebig Poteze aufgetrete, aber die Variable stad ie im Epoet. Das wird sie jetzt tu. Es werde damit Fuktioe mit Gleichuge

Mehr

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen Thema Fit i Mathe Musterlösuge 1 April Klassestufe 10 Wurzelfuktioe Uter der -te Wurzel eier icht-egative Zahl (i Zeiche: ) versteht ma die icht-egative Zahl, die mal mit sich selber multipliziert, die

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik für Physiker (Aalysis ) MA90 Witersem 07/8 Lösugsblatt 4 http://www-m5matumde/allgemeies/ma90 07W (007)

Mehr

Grundwissen Jahrgangsstufe 10

Grundwissen Jahrgangsstufe 10 Grudwisse Jahrgagsstufe 0 Kreis ud Kugel Der Kreis Umfag: U = dπ = rπ Kreisfläche: A= r π α Kreissektorfläche: A = π r 60 ogeläge: b = α r π Maß zur Agabe vo Wikelgröße: α ogemaß: αb = π Kreissektorfläche:

Mehr

Proseminar Lineare Algebra WS 2016/17

Proseminar Lineare Algebra WS 2016/17 Prosemiar Lieare Algebra WS 2016/17 Bachelorstudium Lehramt Sekudarstufe (Allgemeibildug) Lehramtsstudium Uterrichtsfach Mathematik Kapitel 0: Grudlage 1. Wie sid die Begriffe Vereiigug, Durchschitt ud

Mehr

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n.

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n. Reeller Vektorraum Kapitel Vektorräume Die Mege aller Vektore x mit Kompoete bezeiche wir mit x R =. : x i R, i x ud wird als -dimesioaler (reeller) Vektorraum bezeichet. Defiitio Ei Vektorraum V ist eie

Mehr

Vorkurs Mathematik für Informatiker Potenzen und Polynome --

Vorkurs Mathematik für Informatiker Potenzen und Polynome -- Vorkurs Mathematik für Iformatiker -- Poteze ud Polyome -- Thomas Huckle Stefa Zimmer (Stuttgart) 6.0.06 Vorwort Es solle Arbeitstechike vermittelt werde für das Iformatikstudium Der wesetliche Teil ist

Mehr

1 Funktionen und Flächen

1 Funktionen und Flächen Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 8 Defiitioe ud Beispiele für Folge Defiitio Eie

Mehr

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Motag: Zahle, Variable, Algebraische Maipulatio Zahlemege. Die atürliche Zahle hat der liebe Gott gemacht. Alles adere ist

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung Aufgabe zur Übug ud Vertiefug ARITHMETISCHE ZAHLENFOLGEN Berufliches Gymasium / Uterstufe () Stelle Sie fest, welche der gegebee Folge arithmetisch sid: Bestimme Sie zuächst die erste füf Folgeglieder,

Mehr

Lineare Transformationen

Lineare Transformationen STAT 4 FK Herleituge Lieare Trasformatioe Sei eie lieare Trasformatio vo, so gilt Allgemei: a b, () Lieare Trasformatio des arithmetische Mittels y a+b x i () Da a eie additiv verküpfte Kostate ist, ka

Mehr

Nachtrag. Alternatives Buch zum Satz von Fermat 1999 bei amazon nur noch gebraucht

Nachtrag. Alternatives Buch zum Satz von Fermat 1999 bei amazon nur noch gebraucht Nachtrag Alteratives Buch zum Satz vo Fermat 1999 bei amazo ur och gebraucht 1 Uedliche (Zahle-) Mege 2 Wiederholug Steuer Bei eiem Eikomme vo ud eiem Steuersatz vo 33% müsse Sie Steuer zahle. Da werde

Mehr

D-HEST, Mathematik III HS 2015 Prof. Dr. E. W. Farkas R. Bourquin und M. Sprecher. Lösung 1

D-HEST, Mathematik III HS 2015 Prof. Dr. E. W. Farkas R. Bourquin und M. Sprecher. Lösung 1 D-HEST, Mathematik III HS 15 Prof. Dr. E. W. Farkas R. Bourqui ud M. Sprecher Lösug 1 Das erste Kapitel der Vorlesug behadelt die Theorie der Fourier-Reihe. Bearbeite Sie bitte folgede Frage olie bis Diestag,

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahle Lerziele dieses Abschitts sid: (1) Aalytische ud geometrische Darstellug komplexer Zahle, () Grudrechearte fur komplexe Zahle, (3) Kojugatio ud Betrag komplexer Zahle, (4) Losug

Mehr

A. Zahleneinteilung. r a b

A. Zahleneinteilung. r a b Aus FUNKSCHAU 14/1953 (Blatt 1+) ud 17/1953 (Blatt 3), im Origial -spaltig. Digitalisiert 07/016 vo Eike Grud für http://www.radiomuseum.org mit freudlicher Geehmigug der FUNKSCHAU- Redaktio. Die aktuelle

Mehr

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch Ma zeige, daß IR, d i ), i,, metrische Räume sid, we für x x,, x ), y y,, y ) IR die Abstadsfuktioe durch d x, y) x y, d x, y) x y ), d x, y) max x y gegebe sid Lösug: Ma muß für alle drei Fuktio d i x,

Mehr

Kapitel VII: Der Körper der komplexen Zahlen

Kapitel VII: Der Körper der komplexen Zahlen Lieare Algebra II SS 011 - Prof Dr Mafred Leit 3 Der Körper der komplexe Zahle 3 Der Körper der komplexe Zahle A Die Mege der komplexe Zahle B Grudrechearte im Bereich der komplexe Zahle C Realteil Imagiärteil

Mehr

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 9 G8

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 9 G8 Gymasium Ecketal Mathematisch-aturwisseschaftliches Gymasium Neusprachliches Gymasium Gymasium Ecketal Neukircheer Straße 904 Ecketal Grudwisse Jahrgagsstufe: 9 G8. Wurzel, Poteze mit ratioalem Expoete

Mehr

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen.

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen. Wurzelgesetze Gesetzmäßigkeite Grudlage Das Wurzelziehe (oder Radiziere) ist die Umkehrug des Potezieres. Daher sid die Wurzelgesetze de Potezgesetze sehr ählich. Die Wurzel aus eier positive Zahl ergibt

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Dritter Zirkelbrief: Ungleichungen

Dritter Zirkelbrief: Ungleichungen Matheschülerzirkel Uiversität Augsburg Schuljahr 014/015 Dritter Zirkelbrief: Ugleichuge Ihaltsverzeichis 1 Grudlage vo Ugleichuge 1 Löse vo Ugleichuge 3 3 Mittel 4 4 Mittelugleichuge 5 5 Umordugsugleichug

Mehr

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem

Mehr

N G R C. 6.1 Definition und Darstellungsformen der komplexen Zahlen. Def.: Die formale Summe aus einer reellen Zahl a imaginären Zahl bj heißt

N G R C. 6.1 Definition und Darstellungsformen der komplexen Zahlen. Def.: Die formale Summe aus einer reellen Zahl a imaginären Zahl bj heißt 6 Komplexe Zahle Natürliche Zahle N {0,,,...} Gae Zahle G {...,-,-,0,,,...} Reelle Zahle Komplexe Zahle R (-,+ ) C N G R C 6. Defiitio ud Darstellugsforme der komplexe Zahle Def.: Die formale Summe aus

Mehr

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung:

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung: Gleichuge ud Ugleichuge Mathematische Grudlage Das Hadout ist Bestadteil der Vortragsfolie zur Höhere Mathemati; siehe die Hiweise auf der Iteretseite wwwimgui-stuttgartde/lstnumgeomod/vhm/ für Erläuteruge

Mehr

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und Bevor wir zum ächste Kapitel übergehe, werde wir de Begri eier Fuktio i mehrere Variable eiführe. Eie Fuktio vo Variable ist eie Vorschrift, die jedem Pukt (x 1,x,...,x ) eier Teilmege D des IR eie bestimmte

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

Logik. Wahrheitstafeln - für verschiedene Belegungen der logischen Variable wird der Wahrheitswert logischer Ausdrücke angegeben

Logik. Wahrheitstafeln - für verschiedene Belegungen der logischen Variable wird der Wahrheitswert logischer Ausdrücke angegeben . Eiführug Logik Defiitio: Uter eier ussage versteht ma die gedakliche Widerspiegelug eies Sachverhaltes der objektive Realität, bei dem eideutig etschiede werde ka, ob er wahr oder falsch ist. Operatioe

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen

8. Die Exponentialfunktion und die trigonometrischen Funktionen 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8.1 Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: lim 1 w k 0 k w. k! Defiitio der Expoetialfuktio : k 2 3

Mehr

4-1 Elementare Zahlentheorie

4-1 Elementare Zahlentheorie 4-1 Elemetare Zahletheorie 4. Dirichlet s Satz über Primzahle i arithmetische Progressioe. Satz (Dirichlet 1837). Seie a, k atürliche Zahle. Sid die Zahle a, k teilerfremd, so gibt es uedlich viele Primzahle

Mehr

Grundwissenkatalog Mathematik Klasse 6

Grundwissenkatalog Mathematik Klasse 6 Grudwissekatalog Mathematik Klasse Thema. Brüche Grudbegriffe Bruchahle Grudbegriffe Brüche habe die Form mit N 0, N, heisst der Zähler, der Neer des Bruches. Bedigug Beeichug > Uechter Bruch < Echter

Mehr

Mengenbegriff und Mengendarstellung

Mengenbegriff und Mengendarstellung R. Brikma http://brikma-du.de Seite 1 05.10.008 Megebegriff ud Megedarstellug Eie Mege, ist die Zusammefassug bestimmter, wohluterschiedeer Objekte userer Aschauug ud useres Dekes welche Elemete der Mege

Mehr

Lösungen zu Kapitel 4

Lösungen zu Kapitel 4 Lösuge zu Kapitel 4 Lösug zu Aufgabe : Die folgede Grezwerte köe aalog zu Beispiel 4.(c bestimmt werde: (a lim + = 3 3. (b Die Folge a ist diverget. (c lim + = 0. 3 (d lim ( + 3 = 0. (e lim ( + = 0. Lösug

Mehr

Vorkurs. Mathematik für Wirtschaftswissenschaftler

Vorkurs. Mathematik für Wirtschaftswissenschaftler Vorkurs Mathematik für Wirtschaftswisseschaftler Fabia Kleie Lehrstuhl für Agewadte Mikroökoomie fabia.kleie[at]ui-erfurt.de Ihalt 1 Grudlage der Algebra 2 Algebraische Ausdrücke 3 Grudzüge der Megelehre

Mehr

Nicht-Anwendbarkeit des Master- Theorems

Nicht-Anwendbarkeit des Master- Theorems Nicht-Awedbarkeit des Master- Theorems Beispiel: Betrachte die Rekursiosgleichug T () = 2T ( 2 ) + log. Es gilt sicherlich f () = Ω( log b a ) = Ω(), aber icht f () = Ω( log b a+ɛ ). Ma beachte, dass f

Mehr

Übung 2 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 1. Oktober 2018 in den Übungsstunden

Übung 2 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 1. Oktober 2018 in den Übungsstunden Mathematik I für Naturwisseschafte Dr. Christie Zehrt 7.09.18 Übug (für Pharma/Geo/Bio) Ui Basel Besprechug der Lösuge: 1. Oktober 018 i de Übugsstude Aufgabe 1 Sid die folgede Abbilduge f : X Y umkehrbar?

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8. Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: w lim + = k = 0 k w. k! Defiitio der Expoetialfuktio : k

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe 10 Gegebe sid die Pukte A(/4), B(/8) ud Z 1 (5/6) eier zetrische Streckug mit dem Zetrum Z 1 ud k = - 11 Fertige eie Zeichug a ud kostruiere die Bildstrecke [A`B`] Platzbedarf: - < x < 15 ud 0 < y < 14

Mehr

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Differezegleichuge, z-trasformatio Prof. Dr.-Ig. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Ihaltsverzeichis 1 Differezegleichuge, -Trasformatio...1-1 1.1 Eiführug i Differezegleichuge...1-1

Mehr

9. Übungsblatt Aufgaben mit Lösungen

9. Übungsblatt Aufgaben mit Lösungen 9. Übugsblatt Aufgabe mit Lösuge Aufgabe 1: Gegebe sei die folgede Differetialgleichug 15u(x) + 3xu (x) + x u (x) = 8x 3, x > 0. (a) Gebe Sie ei reelles Fudametalsystem der zugehörige homogee Differetialgleichug

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 8

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 8 Erzbischöfliche Liebfraueschule Köl Schuliteres Curriculum Fach: Mathematik Jg. 8 Reihe - folge Buchabschitt Theme Ihaltsbezogee Kompeteze Prozessbezogee Kompeteze 1 1.1 1.11 Terme ud Gleichuge mit Klammer

Mehr

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Ziel dieses Verfahres ist es, Beziehuge zwische zwei Merkmale

Mehr

So lösen Sie die Gleichung für den Korrelationskoeffizienten

So lösen Sie die Gleichung für den Korrelationskoeffizienten 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Dabei sid Datepukte ( x 1, y 1 ),( x 2, y 2 ), ( x, y ) gegebe.

Mehr

Einige spezielle Funktionen: exp, ln, sin, cos.

Einige spezielle Funktionen: exp, ln, sin, cos. 76 Kapitel 5 Eiige spezielle Fuktioe: exp, l, si, cos. 5.1 Expoetialfuktio ud Logarithmus Die überaus wichtige Expoetialfuktio soll u etwas geauer diskutiert werde. Die ursprügliche Defiitio.0 ist für

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe .0 Die Pukte P(0/-7) ud Q(5/-) liege auf eier ach ute geöffete Normalparabel p. G< x. Bereche die Gleichug der Parabel p. (Ergebis: y = - x + 6x - 7 ). Bestimme die Koordiate des Parabel-Scheitels. Gib

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln 6 Kovergete Folge Lerziele: Kozepte: Grezwertbegriff bei Folge, Wachstumsgeschwidigkeit vo Folge Resultat: Mootoe beschräkte Folge sid koverget. Methode: Hero-Verfahre, Erweiterug vo Differeze vo Quadratwurzel

Mehr

Aufgrund der Körperaxiome ist jedoch

Aufgrund der Körperaxiome ist jedoch Hiweise: Der Doppelstrich // steht für eie Kommetarzeile. Tipp- ud Rechtschreibfehler köe trotz mehrfacher Kotrolle icht hudertprozetig vermiede werde. Die selbst erstellte Lösugsasätze orietiere sich

Mehr

0.1 E: Der Haupsatz der Mineralogie

0.1 E: Der Haupsatz der Mineralogie 0. E: Der Haupsatz der Mieralogie Satz: I eiem Kristall gibt es ur,,3,4 ud 6-zählige Symmetrie. Defiitio: Seie u, v 0 zwei Vektore, die icht auf eier Gerade liege. Die Mege heißt Gitter. Satz: Die Vektore

Mehr

i=0 a it i das erzeugende Polynome von (a 0,..., a j ).

i=0 a it i das erzeugende Polynome von (a 0,..., a j ). 4 Erzeugede Fuktioe ud Polyome Defiitio 4 Sei a = (a 0, a, eie Folge vo atürliche Zahle, da heißt die formale Potezreihe f a (t := i 0 a it i die erzeugede Fuktio vo a Gilt a i = 0 für i > j, so heißt

Mehr

Langrange-Multiplikators und Hinreichende Bedingungen

Langrange-Multiplikators und Hinreichende Bedingungen Albert Ludwigs Uiversität Freiburg Abteilug Empirische Forschug ud Ökoometrie Mathematik für Wirtschaftswisseschaftler Dr. Sevtap Kestel Witer 008 10. November 008 14.-4 Lagrage-Multiplikators ud Hireichede

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Istitut für Techologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 3/4 Prof. Dr. J. Schmalia Blatt 7 Dr. P. P. Orth Abgabe ud Besprechug 3..3. Tayloretwicklug I 5 + 5 + 5 + 5

Mehr

5.3 Wachstum von Folgen

5.3 Wachstum von Folgen 53 Wachstum vo Folge I diesem Abschitt betrachte wir (rekursiv oder aders defiierte) Folge {a } = ud wolle vergleiche, wie schell sie awachse, we wächst Wir orietiere us dabei a W Hochstättler: Algorithmische

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

Abb. 1: Woher kommen die schwarzen Quadrate?

Abb. 1: Woher kommen die schwarzen Quadrate? Has Walser, [0160916], [0161009] Umögliche pythagoreische Dreiecke Idee: Chr. Z., B. 1 Schwarze Quadrate Woher komme die beide schwarze Quadrate? Abb. 1: Woher komme die schwarze Quadrate? Sachverhalt

Mehr