Klausur zum Grundkurs Höhere Mathematik I

Größe: px
Ab Seite anzeigen:

Download "Klausur zum Grundkurs Höhere Mathematik I"

Transkript

1 Korrektur :.,3. ; : 3. Name, Vorame: Studiegag: Matrikelummer: Z Pukte Note Klausur zum Grudkurs Höhere Mathematik I für BNC, GtB, MB, EC, TeM, VT, KGB, WWT, ESM, FWK, BGi, WiW 0. Februar 006, Uhr Zugelassee Hilfsmittel: A4 Blätter hadschriftliche Notize (eigee Ausarbeituge) aber keie Mitschrifte; Formelsammluge (auch Bartsch, Brostei etc.) aber keie Lehrbücher; Tascherecher (auch grafikfähig) aber ohe Computer-Algebra-System (CAS). Bearbeite Sie bitte jede Aufgabe auf eiem separate Blatt bzw. auf separate Blätter. Das Aufgabeblatt ist mit abzugebe. Vergesse Sie bitte icht, auf dem Aufgabeblatt ud jedem Lösugsblatt Ihre Name ud Ihre Matrikelummer gut leserlich azugebe. Der Lösugsweg ist stets azugebe, er sollte i alle Schritte durch eigee Rechuge deutlich erkebar, begrüdet ud achvollziehbar sei. Nur da ka ach detaillierter Bewertug die volle Puktzahl erreicht werde. Viel Erfolg! Aufgabe : 8 Pukte (a) Welche reelle Zahle x erfülle die Ugleichug x > x? (b) Welche komplexe Zahle z erfülle die Ugleichug z > z? Skizziere Sie die Lösugsmege i der Gaußsche Zahleebee. (c) Bestimme Sie alle z = a + bi, für die gilt z 4 + i =. Rude Sie die Edergebisse auf zwei Nachkommastelle. 0 Aufgabe : Die Mege V := v R3 : v = a 0 + b, a, b R 0 ist ei Uterraum des R 3. 6 Pukte (a) Gebe Sie eie Basis vo V ud die Dimesio vo V a. (b) Welche geometrische Iterpretatio hat die Mege V? (c) Ergäze Sie die Basis vo V zu eier Basis des R 3. 0 (d) Ist die Mege W := v R3 : v = 0 + s 0, s R ebefalls ei Uterraum vo R 3? Begrüde Sie die Atwort.

2 Aufgabe 3: Gegebe ist das folgede lieare Gleichugssystem: x y + z = 8 x + y + z = b ( a)x + 3y + 3z = 3 9 Pukte (a) Für welche reelle Parameter a ud b besitzt das System (i) keie Lösug (ii) geau eie Lösug (iii) uedlich viele Lösuge? (b) Betrachte Sie das Gleichugssystem als System vo drei parameterfreie Ebeegleichuge. Was bedeutet da der obige Fall (iii) geometrisch? Bereche Sie für diese Fall die Lösugsmege. (c) Gebe Sie für obige Fall (i) die Lösugsmege des zugehörige homogee lieare Gleichugssystems a. Gibt es ichttriviale Lösuge? Welche Wert besitzt da die Determiate der Koeffizietematrix? Aufgabe 4: Bestimme Sie die Eigewerte ud Eigevektore sowie die algebraische ud geometrische Vielfachheit der Eigewerte der Matrix A = Pukte Aufgabe 5: 6 Pukte (a) Bestimme Sie de Grezwert (b) Utersuche Sie = (3b) + 3 ( + ) +. auf Kovergez (i Abhägigkeit vo b R). Aufgabe 6: Führe Sie für die Fuktio f(x) = l(x a) (x a) (a R kostat) eie Kurvediskussio durch (Defiitios- ud Wertebereich, Symmetrie, Nullstelle, Mootoieitervalle, Extrema, Krümmugsverhalte (kovex/kokav) ud Wedepukte, (Grezwert-) Verhalte im Uedliche bzw. am Rad des Defiitiosbereichs). Pukte Zusatz - Aufgabe: Bereche Sie das ubestimmte Itegral dx x 3x + mit der Methode der Partialbruchzerlegug. 3 Pukte

3 Aufgabe : 8 Pukte (a) Welche reelle Zahle x erfülle die Ugleichug x > x? (b) Welche komplexe Zahle z erfülle die Ugleichug z > z? Skizziere Sie die Lösugsmege i der Gaußsche Zahleebee. (c) Bestimme Sie alle z = a + bi, für die gilt z 4 + i =. Rude Sie die Edergebisse auf zwei Nachkommastelle. Lösug : (a) x > x, Vorzeichewechsel der Betragsargumete bei x = 0 bzw. x =, Falluterscheidug zur Auflösug der Beträge:.Fall: x < 0 (< ) -(x- ) > -(x ), > 0, wahre Aussage (!) L = ( ; 0)..Fall: 0 x < -(x- ) > x, > x, x < L = [0; ). 3.Fall: x (> 0) x > x, > 0, Widerspruch (!) L 3 =. Gesamtlösugmege L = L L L 3 = ( ; 0) [0; ) = ( ; ). Graphische Lösug: (b) z > z, z = a + b i z > z a + b i > a b i (a ) + b > a + b a a + + b > a + b a + > 0 a < b R Bemerkug: Die Lösugsmege aus (a) ist der Teil der Lösugsmege aus (b) für x = a ud b = 0. 3

4 (c) z 4 + i = z 4 = i = w = ( cos 5 4 π + i si 5 4 π) (3. Quadrat). Lösuge der Gleichug z 4 = w : ( 5 z k = (cos π + k π ) ( i si π + k π )) ( ( 8 5 = cos 6 π + k π ) ( 5 + i si 6 π + k π )) = 8 e i 5+k 8 6 π, k = 0,,, 3. z 0 = 8 e i 5 6 π = 8 ( cos 5 6 π + i si 5 6 π) 0, 6 + 0, 9 i z = 8 e i 3 6 π = 8 ( cos 3 3 π + i si π) 0, 9 + 0, 6 i 6 6 z = 8 e i 6 π = 8 ( cos π + i si π) 0, 6 0, 9 i 6 6 z 3 = 8 e i 9 6 π = 8 ( cos 9 9 π + i si π) 0, 9 0, 6 i 6 6 4

5 0 Aufgabe : Die Mege V := v R3 : v = a 0 + b, 0 ist ei Uterraum des R 3. a, b R 6 Pukte (a) Gebe Sie eie Basis vo V ud die Dimesio vo V a. (b) Welche geometrische Iterpretatio hat die Mege V? (c) Ergäze Sie die Basis vo V zu eier Basis des R 3. 0 (d) Ist die Mege W := v R3 : v = 0 + s 0, s R ebefalls ei Uterraum vo R 3? Begrüde Sie die Atwort. Lösug : (Korrigiert: ) 0 (a) Die Vektore v = 0 ud v = spae de Uterraum V auf. Sie sid eie 0 Basis, da sie liear uabhägig sid, de aus 0 α 0 α 0 + β = β = 0 0 α 0 folgt aus de erste beide Zeile, dass α = β = 0 sei muss. Da die Azahl der Basisvektore gleich ist, hat der Uterraum die Dimesio. (b) Geometrisch hadelt es sich um eie Ebee durch de Ursprug mit der Gleichug: x 0 y = a 0 + b. z 0 (c) Eie mögliche Ergäzug ist der Vektor u = v v = e x e y e z = 0 Er ist orthogoal zu v ud v ud folglich sid v, v ud u liear uabhägig, was ma auch direkt überprüfe ka durch α v + β v + γ u = 0 β = 0, α = 0, γ = 0. (d) W ist keie Uterraum, de 0 W, da das Gleichugssystem s 0 = 0 0 keie Lösug besitzt. Die erste ud die letzte Zeile (Gleichug) sid widersprüchlich. 5

6 Aufgabe 3: Gegebe ist das folgede lieare Gleichugssystem: x y + z = 8 x + y + z = b ( a)x + 3y + 3z = 3 9 Pukte (a) Für welche reelle Parameter a ud b besitzt das System (i) keie Lösug (ii) geau eie Lösug (iii) uedlich viele Lösuge? (b) Betrachte Sie das Gleichugssystem als System vo drei parameterfreie Ebeegleichuge. Was bedeutet da der obige Fall (iii) geometrisch? Bereche Sie für diese Fall die Lösugsmege. (c) Gebe Sie für obige Fall (i) die Lösugsmege des zugehörige homogee lieare Gleichugssystems a. Gibt es ichttriviale Lösuge? Welche Wert besitzt da die Determiate der Koeffizietematrix? Lösug : (Korrigiert: , ) x y z - 8 b a b 7 a a b zu (a) : (i) keie Lösug, we a = ud b, (ii) geau eie Lösug, we a, (iii) uedlich viele Lösuge, we a = ud b =. zu (b) : Lösugsmege: Aus de - Zeile erhält ma für a = ud b = das gestaffeltes System ud mit x = t als Parameter daraus die Lösugsmege x y +z = 8 3x +3z = 9 x 0 y = + t 0, t R. z 3 Geometrische Bedeutug: Die drei Ebee scheide sich i eier Gerade, gegebe durch die Lösugsmege. zu c) : Für die Fälle (i) ud (iii) falle die zugehörige homoge Systeme zusamme. Das gestaffelte System etspricht dem aus (b), we die rechte Seite durch 0 ersetzt werde. x Die Lösugsmege ist deshalb y = t 0, t R. z Für t 0 sid das ichttriviale Lösuge. Die Determiate der Koeffizietematrix verschwidet (besitzt de Wert 0), weil ihre Zeile liear abhägig sid. 6

7 Aufgabe 4: Bestimme Sie die Eigewerte ud Eigevektore sowie die algebraische ud geometrische Vielfachheit der Eigewerte der Matrix A = Pukte Lösug : Charakteristisches Polyom: det (A λe) = λ 0 λ 0 0 λ = ( λ)( λ) = 0 Eigewerte, Nullstelle des charakteristische Polyoms : λ =, (eifache Nullstelle) ; λ = λ 3 =, (doppelte Nullstelle). Eigevektore, Lösuge des homogee Gleichugssystems (A λe) v = 0 : λ = : Lösugsmege (Eigeuterraum) ist somit v R3 : v = t 0. 0 Damit hat der Eigewert λ = die algebraische ud geometrische Vielfachheit. λ,3 = : Lösugsmege (Eigeuterraum) ist also v R3 : v = t. 0 Folglich hat der Eigewert λ,3 = algebraische Vielfachheit ud die geometrische Vielfachheit. 7

8 Aufgabe 5: (a) Bestimme Sie de Grezwert (b) Utersuche Sie = (3b) + 3 ( + ) +. auf Kovergez (i Abhägigkeit vo b R). 6 Pukte Lösug : (a) ( + ) + = ( + ) ( + ) [ ( = + ) ] ( + ) [ = = e = e ( + ) ] ( + ) Variate (Kurzfassug): ( + ) + = ( + ) ( + ) = e (b) Quotiete-Kriterium: a + a = (3b) (+) (3b) = (3 b) b koverget, falls 9b < d.b. b < 3, diverget, falls b > 3. b = 3 k= + 3, diverget, harmoische Reihe. 8

9 Aufgabe 6: Führe Sie für die Fuktio f(x) = l(x a) (x a) (a R kostat) eie Kurvediskussio durch (Defiitios- ud Wertebereich, Symmetrie, Nullstelle, Mootoieitervalle, Extrema, Krümmugsverhalte (kovex/kokav) ud Wedepukte, (Grezwert-) Verhalte im Uedliche bzw. am Rad des Defiitiosbereichs). Pukte Lösug : f(x) = l(x a) (x a) Bemerkug: Die Rechug läßt sich bezüglich des Schreibaufwades erheblich verkürze, we ma statt f(x) die Fuktio g(x) = f(x + a) = l x diskutiert ud die berechete x-stelle x da um a lägs der x-achse verschiebt, d.b. zu dem berechete x-wert a addiert. Defiitiosbereich : Weil das Argumet des Logarithmus positiv sei muß, ist f(x) i D f = (a; ) defiiert (ud als Quotiet elemetarer Fuktioe mit positivem Neer dort überall) stetig. Symmetrie : Weder gerade och ugerade, weil f( x) f(x) ud f( x) f(x). Ableituge : f (x) = f (x) = f (x) = (x x a a) l(x a) (x a) = (x a) 4 l(x a) (x a) 3 x a (x a)3 ( l(x a)) 3(x a) (x a) 6 = 6 x a (x a)4 ( l(x a)) 4(x a) 3 (x a) 8 = l(x a) (x a) l(x a) (x a) 5 Hiweis für die weitere Rechug: : Wege x > a werde Nullstelle ud Vorzeiche der Fuktio ud der Ableituge bestimmt durch Nullstelle ud Vorzeiche des Zählers, weil der Neer stets positiv ist. Nullstelle ud Vorzeiche vo f(x) : f(x) = 0 l(x a) = 0 x a = e 0 x = + a ; f(x) > 0 l(x a) > 0 x a > e 0 x > + a ; f(x) < 0 l(x a) < 0 x a < e 0 x < + a. Damit ist f(x) egativ für x (a; + a), positiv für x ( + a; ) ud besitzt die eizige Nullstelle für x N = + a. 9

10 Extremwerte ud Mootoie (Nullstelle ud Vorzeiche vo f (x) ) : f (x) 0 l(x a) 0 l(x a) e x a e + a x. l(x a) Damit ist klar, daß f(x) i (a; e + a] mooto wächst, i [ e + a; ) mooto fällt ud folglich i x E = e + a ei relatives (lokales) Maximum mit dem Fuktioswert f( e + a) = l( e + a a) ( e + a a) = l e = e e besitzt. Weil i de offee Itervalle (a; e+a) ud ( e+a; ) strege Mootoie gegebe ist, besitzt f(x) i x E sei eideutig bestimmtes absolutes (globales) Maximum, isbesodere gilt f(x) für alle x D e f (Wertebereich!). Die Extremstelle läßt sich alterativ auch bestimme aus der otwedige Bedigug f (x) = 0 x = e + a ud bestätige mit der hireichede Bedigug f ( e + a) = l( e + a a) ( e + a a) 4 = e < 0. Wedepukte ud Krümmugsverhalte (Nullstelle, Vorzeiche vo f (x) ) : f (x) l(x a) 0 6 l(x a) 5 l(x a) 5 6 x a e 5 6 x 6 e 5 + a. Damit ist klar, daß f(x) i (a; 6 e 5 + a] kokav ist, i [ 6 e 5 + a; ) kovex ist ud folglich i x W = 6 e 5 + a eie Wedepukt mit dem Fuktioswert f( 6 e 5 + a) = l( 6 e 5 + a a) ( 6 e 5 + a a) = l e 5 6 = besitzt. e 5 e 5 3 Die Wedestelle läßt sich alterativ auch bestimme aus der otwedige Bedigug f (x) = 0 x = 6 e 5 + a ud bestätige mit der hireichede Bedigug f ( 6 e 5 + a) = 6 4 l( 6 e 5 + a a) ( 6 e 5 + a a) 5 = 6 6 e 5 > 0. Verhalte a de Greze des Defiitiosbereiches : ( ) l(x a) x a+ (x a) = = 0+ l(x a) ( ) x (x a) = x a = l Hospital x (x a) = x (x a) = 0+ Wertebereich : Weil f(x), f(x) = e ( ] x a+ W f = ;. e (ud f(x) stetig ist!) gilt für de Wertebereich 0

11 Aufgabe Z: Bereche Sie das ubestimmte Itegral dx x 3x + mit der Methode der Partialbruchzerlegug. 3 Pukte Lösug : dx x 3x + Nullstelle des Neers: x 3x + = 0 x, = 3 ± 9 8 4, x =, x = Asatz Partialbruchzerlegug: x 3x + = (x )(x ) = A x + B x Koeffizietebestimmug durch Eisetzte der Nullstelle: = A(x ) + B(x ) = (A + B)x + ( A B) x = A =, x = B =. Lösugsvariate: Koeffizietebestimmug durch Koeffizietevergleich: = 0 x + = (A + B)x + ( A B) A+B=0 A B= A =, B =. Itegratio: ( dx x 3x + = x + ) dx dx = x x + dx x = l x + l x + C = l x x + C

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

2 Differentialrechnung und Anwendungen

2 Differentialrechnung und Anwendungen Differetialrechug ud Aweduge Differetialrechug ud Aweduge Der Begriff des Differetialquotiete hat sich i zahlreiche Aweduge ierhalb ud außerhalb der Mathematik als äußerst fruchtbar erwiese. Bestimmug

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004 Lösuge zu Aufgabeblatt 7

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen. Reihen reeller Zahlen

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen. Reihen reeller Zahlen Höhere Mathematik für techische Studiegäge Vorereitugsaufgae für die Üuge Reihe reeller Zahle. Utersuche Sie die folgede Reihe mit Hilfe geeigeter Kovergezkriterie otwediges Kovergezkriterium, Quotiete-,

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P)

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P) Serie Abgabetermi: spätestes 24.0.2006, 09:00 Uhr Aufgabe.: 5 P Zeige Sie, dass das geometrische Mittel icht größer ist als das arithmetische Mittel, d.h., dass für alle Zahle a, b R mit a, b 0 gilt ab

Mehr

3. Anwendungen der Differentialrechnung

3. Anwendungen der Differentialrechnung 3.1 Kurveutersuchuge mittels der Differetialrechug 33 3. Aweduge der Differetialrechug 3.1 Kurveutersuchuge mittels der Differetialrechug I diesem Abschitt betrachte wir Fuktioe f: D, welche je ach Bedarf

Mehr

Die erste Zeile ("Nummerierung") denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen.

Die erste Zeile (Nummerierung) denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen. Folge ud Reihe (Izwische Stoff der Hochschule. ) Stad: 30.03.205. Folge Was sid Zahlefolge? Z.B. oder Das ist die vereifachte Wertetabelle eier Fuktio geschriebe wie üblich bei Fuktioe i eier Wertetabelle.

Mehr

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln 6 Kovergete Folge Lerziele: Kozepte: Grezwertbegriff bei Folge, Wachstumsgeschwidigkeit vo Folge Resultat: Mootoe beschräkte Folge sid koverget. Methode: Hero-Verfahre, Erweiterug vo Differeze vo Quadratwurzel

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

KAPITEL 1. Komplexe Zahlen. 1.1 Lernziele im Abschnitt: Komplexe Zahlen Was sind komplexe Zahlen? Komplexe Zahlenebene...

KAPITEL 1. Komplexe Zahlen. 1.1 Lernziele im Abschnitt: Komplexe Zahlen Was sind komplexe Zahlen? Komplexe Zahlenebene... KAPITEL 1 Komplexe Zahle 1.1 Lerziele im Abschitt: Komplexe Zahle...................... 1. Was sid komplexe Zahle?............................. 1. Komplexe Zahleebee............................... 1. Grudrechearte

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

Zentrale Klassenarbeit unter Prüfungsbedingungen im Schuljahr 2009/2010. Mathematik (A) 26. März 2010

Zentrale Klassenarbeit unter Prüfungsbedingungen im Schuljahr 2009/2010. Mathematik (A) 26. März 2010 Miisterium für Bildug, Juged ud Sport Zetrale Klassearbeit uter Prüfugsbediguge im Schuljahr 009/00 Mathematik (A) 6. März 00 Zugelassee Hilfsmittel: - Tascherecher (icht programmierbar ud icht grafikfähig)

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

Tutorium Mathematik I, M Lösungen

Tutorium Mathematik I, M Lösungen Tutorium Mathematik I, M Lösuge 16. November 2012 *Aufgabe 1. Ma utersuche die folgede Reihe auf Kovergez (a) ( 1) (1 ) (b) ( ) 2 +1 (c) (!) 3 10 (3)! (d) (e) (f) 2 +3 3 2 +1 3 ( 2 +1) 2 + 3 ( 2 +3) (g)

Mehr

Mathematik Funktionen Grundwissen und Übungen

Mathematik Funktionen Grundwissen und Übungen Mathematik Fuktioe Grudwisse ud Übuge Potezfuktio Hyperbel Epoetialfuktio Umkehrfuktio Stefa Gärter 004 Gr Mathematik Fuktioe Seite Grudwisse Potezfuktio Defiitio Durch die Zuordugsvorschrift f: Æ mit

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09 Musterlösug zu Blatt 8 der Vorlesug Aalysis I WS08/09 Schriftliche Aufgabe Aufgabe. Voraussetzuge: Für alle N setze a : +2 ud b : ( 2. [Amerkug: I der Aufgabestellug heiÿe die Reihe beide gleich. Es steht

Mehr

4. Vektorräume mit Skalarprodukt

4. Vektorräume mit Skalarprodukt 4. Vektorräume mit Skalarprodukt Wiederholug: V=R x, y R: x= x x i x, y= y y, :R R R Skalarprodukt Stadardskalarprodukt lieare Abbildug mit 2 Argumete 4. Eigeschafte vo Skalarprodukte Def.: Es sei V ei

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

Klausur 1 über Folgen

Klausur 1 über Folgen www.mathe-aufgabe.com Klausur über Folge Hiweis: Der GTR darf für alle Aufgabe eigesetzt werde. Aufgabe : Bestimme eie explizite ud eie rekursive Darstellug! a) für eie arithmetische Folge mit a = 6, ;

Mehr

Aufgabe 1: Funktionale Modellierungen

Aufgabe 1: Funktionale Modellierungen Didaktik des Sachreches (Sek. I) Übugsblatt 4 Dr. Astrid Brikma Name, Vorame: Matrikelummer: Doppelte Lösuge führe zum Verlust aller Pukte beider Persoe-Gruppe. Die Lösuge sid hadschriftlich abzugebe.

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I Aufgabe ud Lösuge Weihachtsgescheke zur Vorlesug Aalysis I Der Witersemester 008/009 Übug am 4.., 5..008 sowie 0.0.009 Aufgabe. Folge Aufgabe Ma bestimme, ob die Folge (a ) mit a = + 3 + 4 kovergiert ud

Mehr

Klasse: Platzziffer: Punkte: / Graph zu f

Klasse: Platzziffer: Punkte: / Graph zu f Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P12 040703. Studiengang Fach Art der Leistung Klausur-Knz. Datum 03.07.

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P12 040703. Studiengang Fach Art der Leistung Klausur-Knz. Datum 03.07. Studiegag Fach Art der Leistug Klausur-Kz. Wirtschaftsigeieurwese Wirtschaftsmathematik Prüfugsleistug WI-WMT-P 040703 Datum 03.07.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich:

Mehr

Inhaltsverzeichnis. 3 Stetigkeit. 3.1 Reelle und komplexe Funktionen

Inhaltsverzeichnis. 3 Stetigkeit. 3.1 Reelle und komplexe Funktionen Ihaltsverzeichis 3 Stetigkeit 1 3.1 Reelle ud komplexe Fuktioe........................ 1 3. Grezwerte vo Fuktioe.......................... 3.3 Eiseitige oder ueigetliche Grezwerte................... 3

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

1 Lösungen zu Analysis 1/ 12.Übung

1 Lösungen zu Analysis 1/ 12.Übung Lösuge ausgewählter Beispiele zu Aalysis I, G. Bergauer, Seite Lösuge zu Aalysis / 2.Übug. Eileitug Gleichmäßige Kovergez ist eie starke Eigeschaft eier Fuktioefolge. Formuliert ma sie für Netze, statt

Mehr

1 Einführende Worte 2

1 Einführende Worte 2 Sara Adams Semiarvortrag Rekursive Fuktioe - WS 2004/05 1 Sara Adams Semiarvortrag Rekursive Fuktioe - WS 2004/05 2 1 Eiführede Worte Semiar Grudlegede Algorithme Auflösug vo Rekursioe 1.1 Beispiele Bevor

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

5.3 Wachstum von Folgen

5.3 Wachstum von Folgen 53 Wachstum vo Folge I diesem Abschitt betrachte wir (rekursiv oder aders defiierte) Folge {a } = ud wolle vergleiche, wie schell sie awachse, we wächst Wir orietiere us dabei a W Hochstättler: Algorithmische

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

4. Die Menge der Primzahlen. Bertrands Postulat

4. Die Menge der Primzahlen. Bertrands Postulat O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p

Mehr

Streifzug durch die Welt der Binome und darüber hinaus

Streifzug durch die Welt der Binome und darüber hinaus www.mathemati-etz.de Copyright, Page 1 of 6 Streifzug durch die Welt der Biome ud darüber hiaus Die biomische Formel sid ützliche Istrumete, welche i viele Gebiete der Mathemati gewibriged eigesetzt werde

Mehr

AUFGABE AUFGABE AUFGABE AUFGABE AUFGABE AUFGABE AUFGABE AUFGABE 35...

AUFGABE AUFGABE AUFGABE AUFGABE AUFGABE AUFGABE AUFGABE AUFGABE 35... Ihaltsverzeichis AUFGABE... AUFGABE... AUFGABE 3... 3 AUFGABE 4... 4 AUFGABE 5... 5 AUFGABE 6... 5 AUFGABE 7... 6 AUFGABE 8... 7 AUFGABE 9... 8 AUFGABE 0... 9 AUFGABE... 0 AUFGABE... 0 AUFGABE 3... AUFGABE

Mehr

α : { n Z n l } n a n IR

α : { n Z n l } n a n IR 1 KAPITEL VI. ZAHLENFOLGEN UND REIHEN 1) REELLE ZAHLENFOLGEN: i) Jede Abbildug α : IN a IR heiÿt 'reelle Zahlefolge' bzw. 'Folge i IR'. Ma otiert diese i der Form α = a ) IN = a ) =0 = a 0, a 1, a 2,...)

Mehr

Ungleichungen werden mit Äquivalenzumformungen gelöst. Hierzu werden die sogenannten Monotoniegesetze angegeben.

Ungleichungen werden mit Äquivalenzumformungen gelöst. Hierzu werden die sogenannten Monotoniegesetze angegeben. Floria Häusler Ugleichuge. Grudsätzliches I folgede ist ur vo reelle Zahle die Rede, ohe daß dies im eizele betot wird. Es seie A, B, C,... Terme reeller Zahle, u. U. auch mit Variable. Für Ugleichuge

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Folgen und Reihen Glege 03/01

Folgen und Reihen Glege 03/01 Folge ud Reihe Glege 03/0 I diesem Script werde folgede Theme behadelt: Folge (Eiführug)... Arithmetische Folge... Geometrische Folge...3 Mootoie...4 Kovergez...5 Grezwert...6 Schrake...7 Arithmetische

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

5.7. Aufgaben zu Folgen

5.7. Aufgaben zu Folgen 5.7. Aufgabe zu Folge Aufgabe : Lieares ud beschräktes Wachstum Aus eiem Quadrat mit der Seiteläge dm gehe auf die rechts agedeutete Weise eue Figure hervor. Die im -te Schritt agefügte Quadrate sid jeweils

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgabe ud Lösuge Ausarbeitug der Übugsstude zur Vorlesug Aalysis I Witersemester 2008/2009 Übug am 09.2.2008 Übug 8 Eileitug Es soll och eimal auf die agebotee Sprechstude higewiese werde, sowie auf mögliche

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

Mathematik Abiturwissen. Script von Michael Telgkamp Vorlesung Dr. Bruder

Mathematik Abiturwissen. Script von Michael Telgkamp Vorlesung Dr. Bruder Mathematik Abiturwisse Script vo Michael Telgkamp Vorlesug Dr. Bruder . Eiführug Abiturwisse Mathematik / 9. Zahlebereiche: N atürliche Zahle Z gaze Zahle Q ratioale Zahle R reelle Zahle C komplee Zahle

Mehr

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig.

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. 1.3 Fuktioe Seie M ud N Mege f : M N x M : 1 y N : y fx et ma Fuktio oder Abbildug. Beachte: Zuordug ist eideutig. Bezeichuge: M : Defiitiosbereich N : Bildbereich Zielmege vo f Der Graph eier Fuktio:

Mehr

Übungen mit dem Applet Taylor-Entwickung von Funktionen

Übungen mit dem Applet Taylor-Entwickung von Funktionen Taylor-Etwickug vo Fuktioe Übuge mit dem Applet Taylor-Etwickug vo Fuktioe Ziele des Applets... Mathematischer Hitergrud... 3 Vorschläge für Übuge... 3 3. Siusfuktio si(...3 3. Cosiusfuktio cos(...4 3.3

Mehr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische

Mehr

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 5

Prof. Dr. Holger Dette Musterlösung Statistik I Sommersemester 2009 Dr. Melanie Birke Blatt 5 Prof. Dr. Holger Dette Musterlösug Statistik I Sommersemester 009 Dr. Melaie Birke Blatt 5 Aufgabe : 4 Pukte Sei X eie Poissoλ verteilte Zufallsvariable mit λ > 0, ud die Verlustfuktio L sei defiiert durch

Mehr

Abiturprüfug Mathematik 008 Bade-Württemberg (ohe CAS) Wahlteil - Aufgabe Aalysis I Aufgabe I.: Ei Tal i de Berge wird ach Weste vo eier steile Felswad, ach Oste vo eiem flache Höhezug begrezt. Der Querschitt

Mehr

Beweisen Sie die Abtrennregel ( modus ponens): (A (A B)) B

Beweisen Sie die Abtrennregel ( modus ponens): (A (A B)) B Lösuge Logik) A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer. Scho

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

Aufgaben zu Kapitel 8

Aufgaben zu Kapitel 8 Aufgabe zu Kapitel 8 Aufgabe zu Kapitel 8 Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe

Mehr

(8) FOLGEN und REIHEN

(8) FOLGEN und REIHEN Folge ud Reihe ÜBUNGEN Bestimme die gegeseitige Lage der Ebee ud gib die gemeisame Pukte bzw. Gerade a. x+4y - 6z= x + y - z = 4x - 4y+4z=0 x + y z = 0 x - y+z = x + y + z = x+y -5z= 4x - 7y+z= -x+y -z=8

Mehr

2. Grundlagen der Differentialrechnung

2. Grundlagen der Differentialrechnung . Kovergez vo Folge ud Reihe. Grudlage der Differetialrechug. Kovergez vo Folge ud Reihe I diesem Abschitt betrachte wir uedliche Folge reeller Zahle ( ) =,, 3,..., d.s. geau geomme Fuktioe f: Õ, f() =.

Mehr

Kapitel 6: Quadratisches Wachstum

Kapitel 6: Quadratisches Wachstum Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathemati PROF DRDR JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Iformatier I Witersemester 2003/2004 Aufgabeblatt 8 12 Dezember

Mehr

Grundkompetenz-Aufgaben

Grundkompetenz-Aufgaben Durch starte Mathematik übugsbuch bis Grudkompetez-Aufgabe Aufgrud der eue schriftliche Reifeprüfug i Mathematik ist es otwedig, sich mit de eue Grudkompetez-Aufgabe auseiaderzusetze. Die Olie-Ergäzug

Mehr

Abschlussprüfung 20XX Muster an den Realschulen in Bayern

Abschlussprüfung 20XX Muster an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussrüfug 0XX Muster a de Realschule i ayer Mathematik II Hilfsmittelfreier Teil Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabeteil A Hauttermi A ereche Sie. a) vo 40 sid

Mehr

i=0 a it i das erzeugende Polynome von (a 0,..., a j ).

i=0 a it i das erzeugende Polynome von (a 0,..., a j ). 4 Erzeugede Fuktioe ud Polyome Defiitio 4 Sei a = (a 0, a, eie Folge vo atürliche Zahle, da heißt die formale Potezreihe f a (t := i 0 a it i die erzeugede Fuktio vo a Gilt a i = 0 für i > j, so heißt

Mehr

3.2 Potenzreihen und komplexe Taylorentwicklung

3.2 Potenzreihen und komplexe Taylorentwicklung 40 Kapitel 3. Holomorphe Fuktioe 3.2 Potezreihe ud komplexe Tayloretwicklug Wede wir us u de Reiheetwickluge vo Fuktioe zu. 3.2. Defiitio Uter eier Potezreihe um de Pukt z 0 C versteht ma eie Reihe der

Mehr

Exponentialfunktionen und die e- Funktion. Bei den bisher betrachteten Funktionen traten Exponenten nur als Zahlen auf.

Exponentialfunktionen und die e- Funktion. Bei den bisher betrachteten Funktionen traten Exponenten nur als Zahlen auf. R. Brikma http://brikma-du.de Seite.. Eiführug Epoetialfuktioe ud die e- Fuktio Bei de bisher betrachtete Fuktioe trate Epoete ur als Zahle auf. q Potezfuktio : f a mit q Beispiel: f Fuktioe mit positiver

Mehr

A.1 Rekursionsgleichungen

A.1 Rekursionsgleichungen A.1 Rekursiosgleichuge I mache Abzählprobleme ist es icht eifach, die Lösug auf direktem Wege zu fide. Oft ist es jedoch möglich, die Lösug eies Problems mit eier bestimmte Größe durch die Lösug desselbe

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik ür Iormatiker -- 8 Folge -- 11.10.2015 1 Folge: Deiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reiheolge wichtig,

Mehr

7. Potenzreihen und Taylor-Reihen

7. Potenzreihen und Taylor-Reihen 7. Potezreihe ud Taylor-Reihe 39 7. Potezreihe ud Taylor-Reihe Mit Hilfe der Cauchysche Itegralformel wolle wir u i diesem Kapitel ei weiteres sehr zetrales Resultat der Fuktioetheorie herleite, ämlich

Mehr

1 Funktionen und Flächen

1 Funktionen und Flächen Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,

Mehr

mathphys-online GANZRATIONALE FUNKTIONEN y-achse x-achse

mathphys-online GANZRATIONALE FUNKTIONEN y-achse x-achse GANZRATIONALE FUNKTIONEN 7 0 7 7 Gazratioale Futioe Ihaltsverzeichis Kapitel Ihalt Seite Eiührug. Das Pascal sche Dreiec. Verschobee Potezutioe Verlau der Graphe gazratioaler Futioe im Koordiatesystem.

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

1. Übungsblatt zur Analysis I

1. Übungsblatt zur Analysis I Haover, de 1 Otober 00 1 Übugsblatt zur Aalysis I Abgabe am 8/9 Otober 00 vor de Studeübuge Mit (* oder Kaci geezeichete Aufgabe sid Zusatzaufgabe, die Etrapute ergebe Aufgabe 1 (5 Pute Ma zeige: Für jedes

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Serie 10

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Serie 10 Humboldt-Uiversität zu Berli Istitut für Mathematik Prof. A. Griewak Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jase Übugsaufgabe zur Vorlesug ANALYSIS I (WS 2/3) Serie 0 Musterlösug S.

Mehr

Zahlenfolgen und Reihen

Zahlenfolgen und Reihen Zahlefolge ud Reihe Was ist eie Zahlefolge Bildugsgesetz We wir z. B. vo der Mege N der atürliche Zahle spreche, so sehe wir sozusage eie Sack voller Zahle, es besteht keie Ordug. Wir wede us u dem Fall

Mehr

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Motag: Zahle, Variable, Algebraische Maipulatio Zahlemege. Die atürliche Zahle hat der liebe Gott gemacht. Alles adere ist

Mehr

Eingangsprüfung Stochastik,

Eingangsprüfung Stochastik, Eigagsprüfug Stochastik, 5.5. Wir gehe stets vo eiem Wahrscheilichkeitsraum (Ω, A, P aus. Die Borel σ-algebra auf wird mit B bezeichet, das Lebesgue Maß auf wird mit λ bezeichet. Aufgabe ( Pukte Sei x

Mehr

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5 FU Berli: WiSe 13-14 (Aalysis 1 - Lehr.) Übugsaufgabe Zettel 9 Aufgabe 37 Idiziere Sie die folgede Summe ud Produte gemäß der Vorgabe um ud schreibe Sie sie eimal explizit aus: 5 (a) + 1) 0( Lösug. Die

Mehr

Abschlussprüfung 200X Wahlteil Mathematik I Aufgabe A 1

Abschlussprüfung 200X Wahlteil Mathematik I Aufgabe A 1 Abschlussprüfug 200X Wahlteil Mathematik I Aufgabe A 1 Vorame: Klasse: Platzziffer: Pukte: / A 1.0 A 1.1 Gegebe ist die Fuktio f mit der Gleichug 0,5 y 2 ( 3) 4,5 ( GI IR IR ). Begrüde Sie, warum ma bei

Mehr

Angabe Analysis 1 - Beweise, Vollständige Induktion, Folgen

Angabe Analysis 1 - Beweise, Vollständige Induktion, Folgen Agabe Aalysis - Beweise, Vollstädige Idutio, Folge 4. März 0 Aufgabe : Zum Aufwärme i Zeige durch geschictes Umforme, dass + + gilt. +!!!!!! +!! +! + + + + + ii Zeige durch vollstädige Idutio, dass 6 +

Mehr

Stochastik für WiWi - Klausurvorbereitung

Stochastik für WiWi - Klausurvorbereitung Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F

Mehr

1 = 1. 6 Induktionsannahme: Die Formal gelte für n = k. Induktionsschritt: Gültigkeit der Formel für k+1: 1 2 + 2 2 +... + k 2 + (k + 1) 2 = 2 = 6 = 6

1 = 1. 6 Induktionsannahme: Die Formal gelte für n = k. Induktionsschritt: Gültigkeit der Formel für k+1: 1 2 + 2 2 +... + k 2 + (k + 1) 2 = 2 = 6 = 6 65 Eric Müller Vollstädige Iduktio Nach GIUSEPPE PEANO (858-93) ka ma die Mege N der atürliche Zahle durch folgede Axiome defiiere []:. ist eie atürliche Zahl.. Zu jeder atürliche Zahl gibt es geau eie

Mehr

Seminar De Rham Kohomologie und harmonische Differentialformen - 2. Sitzung

Seminar De Rham Kohomologie und harmonische Differentialformen - 2. Sitzung Semiar De Rham Kohomologie ud harmoische Differetialforme - 2. Sitzug Torste Hilgeberg 26. April 24 1 Orietierug Defiitio: Zwei Karte heiße orietiert verbude, we das Differetial des Kartewechsels positive

Mehr

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten 4/22/10 lausthal omputer-raphik II Verallgemeierte Baryzetrische Koordiate. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Verallgemeieruge der baryzetr. Koord. 1. Was macht ma im 2D bei (kovexe)

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 00 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A A.0 I eiem Hadbuch zur Wetterkude fide Sie im Kapitel Erdatmosphäre die

Mehr

Einführung in die Grenzwerte

Einführung in die Grenzwerte Eiführug i die Grezwerte Dieser Text folgt hauptsächlich der Notwedigkeit i sehr kurzer Zeit eie Idee ud Teile ihrer Awedug zu präsetiere, so dass relativ schell mit dieser Idee gerechet werde ka. Der

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Wir weisen die Gültigkeit der 4Axiome der sigma-algebra für die Potenzmenge einer endlichen Menge A nach!

Wir weisen die Gültigkeit der 4Axiome der sigma-algebra für die Potenzmenge einer endlichen Menge A nach! Lösug zu Übug 4 Prof. Dr. B.Grabowski E-Post: grabowski@htw-saarlad.de Zu Aufgabe ) Wir weise die Gültigkeit der 4Axiome der sigma-algebra für die Potezmege eier edliche Mege A ach! ) Die leere Mege ud

Mehr

Übungen mit dem Applet Fourier-Reihen

Übungen mit dem Applet Fourier-Reihen Fourier-Reihe 1 Übuge mit dem Applet Fourier-Reihe 1 Mathematischer Hitergrud... Übuge mit dem Applet... 3.1 Eifluss der Azahl ud der Sprugstelle...3. Eifluss vo y-verschiebug ud Amplitude...4.3 Eifluss

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

2 Folgen. Reihen. Konvergenz

2 Folgen. Reihen. Konvergenz 2. FOLGEN. REIHEN. KONVERGENZ 28 2 Folge. Reihe. Kovergez 2. Grudlage 2.. Folge: Defiitio ud erste Beispiele Defiito: Eie (reelle Zahle-)Folge ist eie Zuordug, bei der jeder atürliche Zahl eie reelle Zahl

Mehr

1 Grenzwerte und Stetigkeit bei Funktionen mehrerer Variablen

1 Grenzwerte und Stetigkeit bei Funktionen mehrerer Variablen KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffma SS 204 6.04.204 Höhere Mathematik II für die Fachrichtug Iformatik. Saalübug (6.04.204) Grezwerte ud Stetigkeit

Mehr

Übungsblatt 9 zur Vorlesung. Statistische Methoden

Übungsblatt 9 zur Vorlesung. Statistische Methoden Dr. Christof Luchsiger Übugsblatt 9 zur Vorlesug Statistische Methode Schätztheorie ud Kofidezitervalle Herausgabe des Übugsblattes: Woche 8, Abgabe der Lösuge: Woche 9 (bis Freitag, 65 Uhr), Besprechug:

Mehr