(8) FOLGEN und REIHEN

Größe: px
Ab Seite anzeigen:

Download "(8) FOLGEN und REIHEN"

Transkript

1 Folge ud Reihe ÜBUNGEN Bestimme die gegeseitige Lage der Ebee ud gib die gemeisame Pukte bzw. Gerade a. x+4y - 6z= x + y - z = 4x - 4y+4z=0 x + y z = 0 x - y+z = x + y + z = x+y -5z= 4x - 7y+z= -x+y -z=8 (8) FOLGEN ud REIHEN a) Der VECTOR-Befehl Um Folgeglieder zu bereche oder eizele Werte eier Folge zu bestimme eiget sich besoders der VECTOR-Befehl. Er hat eigetlich ichts mit eiem Vektor im geometrische Sie zu tu, trotzdem ka ma die VECTOR-Fuktio als mehrdimesioale Vektor auffasse. Folgede Parameterwerte ka die VECTOR-Fuktio beihalte: VECTOR(u,x,) u ist ei Term vo x, x ist die (Lauf)variable (wird immer um erhöht) ud ist die größte gaze Zahl vo begied. VECTOR(x-,x,0) liefert ach Eigabe i die Authorezeile VECTOR immer groß geschriebe ud Vereifache die Reihe [,, 5, 7, 9,,, 5, 7, 9] VECTOR(u,x,m,) u ist ei Term vo x, x ist die (Lauf)variable (wird immer um erhöht) ud läuft vo m bis. VECTOR(x-,x,4,0) liefert die Folgeglieder ab Idex 4 bis 0. [7, 9,,, 5, 7, 9] Die Eigabe VECTOR(x-,x,0,0) liefert das 0. Folgeglied, ämlich 9! VECTOR(u,x,m,,s) u ist ei Term vo x, x ist die (Lauf)variable ud läuft vo m bis mit der Schrittweite s. VECTOR(x-,x,4,0,) liefert alle Folgeglieder mit geradem Idex, also [7,, 5, 9] D:\Derive\DERIVE_Eif.doc Seite 7 vo 4

2 FOLGEN ud REIHEN Will ma Folgeglieder grafisch darstelle so ka dies ebefalls mit dem Vektorbefehl geschehe oder mit der Tabellefuktio Aalysis/Tabelle. Der Befehl VECTOR([x,x-],x,0) liefert eie Tabelle der erste 0 Folgeglieder ud ka im Grafikfester dargestellt werde. b) Arithmetische Folge Gegebe sid die die Glieder eier arithmetische Folge a =5, a 5 =0 - Bereche de Folgeterm - Bereche das. Glied der Folge - Überprüfe, ob a 9 =4 dieser arithmetische Folge agehört. - Stelle die Folgeglieder a a 0 grafisch dar. Um de Folgeterm zu bereche, müsse wir ei Gleichugssystem i Variable löse (Löse/Gleichugssystem): 5=k +d 0=5k +d Wir erhalte als Lösuge für k=5 ud d=5 Nu köe wir ach dem Gesetz der arithmetische Folge a =k+d die Folge defiiere als a:=5+5 Das. Glied der Folge bereche wir mit dem Vektorbefehl VECTOR(a,,,) ud erhalte 0. Das 9. Glied wir aalog überprüft mit VECTOR(a,,9.9) ud erhalte 50. Also ist a 9 =4 kei Folgeglied. Die grafische Darstellug erfolgt mit VECTOR([,a],,0) ud aschließedem Zeiche. Lösug als Derive-File ÜBUNGEN: a 6 =-, a 0 =-7 Fragestelluge wie im Beispiel obe Gegebe ist die Folge a = - Gib eie rekursive Darstellug der Folge i Form a =a +(-)k a. Bereche die Folgeglieder a 5..a 5 Ist 7 ei Glied der Folge? We ja, welche Idex hat 7? D:\Derive\DERIVE_Eif.doc Seite 8 vo 4

3 FOLGEN ud REIHEN c) Geometrische Folge Gegebe sid Glieder eier geometrische Folge: b =4, b 6 = - Gib eie rekursive Darstellug der Folge a - Gib eie explizite Darstellug der Folge a - Bereche die erste 0 Glieder der Folge - Stelle die erste 0 Glieder grafisch dar. - Überprüfe, ob ei Glied der Folge ist. 8 - Stelle eie Vermutug über die Mootoie der Folge a ud beweise sie (schriftlich formuliere). Wir stelle als Eigabeformat auf Wort (Extras/Eistelluge/Eigabe) ud defiiere b:=4 ud b6:=. Aus der Gleichug b6=b*q^ bereche wir q=0.5 ud köe die rekursive Darstellug b + =b *0.5 eigebe. Für die explizite Darstellug bereche wir b aus b=b*q^ ud erhalte b=96. Damit ist die explizite Darstellug der Folge gegebe durch: b :=96*0.5^(-). Die erste 0 Folgeglieder bereche wir wieder mit Hilfe der VECTOR-Fuktio: VECTOR(b,,,0). Ob ei Glied der Folge ist überprüfe wir mit der Gleichug =b*0.5^ ud bereche. Ist 8 8 eie atürliche Zahl, da gehört 8 der Folge a. Wir löse die Gleichug ach ud erhalte =. Somit ist 8 das. Glied der Folge. Wir vermute, dass die Folge streg mooto falled ist. Also setze wir statt de Term + ei ud schreibe die Gleichug 96*0.5^(-)= 96*0.5^ i die Authorezeile. Vereifache liefert de Wert true. Also ist usere Vermutug richtig. Warum das so ist hägt mit dem Wert 0.5 i der Formel zusamme. Lösug als Derive-file ÜBUNGEN Vo eier geometrische Folge ket ma das. Glied b =8 ud q=. Gib eie rekursive ud explizite Darstellug der Folge a, bereche die erste 0 Glieder der Folge, stelle eie Vermutug über die Mootoie auf ud beweise sie Utersuche, ob die agegebee Glieder eier geometrische Zahlefolge agehöre: b =0., b 5 =0.00, b 7 = We ja, gib eie explizite ud rekursive Darstellug der Folge a. D:\Derive\DERIVE_Eif.doc Seite 9 vo 4

4 FOLGEN ud REIHEN d) Mootoie ud Grezwert eier Folge Will ma etwa de Folgeterm auf Mootoie utersuche, so hat ma beim + Beweis das Problem, dass Derive Ugleichuge mit Bruchterme icht weiter vereifacht. Also ist ma gezwuge, de gemeisame Neer wegzumultipliziere. Natürlich uter der Voraussetzug, dass der Neer stets >0 ist, was ja bei εn meist der Fall ist. Auch bei de weitere Äquivalezumformuge verhält sich Derive icht so, wie vo us gewüscht. Daher müsse wir Derive eher zwige, was zu tu ist. Für die Bestimmug des Grezwert hat Derive die Fuktio vorgesehe. Es erscheit das abgebildete Fester, wo die gewüschte Variable ud die Aäherug a die Variable eigesellt werde ka. Für die Aäherug a gibt es i der like utere Zeichetafel das etsprechede Symbol i der obere Reihe. Sehe wir us also das Beispiel x = + geauer a. Gebe wir die Folge x:= + ei ud bereche die erste 5 Glieder der Folge, so vermute wir, ( + ) dass die Folge streg mooto steiged ist. Also setze wir die Ugleichug > a. + + Drücke wir Vereifache, tut sich gar ichts. Wir müsse also hädisch mit dem gemeisame ( + ) ( + )( + ) > ( + )( Neer multipliziere. Der Ausdruck sieht da so aus: ). Diese Ausdruck vereifacht Derive zu (+) > (+) Nach Vereifache/Multipliziere bekommt ma + ++> +. Nu erket ma dass diese Ugleichug für alle εn Gültigkeit hat. Will ma dies aber och deutlicher zeige, etwa mit ++>0 so muss ma wieder hädisch auf beide Seite - eitippe ud aschließed Vereifache. So kompliziert der Nachweis der Mootoie war, so eifach ist das Auffide des Grezwertes der Folge für ->. Wir markiere de Folgeterm klicke auf das Ico, gebe im aschließede Dialogfester bei Grezpukt ei ud erhalte als Ergebis. Begrüdug durch Dividiere jedes Termglieds durch die höchste vorkommede Potez vo. D:\Derive\DERIVE_Eif.doc Seite 0 vo 4

5 FOLGEN ud REIHEN Beispiel Gegebe ist die Folge x = - Stelle Vermutuge über die Mootoie a, i dem du die erste 0 Glieder der Folge berechest ud beweise die Mootoie. - Bereche de Grezwert der Folge (Begrüdug!!) - Ab welchem Idex liege alle Folgeglieder ierhalb eier Umgebug vo ε= 00 Wir stelle die Eigabe wieder auf Wort (Extras/Eistelluge/Eigabe) ud tippe de Folgeterm x : = ei. Mit VECTOR(x,,,0) vermute wir fest, dass die Folge streg mooto steiged ( + ) ist. Die Ugleichug > muss gelöst werde. Wir multipliziere beide Seite der ( + ) Ugleichug mit (+)*^ ud erhalte > Ziehe wir vo beide Seite ab, so ergibt sich >-0.5 ud das ist für alle εn gültig. DerGrezwert wird über das etsprechede Ico agewählt ud liefert. Um de Idex des Folgegliedes zu bestimme, ab welchem alle Werte ierhalb vo liege, 00 muss ma die Ugleichug < 00 x. Ma erhält zwei Lösuge (<-0, >0), wo ur die. Lösug zutreffe ka. Also ist der Idex ab dem alle Folgeglieder ierhalb vo /00 liege. Berechug der Euler sche Zahl e Die Folge + liefert für -> die Euler sche Zahl e ( ) Wir wolle die erste 0 Folgeglieder bereche. VECTOR( +,,,0) liefert us Werte vo bis,65 also die Vermutug, dass die Folge streg mooto steiged ist. Wede wir die Limes-Fuktio vo Derive a, so sehe wir, dass ach Vereifache ud Approximiere, der Wert agezeigt wird. Bereche u das 00 ud das 0.000te Glied der Folge. 00. Glied: Glied: Die Aäherug wird immer besser ud die Folgeglieder steige weiter streg mooto. ÜBUNGEN: I de folgede Übuge soll die Mootoie bewiese, der Grezwert agegebe ud für e=/00 der Idex, ab welchem alle Folgeglieder um de Grezwert liege, berechet werde: + 6 x =, x =, x =, x + = + D:\Derive\DERIVE_Eif.doc Seite vo 4

6 FOLGEN ud REIHEN e) REIHEN Reihe sid bekatlich ichts aderes als die Summe der eizele Folgeglieder eier Reihe. Derive hat dafür ei eigees Symbol parat, ämlich das große griechische Sigma Σ, das ja auch gere i de Mathematikbücher als Summesymbol diet. Wolle wir z.b. die Reihe der arithmetische Folge a =+ für die erste 5 ( a Folgeglieder bestimme, so brauche wir icht auf die Summeformel S= + a ) zurückgreife, soder köe direkt das Summesymbol Σ i der Symbolleiste awähle. Also a =+ Bereche die erste 5 Folgeglieder ud daach die arithmetische Reihe Nachdem wir die Folge über a:=+ defiiert habe ud über de Befehl VECTOR(a,,,5) die Werte [5, 7, 9,, ] erhalte habe, markiere wir i der Defiitio der Folge a:=+ de Folgeterm ud tippe aschließed auf das Summezeiche Σ.. Es öffet sich das utestehede Fester. Im Feld Variable soll markiert sei, im Feld Summe brauche wir die bestimmte Summe die obere Greze ist 5, die utere. Nach Bestätigug mit der Eter-Taste zeigt us Derive die Summeeigabe a ud ach Klicke auf Vereifache (=) erhalte wir 45. ( a Wir köe dies auch mit der Formel + a ) überprüfe! Aalog köe wir atürlich auch geometrische Reihe bilde Bereche die Summe der folgede Reihe: +0,+0, +0,.+0, 7 = Hier ist es vorteilhaft das Bildugsgesetz zu bestimme: Die Folgeglieder gehöre eier geometrische Reihe b mit q=0, a, Also lautet b =0, -. Defiiert ma u b:=0,^(-), markiert de Term 0,^(-), tippt auf das Σ ud gibt für die D:\Derive\DERIVE_Eif.doc Seite vo 4

7 FOLGEN ud REIHEN 95 obere Greze 7 ei, so erhält ma ud ach Approximiere, Überprüfe dies auch 565 q mit der Formel b. q Nu zu eiem Beispiel für uedlich geometrische Reihe Ei Gummiball fällt aus m Höhe, steigt da um 0,8m wieder auf, steigt ach dem ächste Hiuterfalle um 0,64m auf, usw Die Höhe bilde dabei eie geometrische Folge. Welche Weg legt der Ball isgesamt zurück? Wir sehe, dass die Höhe immer um 0,8 kleier werde. Allerdigs legt der Ball auch de gleiche Weg wieder ach ute zurück. Also lautet das Bildugsgesetz für die zugehörige geometrische Folge: b:=*0,8^(-). Dabei ist aber die Starthöhe vo m och icht berücksichtigt. Also defiiere wir die geometrische Folge derart: b= ud b=*0,8^(-), wobei =,,.. Zur Kotrolle userer Überleguge defiiere wir die geometrische Folge b:= *0,8^(-) ud die erste 5 Glieder der Folge über VECTOR(b,,,5). Achte auf de Startwert =! Es ergebe sich die Folgeglieder [.6,.8,.04, 0.89]. Für die Reihe markiere wir wieder de Term *0,8^(-), wähle das Σ-Symbol a, als utere Greze gebe wir ei ud als obere Greze. Wir bestätige mit Eter ud sehe die Summeformel markiert im Algebrafester. Mit F kopiere wir sie i die Authorezeile ud addiere das. Folgeglied hizu. Bestätige mit Eter liefert im Algebrafester die Summeformel (i Klammer) vermehrt um ud ach Vereifache das gewüschte Ergebis, ämlich 9. ÜBUNGEN: Arithmetische Reihe: 0,5++,5+ +0= (t-)+t= Geometrische Reihe: 0+0*.+0* *. 9 = +b+b +.+b k- = Uedliche Reihe: Durch forlaufedes Aeiaderfüge vo Quadrate etsteht eie Treppe mit uedlich viele Stufe. Die Seiteläge der Quadrate verkürze sich bei jedem Schritt m ei Viertel. Das erste Quadrat hat eie Seiteläge vo 0,5m. Bereche die Gesamtläge der Trittfläche Eiem Kreis vom Radius r=0 wird ei Quadrat eigeschriebe, diesem wieder ei Kreis, dem Kreis wieder ei Quadrat usw Bereche die Summe der Flächeihalte der Quadrate. Bereche die Summe der Umfäge aller Kreise. Spezielle Reihe: der Folge /! der Folge (-) *5/ D:\Derive\DERIVE_Eif.doc Seite vo 4

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem

Mehr

5.7. Aufgaben zu Folgen

5.7. Aufgaben zu Folgen 5.7. Aufgabe zu Folge Aufgabe : Lieares ud beschräktes Wachstum Aus eiem Quadrat mit der Seiteläge dm gehe auf die rechts agedeutete Weise eue Figure hervor. Die im -te Schritt agefügte Quadrate sid jeweils

Mehr

Klausur 1 über Folgen

Klausur 1 über Folgen www.mathe-aufgabe.com Klausur über Folge Hiweis: Der GTR darf für alle Aufgabe eigesetzt werde. Aufgabe : Bestimme eie explizite ud eie rekursive Darstellug! a) für eie arithmetische Folge mit a = 6, ;

Mehr

Lösungen zum Thema Folgen und Reihen

Lösungen zum Thema Folgen und Reihen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Lösuge zum Thema Folge ud Reihe Lösug zu Aufgabe 1. a) (a ) N ist eie arithmetische Folge mit d = 11 ud damit ist a 75 = 7 + (75 1)

Mehr

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen Thema Fit i Mathe Musterlösuge 1 April Klassestufe 10 Wurzelfuktioe Uter der -te Wurzel eier icht-egative Zahl (i Zeiche: ) versteht ma die icht-egative Zahl, die mal mit sich selber multipliziert, die

Mehr

4. Übungsblatt Aufgaben mit Lösungen

4. Übungsblatt Aufgaben mit Lösungen 4. Übugsblatt Aufgabe mit Lösuge Aufgabe 6: Bestimme Sie alle Häufugspukte der Folge mit de Folgeglieder a) a 2 + cosπ), b) b i) i j, ud gebe Sie jeweils eie Teilfolge a, die gege diese Häufugspukte kovergiert.

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Analysis ZAHLENFOLGEN Teil 4 : Monotonie Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik

Mehr

Arbeitsblatt 6: Folgen und Reihen Das Buch

Arbeitsblatt 6: Folgen und Reihen Das Buch Erläuteruge ud Aufgabe Zeicheerklärug: [ ] - Drücke die etsprechede Taste des Graphikrechers! [ ] S - Drücke erst die Taste [SHIFT] ud da die etsprechede Taste! [ ] A - Drücke erst die Taste [ALPHA] ud

Mehr

Monotonie einer Folge

Monotonie einer Folge Mootoie eier Folge 1 E Mootoe Folge We jedes Folgeglied eier Folge größer oder gleich dem vorhergehede Folgeglied ist a 1 a ℕ so et ma die Folge mooto steiged (oder mooto wachsed). Die geometrische Folge

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung Aufgabe zur Übug ud Vertiefug ARITHMETISCHE ZAHLENFOLGEN Berufliches Gymasium / Uterstufe () Stelle Sie fest, welche der gegebee Folge arithmetisch sid: Bestimme Sie zuächst die erste füf Folgeglieder,

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 8 Defiitioe ud Beispiele für Folge Defiitio Eie

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

Tutorial zum Grenzwert reeller Zahlenfolgen

Tutorial zum Grenzwert reeller Zahlenfolgen MAE Mathematik: Aalysis für Igeieure Herbstsemester 206 Dr. Christoph Kirsch ZHAW Witerthur Tutorial zum Grezwert reeller Zahlefolge I diesem Tutorial lere Sie, die logische Aussage i der Defiitio des

Mehr

Demo-Text für INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. ANALYSIS Vollständige Induktion FRIEDRICH W.

Demo-Text für   INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.   ANALYSIS Vollständige Induktion FRIEDRICH W. ANALYSIS Vollstädige Iduktio Datei Nr. 40080 Stad 14. März 018 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 40080 Beweismethode: Vollstädige Iduktio Vorwort Die Methode der vollstädige Iduktio

Mehr

Das Erstellen von Folgen mit der Last Answer Funktion

Das Erstellen von Folgen mit der Last Answer Funktion Schülerarbeitsblatt Wisseschaftlicher Recher EL-W5 WriteView Das Erstelle vo Folge mit der Last Aswer Fuktio 5 9 Die obige Folge wird ach eier eifache Regel gebildet: Zu jedem Glied wird addiert. Über

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

Grenzwertberechnungen

Grenzwertberechnungen Katosschule Solothur Grezwertberechuge Grezwertberechuge Grezwertberechuge bei Folge ud Reihe Folge sid Fuktioe; die Begriffe beschräkt ud mooto trete daher auch bei Folge auf. Isbesodere habe sie eie

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

Kapitel 6. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 6. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 6 Aufgabe Verstädisfrage Aufgabe 6. Gegebe sei die Folge (x ) 2 mit x ( 2)/( + ) für 2. Bestimme Sie eie Zahl N N so, dass x ε für alle N gilt, we (a) ε 0, (b) ε 00 ist. Aufgabe 6.2 Stelle Sie

Mehr

Übungen zum Ferienkurs Analysis 1, Vorlesung 2

Übungen zum Ferienkurs Analysis 1, Vorlesung 2 F. Hafer, T. Baldauf c Techische Uiversität Müche Übuge zum Feriekurs Aalysis, Vorlesug Witersemester 06/07. Richtig oder Falsch? Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche

Mehr

Einführung in die Grenzwerte

Einführung in die Grenzwerte Eiführug i die Grezwerte Dieser Text folgt hauptsächlich der Notwedigkeit i sehr kurzer Zeit eie Idee ud Teile ihrer Awedug zu präsetiere, so dass relativ schell mit dieser Idee gerechet werde ka. Der

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik für Iformatiker -- 9 Folge -- 6.1.215 1 Folge: Defiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reihefolge wichtig,

Mehr

Übungen zur Analysis I WS 2008/2009

Übungen zur Analysis I WS 2008/2009 Mathematisches Istitut der Uiversität Heidelberg Prof. Dr. E. Freitag /Thorste Heidersdorf Übuge zur Aalysis I WS 008/009 Blatt 3, Lösugshiweise Die folgede Hiweise sollte auf keie Fall als Musterlösuge

Mehr

5. Übungsblatt Aufgaben mit Lösungen

5. Übungsblatt Aufgaben mit Lösungen 5. Übugsblatt Aufgabe mit Lösuge Aufgabe 2: Bestimme Sie alle Häufugspukte der komplexe) Folge mit de Glieder a) a = ) 5 + 7 + 2 ) b) b = i Lösug 2: a) Die Folge a ) zerfällt vollstädig i die beide Teilfolge

Mehr

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015 Lösuge zum Feriekurs Aalysis, Vorlesug Witersemester 04/05 Fabia Hafer, Thomas Baldauf I Richtig oder Falsch Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche Aussage. Gebe Sie

Mehr

Arbeitsblatt 22: Rekursive Reihen Alkoholentzug

Arbeitsblatt 22: Rekursive Reihen Alkoholentzug Arbeitsblatt 22: Reursive Reihe Aloholetzug Erläuteruge ud Aufgabe Zeicheerlärug: [ ] - Drüce die etsprechede Taste des Graphirechers! [ ] S - Drüce erst die Taste [SHIFT] ud da die etsprechede Taste!

Mehr

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n) Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem

Mehr

1. Folgen ( Zahlenfolgen )

1. Folgen ( Zahlenfolgen ) . Folge ( Zahlefolge Allgemeies Beispiel für eie regelmäßige Folge: /, /3, /4, /5, /6,... Das erste Glied ist a =/ Das ist das Glied mit dem Ide Das zweite Glied ist a =/3 Das ist das Glied mit dem Ide

Mehr

Aufgaben zu Kapitel 6

Aufgaben zu Kapitel 6 Aufgabe zu Kapitel 6 Aufgabe zu Kapitel 6 Verstädisfrage Aufgabe 6. Gegebe sei die Folge x ) 2 mit x 2)/ + ) für 2. Bestimme Sie eie Zahl N N so, dass x ε für alle N gilt, we a) ε 0, b) ε 00 ist. Aufgabe

Mehr

3 Grenzwerte. 3.1 Grenzwerte von Folgen

3 Grenzwerte. 3.1 Grenzwerte von Folgen 03-grezwerte.cdf 3 Grezwerte 3. Grezwerte vo Folge Kovergez Mache Folge zeige ei spezielles Verhalte, we der Idex sehr groß wird. Sie äher sich eier bestimmte Zahl. Betrachte wir zum Beispiel die Folge

Mehr

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung... KAPITEL 7 Zahlefolge 7. Kovergete Zahlefolge.............................. 30 7.2 Grezwertbestimmug............................... 32 7.3 Grezwertbestimmug durch Abschätzug..................... 35 7.4

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gaz ausführliches Traiig Datei Nr. 4002 Neu Überarbeitet Stad: 7. Juli 206 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Kapitel 2 Differentialrechnung in einer Variablen. 2.1 Folgen und Grenzwerte

Kapitel 2 Differentialrechnung in einer Variablen. 2.1 Folgen und Grenzwerte Kapitel 2 Differetialrechug i eier Variable 2. Folge ud Grezwerte 2.. Defiitio Eie Folge ist eie Zuordug N R, a, geschriebe als Liste (a,a 2,...) oder i der Form (a ) N. Hier sid ei paar Beispiele: 2,4,6,8,...

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud -ugleichuge 6 Für Eperte 9 Polyomgleichuge ud -ugleichuge Defiitio: Ei Term

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo suge zu Blatt 0 Kleigruppe zur Service-Verastaltug Mathematik I fu r Igeieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 9.. Theme: Kovergez vo Folge Aufgabe P (i) Sei a : k kk.

Mehr

KAPITEL 2. Zahlenfolgen

KAPITEL 2. Zahlenfolgen KAPITEL Zahlefolge. Kovergete Zahlefolge...................... 35. Grezwertbestimmug....................... 38.3 Grezwertbestimmug durch Abschätzug............. 4.4 Mootoe Folge..........................

Mehr

Übung 2 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 1. Oktober 2018 in den Übungsstunden

Übung 2 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 1. Oktober 2018 in den Übungsstunden Mathematik I für Naturwisseschafte Dr. Christie Zehrt 7.09.18 Übug (für Pharma/Geo/Bio) Ui Basel Besprechug der Lösuge: 1. Oktober 018 i de Übugsstude Aufgabe 1 Sid die folgede Abbilduge f : X Y umkehrbar?

Mehr

LGÖ Ks VMa 12 Schuljahr 2017/2018

LGÖ Ks VMa 12 Schuljahr 2017/2018 LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge

Mehr

Zahlenfolgen. Zahlenfolgen

Zahlenfolgen. Zahlenfolgen Zahlefolge Eie Zahlefolge a besteht aus Zahle a,a,a 3,a 4,a 5,... Die eizele Zahle eier Folge heiße Glieder oder Terme. Beispiele für Zahlefolge sid die atürliche Zahle: 3 4 5 6 7 8 9 0 3 4 5..., die gerade

Mehr

HTBLA VÖCKLABRUCK STET

HTBLA VÖCKLABRUCK STET HTBLA VÖCKLABRUCK STET Folge ud Reihe INHALTSVERZEICHNIS 1. EINFÜHRUNG... 3. DARSTELLUNG EINER FOLGE... 3 3. BEISPIELE... 4 4. ENDLICHE REIHE... 4 5. ARITHMETISCHE FOLGEN UND REIHEN... 4 6. GEOMETRISCHE

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik für Physiker (Aalysis ) MA90 Witersem 07/8 Lösugsblatt 4 http://www-m5matumde/allgemeies/ma90 07W (007)

Mehr

Übungsblatt Folgen, Reihen, Finanzmathematik

Übungsblatt Folgen, Reihen, Finanzmathematik Tutorium zu Mathematik für WFB Übugsblatt Folge, Reihe, Fiazmathematik Aufgabe (Grezwerte vo Folge) Bestimme Sie die Grezwerte der Folge ( ), N 4 b) c) d) e) si( ) f) a () g) a cos( ) Aufgabe (4 ) 4 b)

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

( 1) n a n. a n 10. n=1 a n konvergiert, dann gilt lim a n = 0. ( 1) n+1

( 1) n a n. a n 10. n=1 a n konvergiert, dann gilt lim a n = 0. ( 1) n+1 Kapitel 8 Aufgabe Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe 8. Gegebe ist eie Folge

Mehr

Mathematischer Vorkurs zum Studium der Physik Übungen

Mathematischer Vorkurs zum Studium der Physik Übungen Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 3 (aus: K. Hefft, Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 3.1: Graphische Darstellug

Mehr

b) Alle ganzen Zahlen die auf 0 enden sind durch 5 teilbar Spezialisierung: 120 endet auf ist durch 5 teilbar

b) Alle ganzen Zahlen die auf 0 enden sind durch 5 teilbar Spezialisierung: 120 endet auf ist durch 5 teilbar d) Die Beweismethode der vollstädige Iduktio Der Übergag vo allgemeie zu spezielle Aussage heisst Deduktio Beispiele: a) Allgemeie Aussage: Spezialisierug: Schluss: Alle Mesche sid sterblich Sokrates ist

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 3..05 Höhere Mathemati für die Fachrichtug Physi Lösugsvorschläge zum 3. Übugsblatt Vorbemerug

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr A Müller-Rettkowski Dr T Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. Köig Dr. M. Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Z8.. Kriterie für strege Mootoie Mathematik für Physiker 2 (Aalysis ) MA9202 Witersem. 207/8 Lösugsblatt 8

Mehr

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch Ma zeige, daß IR, d i ), i,, metrische Räume sid, we für x x,, x ), y y,, y ) IR die Abstadsfuktioe durch d x, y) x y, d x, y) x y ), d x, y) max x y gegebe sid Lösug: Ma muß für alle drei Fuktio d i x,

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

5.7. Aufgaben zu Folgen und Reihen

5.7. Aufgaben zu Folgen und Reihen 5.7. Aufgbe zu Folge ud Reihe Aufgbe : Lieres ud beschrätes Wchstum Aus eiem Qudrt mit der Seiteläge dm gehe uf die rechts gedeutete Weise eue Figure hervor. Die im -te Schritt gefügte Qudrte sid jeweils

Mehr

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln 6 Kovergete Folge Lerziele: Kozepte: Grezwertbegriff bei Folge, Wachstumsgeschwidigkeit vo Folge Resultat: Mootoe beschräkte Folge sid koverget. Methode: Hero-Verfahre, Erweiterug vo Differeze vo Quadratwurzel

Mehr

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3.

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3. Folge Eie Folge ist eie Aordug vo reelle Zahle. Die eizele Zahle heiße Glieder der Folge. Kapitel 4 Folge ud Reihe Formal: Eie Folge ist eie Abbildug a : N R, a Folge werde mit a i i oder kurz a i bezeichet.

Mehr

Lösungsvorschlag zu den Hausaufgaben der 1. Übung

Lösungsvorschlag zu den Hausaufgaben der 1. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Patrizio Neff Christia Thiel 4.04.04 Lösugsvorschlag zu de Hausaufgabe der. Übug Aufgabe : (6 Pukte Bereche Sie für die Fuktio f : R R, f( : ep( a der Stelle 0 0 das Taylorpolyom

Mehr

Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38. a : N R, n a n

Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38. a : N R, n a n Kapitel 4 Folge ud Reihe Josef Leydold Auffrischugskurs Mathematik WS 2017/18 4 Folge ud Reihe 1 / 38 Folge Eie Folge ist eie Aordug vo reelle Zahle. Die eizele Zahle heiße Glieder der Folge. Formal: Eie

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

Folgen explizit und rekursiv Ac

Folgen explizit und rekursiv Ac Folge explizit ud rekursiv Ac 03-08 Folge sid Fuktioe, bei dee atürliche Zahle ( 0; ; ; ) reelle Zahle a() zugeordet werde. Ma schreibt dafür : a() bzw. a. Für die Folge schreibt ma auch < a >. Folge köe

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik ür Iormatiker -- 8 Folge -- 11.10.2015 1 Folge: Deiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reiheolge wichtig,

Mehr

Goldener Schnitt und Fünfecke. Ein Streifzug durch einige Wunder der Mathematik. Geeignet für Klasse 9 (teilweise) und 11 sowie Facharbeiten

Goldener Schnitt und Fünfecke. Ein Streifzug durch einige Wunder der Mathematik. Geeignet für Klasse 9 (teilweise) und 11 sowie Facharbeiten Aalysis Fiboacci-Folge Goldeer Schitt ud Füfecke Ei Streifzug durch eiige Wuder der Mathematik Geeiget für Klasse 9 (teilweise) ud sowie Facharbeite Datei Nr. 40070 Stad 8. Jauar 009 INTERNETBIBLIOTHEK

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

3 T (d 1, l 2. ) + (6 + 2) falls d > 0 7 sonst. n 2. 4T ( n 2 ) + log 2 (n), falls n > 1 1, sonst

3 T (d 1, l 2. ) + (6 + 2) falls d > 0 7 sonst. n 2. 4T ( n 2 ) + log 2 (n), falls n > 1 1, sonst für Iformatik Modellierug ud Verifikatio vo Software Prof. aa Dr. Ir. Joost-Pieter Katoe Datestrukture ud Algorithme SS5 Lösug - Übug 3 Christia Dehert, Friedrich Gretz, Bejami Kamiski, Thomas Ströder

Mehr

14. Folgen und Reihen, Grenzwerte 14.1 Eine Folge definieren Explizite Definition. 14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 14.1 Eine Folge definieren Explizite Definition. 14. Folgen und Reihen, Grenzwerte 4. Eie Folge defiiere Eplizite Defiitio Reursive Defiitio 4. Glieder eier vorher defiierte Folge bereche Ei Glied Mehrere Glieder 4.3 Eie Folge defiiere ud eiige ihrer Glieder bereche 4.4 Eiige oder uedlich

Mehr

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 4 LÖSUNGEN MAT/MAT3 ANALYSIS I HERBSTSEMESTER 00 PROF. DR. AMILLO DE LELLIS Aufgabe. Etscheide Sie für folgede Folge (wobei N \ {0}), ob diese koverget sid, ud bereche sie gegebeefalls ihre

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I Aufgabe ud Lösuge Weihachtsgescheke zur Vorlesug Aalysis I Der Witersemester 008/009 Übug am 4.., 5..008 sowie 0.0.009 Aufgabe. Folge Aufgabe Ma bestimme, ob die Folge (a ) mit a = + 3 + 4 kovergiert ud

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Techische Uiversität Müche Fakultät für Iformatik Lehrstuhl für Effiziete Algorithme Dr. Hajo Täubig Tobias Lieber Sommersemester 2011 Übugsblatt 1 13. Mai 2011 Grudlage: Algorithme ud Datestrukture Abgabetermi:

Mehr

n=1 b n, deren Summe n=1 (a n + b n ) eine konvergente Reihe ist. Die Aussage ist WAHR, ein mögliches Beispiel sind die divergenten Reihen 1

n=1 b n, deren Summe n=1 (a n + b n ) eine konvergente Reihe ist. Die Aussage ist WAHR, ein mögliches Beispiel sind die divergenten Reihen 1 ANALYSIS WS 08/09 Vorlesug: Prof. Dr. P. Ullrich Übuge: Dr. I. Kharif/ Dr. M. Steihauer 9. ÜBUNGSBLATT- LÖSUNGSHINWEISE/Ergebisse Die folgede Bearbeituge sid - zum Teil - keie ausführliche Musterlösuge,

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Miisterium für Bildug, Juged ud Sport Zetrale Prüfug zum Erwerb der Fachhochschulreife im Schuljahr 6/7 Mathematik B. Mai 7 9: Uhr Uterlage für die Lehrkraft Lad Bradeburg. Aufgabe: Differetialrechug Gegebe

Mehr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr DEMO für ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gz ausführliches Traiig Datei Nr. 40012 Neu geschriebe ud sehr erweitert Std: 4. Februar 2010 INTERNETBIBLIOTHEK

Mehr

Aufgaben zu Kapitel 8

Aufgaben zu Kapitel 8 Aufgabe zu Kapitel 8 Aufgabe zu Kapitel 8 Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe

Mehr

Grenzwerte von Folgen. 1-E Ma 1 Lubov Vassilevskaya

Grenzwerte von Folgen. 1-E Ma 1 Lubov Vassilevskaya Grezwerte vo Folge -E Ma Lubov Vassilevskaya Berechug vo Grezwerte: Aufgabe Die Berechug vo Grezwerte ka oft ziemlich umstädlich sei. Die etwickelte Regel vereifache oft solche Berechuge. Diese Regel beruhe

Mehr

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx Übuge zur Ifiitesimalrechug, H.-C. Im Hof 9. März Blatt 4 Abgabe: 6. März, Nachmittag Aufgabe. Zeige e x dx π. Beweis. Wir bemerke als erstes, dass e x dx e x dx + e x dx e x dx formal sieht ma dies per

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Gazratioale Fuktioe 9. Defiitio gazratioaler Fuktioe Im Folgede werde ebe lieare ud quadratische Fuktioe auch solche betrachtet, bei dee die Variable i der dritte, vierte oder auch i eier och höhere Potez

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 1

Technische Universität München Zentrum Mathematik. Übungsblatt 1 Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt Hausaufgabe Aufgabe. Bestimme Sie de Kovergezbereich M der folgede Reihe für

Mehr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen Prof. Dr. Wolfgag Koe Mathematik WS0 0.0.0. Zahlefolge.. Wozu IformatikerIe Folge brauche Kovergez vo Folge ist die Grudlage der Aalysis (Differetial- ud Itegralrechug) Traszedete Gleichuge wie l x 50

Mehr

Dritter Zirkelbrief: Ungleichungen

Dritter Zirkelbrief: Ungleichungen Matheschülerzirkel Uiversität Augsburg Schuljahr 014/015 Dritter Zirkelbrief: Ugleichuge Ihaltsverzeichis 1 Grudlage vo Ugleichuge 1 Löse vo Ugleichuge 3 3 Mittel 4 4 Mittelugleichuge 5 5 Umordugsugleichug

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen Prof. Dr. Wolfgag Koe Mathematik WS0 08.0.0. Zahlefolge.. Wozu IformatikerIe Folge brauche Kovergez vo Folge ist die Grudlage der Aalysis (Differetial- ud Itegralrechug) Traszedete Gleichuge wie x l x

Mehr

Denition 27: Die Fakultät ist eine Folge f : N N mit f(1) := 1 und f(n + 1) := (n + 1) f(n) für alle n N. Wir schreiben n! := f(n) für diese Folge.

Denition 27: Die Fakultät ist eine Folge f : N N mit f(1) := 1 und f(n + 1) := (n + 1) f(n) für alle n N. Wir schreiben n! := f(n) für diese Folge. Vorkurs Mathematik, PD Dr. K. Halupczok, WWU Müster Fachbereich Mathematik ud Iformatik 22.9.20 Ÿ3.2 Folge ud Summe (Fortsetzug) Eie wichtige Möglichkeit, wie ma Zahlefolge deiere ka, ist die über eie

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09 Musterlösug zu Blatt 8 der Vorlesug Aalysis I WS08/09 Schriftliche Aufgabe Aufgabe. Voraussetzuge: Für alle N setze a : +2 ud b : ( 2. [Amerkug: I der Aufgabestellug heiÿe die Reihe beide gleich. Es steht

Mehr

Michael Buhlmann Mathematik > Analysis > Newtonverfahren

Michael Buhlmann Mathematik > Analysis > Newtonverfahren Michael Buhlma Mathematik > Aalysis > Newtoverfahre Eie Abbildug {a }: N -> R, die jeder atürliche Zahl eie reelle Zahl a zuordet, heißt (uedliche (Zahle- Folge: -> a oder {a } εn, a das -te Folgeglied.

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum 4. Übugsblatt

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

Lösungen zur Nachklausur zur Analysis einer Variablen F. Merkl

Lösungen zur Nachklausur zur Analysis einer Variablen F. Merkl Lösuge zur Nachlausur zur Aalysis eier Variable F. Merl 3.4.7. Die folgede Teilaufgabe baue teilweise aufeiader auf. Sie dürfe die Ergebisse vorhergeheder Teilaufgabe auch da verwede, we Sie diese icht

Mehr

Grenzwert einer Folge

Grenzwert einer Folge Grezwert eier Folge für GeoGebraCAS Letzte Äderug: 29/ März 2011 1 Überblick 1.1 Zusammefassug Ierhalb vo zwei Uterrichtseiheite solle die Schüler/ie zwei Arbeitsblätter mit GeoGebra erstelle, die das

Mehr

Die Wurzel einer Zahl a ist die Zahl, die mit sich selbst malgenommen wieder a ergibt.

Die Wurzel einer Zahl a ist die Zahl, die mit sich selbst malgenommen wieder a ergibt. Wurzel Wurzelexpoet Radikad oder auch Basis Die Wurzel eier Zahl a ist die Zahl, die mit sich selbst malgeomme wieder a ergibt. Die -te Wurzel et ma auch Quadratwurzel, dabei lässt ma die (als Wurzelexpoet)

Mehr

Ungleichungen werden mit Äquivalenzumformungen gelöst. Hierzu werden die sogenannten Monotoniegesetze angegeben.

Ungleichungen werden mit Äquivalenzumformungen gelöst. Hierzu werden die sogenannten Monotoniegesetze angegeben. Floria Häusler Ugleichuge. Grudsätzliches I folgede ist ur vo reelle Zahle die Rede, ohe daß dies im eizele betot wird. Es seie A, B, C,... Terme reeller Zahle, u. U. auch mit Variable. Für Ugleichuge

Mehr

Folgen und Reihen. Inhaltsverzeichnis. A. Mentzendorff Geändert: August 2008

Folgen und Reihen. Inhaltsverzeichnis. A. Mentzendorff Geändert: August 2008 A. Metzedorff Geädert: August 008 Folge ud Reihe Ihaltsverzeichis Folge. Der Folgebegriff.................................... Arithmetische ud geometrische Folge......................3 Mootoe ud beschräkte

Mehr