Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Größe: px
Ab Seite anzeigen:

Download "Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr"

Transkript

1 DEMO für ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gz ausführliches Traiig Datei Nr Neu geschriebe ud sehr erweitert Std: 4. Februar 2010 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

2 Vorwort Die Texte über Folge wurde sehr erweitert ud überarbeitet. Daher sollte m sich auch i folgede Texte umsehe: Eiführug Rekursive ud explizite Berechugsformel Grudlage zu arithmetische ud geometrische Folge (Dies wird i vorliegedem Text wiederholt!) Geometrische Folge als Wachstumsfolge (kurze Eiführug) 4001 Arithmetische Folge 2. Ordug Dies wurde auch scho i gesproche Geometrische Folge als Wachstumsfolge Prozetuales (expoetielles) Wachstum ud Abahme (wie Ziseszisrechug, radioaktiver Zerfall). Hier wird och eimal besproche, was kurz i gezeigt worde ist. Wer es also ausführlicher braucht, lese hier ach! Spezielle Wachstumsfolge Hier geht es um die rekursive Formel u = u 1 q+ r. ud die explizite Berechug der Formel. Zu de Aweduge gehöre auch schwierigere fizmathematische Vorgäge wie Ratespare, Retezahlug, Darlehesfizierug. Allgemei beschreibe diese Folge das beschräkte Wachstum. Dazu gehört auch die beschräkte Abahme (Abkühlugsvorgäge u.a.) Arithmetische ud geometrische Reihe Geometrische Figure als geometrische Folge Es komme auch Teilaufgabe zu Reihe vor Aufgabesammlug zu ar./geom. Folge ud Reihe

3 Ihalt 1 Arithmetische Zahlefolge Arithmetische Folge defiiere ud erkee Arithmetische Folge rekursiv bereche 6 Traiigsaufgabe Arithmetische Folge: Herleitug eier explizite Formel (Lesestoff) Grudaufgabe mit Musterlösuge Musterbeispiele mit Lösuge 1 Traiigsaufgabe Schaubilder arithmetischer Folge 16 Traiigsaufgabe ud 4 (Textaufgabe) 18 2 Geometrische Zahlefolge Defiitio ud rekursive Berechug Beispiele rekursiver Berechug 21 Traiigsaufgabe ud Explizite Berechug geometrischer Folge (Lesestoff) 2 Traiigsaufgabe Grudaufgabe mit Musterlösuge 28 Traiigsaufgabe 8 4 Weitere Grudaufgabe ud Beispiele Traiigsaufgabe 9 8 Weitere Grudaufgabe ud Beispiele 9 Traiigsaufgabe Schaubilder vo geometrische Folge Mathematische Utersuchuge der geometrische Folge Mootoie 48 Traiigsaufgabe Wie groß oder wie klei werde die Glieder der Folge? Eisatz des CAS-Rechers TI Nspire Traiigsaufgabe 12 6 Traiigsteil: Zusammestellug aller Traiigsaufgabe 7 Alle Lösuge dazu 6 90 Aweduge zu geometrische Folge i ud 40060

4 40012 Arithmetische ud geometrische Folge 4 1 Arithmetische Zahlefolge 1.1 Arithmetische Folge defiiere ud erkee M k arithmetische ud geometrische Folge auf uterschiedlichste Weise eiführe. Ich zeige Beispiele dazu im Ahg. Hier greife ich auf die vielleicht gebräuchlichste Defiitio zurück, die auch am beste zur Überprüfug dieser Folge geeiget ist. Beispiel 1 a1 = 12; a2 = 16; a = 20; a4 = 24;... Bei der Folge ist immer der Nachfolger um 4 größer als der Vorgäger. Dies k m als implizite Berechugsgleichug so aufschreibe: a a 4 + 1= + oder 1 bzw. a 1 a = + 4 oder 1 = 4 a = a + 4 mit a 1 = 12 M formuliert das als Pflichtsatz im Heft so: Die Differez zweier aufeider folgeder Glieder ist kostt (ud zwar hier gleich 4). MERKE: Eie Folge, bei der die Differez aufeider folgeder Glieder immer gleich groß ist, heißt eie arithmetische Folge. Beispiel 2 a1 = 20 ; a2 = 11; a = 42 ; a4 = 7 ;... Rechug: a2 a1 = = 1 a a2 = = 1 a 1 a = + 1 a4 a = 7 42 = 1 Weil die Differeze aufeider folgeder Gleicher gleich groß sid, liegt eie arithmetische Folge vor. Rekursive Darstellug: + 1= + 1 mit a 1 = -20 WICHTIGER HINWEIS: Immer we m eie Folge aus eiige gegebee Glieder idetifiziert ud eiem Typ zuordet, muss m eigetlich sage: Es k sich um eie solche Folge dieses Typs hdel. Es gibt ämlich stets uedlich viele Folge, die i diese gegebee Glieder übereistimme, dahiter aber abweiche! Bei dieser arithmetische Folge ist a = 104. Würde aber m a = 10 verwede, läge scho keie arithmetische Folge mehr vor. I der Regel aber sid die Aufgabe so gestellt, dass m sage k, es liegt eie solche Folge vor. De der Aufgabesteller will ja, dass m gerade diese Typ idetifiziert. Aber vom Prizip her muss m wisse, dass es ebe auch dere gibt!

5 40012 Arithmetische ud geometrische Folge Beispiel a1 = 14; a2 = 4; a = 6; a4 = 16;... Differeze aufeider folgeder Glieder: a2 a1 = 4 14 = 10 a a2 = 6 4 = 10 a a = 16 6 = = 10 4 a a 10 = + 1 Weil die Differeze aufeider folgeder Gleicher gleich groß sid, liegt eie arithmetische Folge vor. (Dies ist der Pflichtsatz zur Begrüdug des Ergebisses. Ud m muss alle mögliche Differeze aufeider folgeder Glieder utersuche! Ud m eriere sich de Hiweis!) Diese Folge fällt, weil fortgesetzt 10 subtrahiert, also -10 addiert wird. M k für diese Folge die rekursive Darstellug so schreibe: + 1= 10 mit a 1 = 14 Beispiel 4 Gegebe ist diese Folge: 2, 4, 11 2, 7, Um herauszufide, ob eie arithmetische Folge vorliege k, berechet m alle mögliche 8 Differeze: a a = 4 = = a a = 4 = = a a = 7 = = a + a = 1 2 Weil die Differeze aufeider folgeder Gleicher gleich groß sid, liegt eie arithmetische Folge vor. Rekursive Darstellug der Folge: a + = a + mit a = Zu arithmetische Folge gibt es atürlich auch explizite Formel, die wir jetzt bestimme wolle.

6 40012 Arithmetische ud geometrische Folge Arithmetische Folge rekursiv bereche Es gibt prizipiell zwei Arte der Berechug für Zahlefolge: 1. Art: Bei der rekursive Berechug muss m eie Afgswert kee ud eie Vorschrift, wie m de Nachfolger aus dem Vorgäger berechet. 2. Art: Bei der explizite Berechug k m direkt jedes beliebige Glied der Folge mittels eies Fuktiosterms bereche. Beispiel 1: Es sei a1 = 18 ud + 1= + 11 D folgt: a2 = a = = 29 ud daraus: a = a = = 40 ud daraus: a4 = a + 11 = = 1 usw. Soll m jedoch a 40 bereche, geht das erst, we m zuvor alle Glieder bis a 9 berechet hat. D folgt: a40 = a =... Das war die rekursive Art der Berechug. Für dieselbe Folge gibt es auch eie Fuktiosterm: = Wir überprüfe dies, idem wir die ermittelte Werte och eimal bereche: a1 = = 18 a2 = = = 29 a = = + 7 = 40 a4 = = = 1 Ud sogar: a40 = = = 447 M erket de Vorteil: Hier beötigt m keie Vorgäger, k also sofort jedes beliebige Glied bereche, also auch a628 = = Dies war die explizite Art der Berechug. Beispiel 2: Es sei a1 = 60 ud = 1 6 Im Uterschied zu Beispiel 1 wird i der Berechugsformel der Nachfolger mit a bezeichet ud der Vorgäger mit a -1. M köte diese Vorschrift auch so schreibe: + 1= 6. Das ergibt dieselbe Methode ud dieselbe Werte. Die explizite Form für diese Folge ist = Aufgabe: Bereche die folgede Glieder dieser Folge zuerst rekursiv, d explizit: a, 2 a, a, 4 a, a 100 Die Lösug steht auf der ächste Seite.

7 40012 Arithmetische ud geometrische Folge 7 Lösug: Rekursiv: Explizit: Aus a1 = 60 ud = 1 6 Aus = 66 6 folgt a1 = = 66 6 = 60 folgt: a2 = a1 6 = 60 6 = 4 a2 = = = 4 a = a2 6 = 4 6 = 48 a = 66 6 = = 48 a4 = a 6 = 48 6 = 42 a4 = = = 42 a = a4 6 = 42 6 = 6 a = 66 6 = 66 0 = 6 a100 = a99 6 =? 6 =? a100 = = = 4 Es ist atürlich klar, dass m a 100 icht mehr rekursiv berechet, de m müsste ja zuvor a 1 bis a 99 kee! Beispiel : Gegebe sei = ud a4 = 20. Bereche rekursiv a 1 bis a 6.. Jetzt ket m plötzlich icht a 1 soder a 4. Zuerst reche wir vo a 4 aus ach obe : a = a = = 6 a6 = a + 14 = = 8 Nu müsse wir zurückreche, also die Vorgäger aus de Nachfolger bestimme. Dazu stelle wir die Formel um: Aus = wird d 1= 14. Das ist aber eigetlich klar, de we m für de Nachfolger immer 14 dazuaddiere muss, d etsteht der Vorgäger aus dem Nachfolger durch Subtraktio vo 14! Traiigsaufgabe 1 a = a4 14 = = 4 a2 = a 14 = 4 14 = 48 a1 = a2 14 = = 62. (1) Bereche a 2 bis a zu a) + 1= + 24, a 1 = 1 b) a =, a 1 = (2) Bereche a 1 bis a 6 zu: a) = 1 10, a = 100 b) + 1= + 12, a 7 = 6 () Bereche a 1 bis a 6 mit: a) + 2= 0, a 1 = 1 a = a + 1, a = -1 b) (4) Bereche a 2 bis a 4 mittels = Lösuge am Textede

8 40012 Arithmetische ud geometrische Folge 8 1. Arithmetische Folge: Herleitug eier explizite Formel (Bitte grüdlich mitdeke ud verstehe!) (1) Bei der Folge a1 = 18; a2 = 21; a = 24; a4 = 27; a = 0;... stellt m schell fest, dass die Differez aufeider folgeder Glieder ist: a 1 a = +. Der Nachfolger etsteht also immer durch Additio der Zahl d = : Beachte diese Grafik: d = d = d =+ 12 Der rote Pfeil zeigt, wohi m kommt, we m statt um d gleich um 4d weiter geht: M kommt etweder vo a 1 ach a ( a = a1 + 4d), oder vo a 2 ach a 6 ( a6 = a2 + 4d) oder vo a 4 ach a 8 ( a8 = a4 + 4d), usw. We also a 4 = 27 gegebe ist ud außerdem a 8 = 9, d wisse wir, dass a8 a4 = 4d ist, also köe wir aus 4d = 9 27 = 12 auf d = schließe. Umgekehrt köe wir vo a 1 aus durch Additio vo 4d direkt a bereche: a = a1+ 4d. Dekt m sich eie Pfeil vo a 2 = 21 ach a 8 = 9 eigezeichet, d k m feststelle, dass die Differez 6d = 18 ist: a8 a2 = 18 = 6d. Es gilt also a8 = a2 + 6d. Dasselbe gilt d für die Strecke vo a 1 ach a 7. a7 = a1+ 6d M k also auch a 12 aus a 1 bereche, idem m 11 Differeze d dazuaddiert: a12 = a d = = 18 + = 1. Dies ist das so gete Lattezau-Prizip: Zwische 2 Latte ist 1 Lücke, zwische Latte sid es 2 Lücke, zwische 12 Latte 11 Lücke, ud zwische Latte sid es (-1) Lücke. Zwische dem Glied a 1 ud dem -te Glied a sid es (-1) Lücke, also gilt: 1 a = a + 1 d Setze wir hier die Gegebeheite ei, also a 1 = 18 ud d =, d folgt: = 18+ ( 1) Umgeformt: = 18+ Explizite Formel: = 1+ Damit k m jetzt jedes beliebige Glied der Folge bereche.

9 40012 Arithmetische ud geometrische Folge 9 (2) Bei der Folge a1 = 4; a2 = 1; a = 2; a4 = ; a = 8 stellt m schell fest, dass die Differez aufeider folgeder Glieder - ist, d. h. der Nachfolger etsteht immer durch Additio der Zahl d = -: Die rote Pfeile zeige, wohi m kommt, we m statt um d gleich um d bzw. 6b oder d weiter geht. Dazu die Rechuge: 8 ( ) a6 = a1 + ( 6 1) d = 4+ = 4 1 = 11 a8 = a2 + ( 2) d = 1+ 6 = 1 18 = 17 a7 = a d = + = 9 = 14 Wir wolle auch hier eie explizite Berechugsformel, also eie Fuktiosterm erstelle: Wir wolle also a aus a 1 bereche. Dazu muss m zu a 1 (-1)-mal d addiere: 1 a = a + 1 d Ausführlich: () Allgemeie Darstellug + d = 1 + 6d = 18 a = 4+ 1 = 4 + = 7 = d = 9 a a a a a a a 1 + d 2 + d + d 4 + d + d 6 + d 7 a = a1+ 2d a7 = a + 2d a4 = a1+ d a = a2 + d a6 = a1+ d a7 = a + 4d Betrachte wir a6 a2 = 4d. Dies bedeutet a6 = a2 + 4d. (Zwische der 6. ud der 2. Latte sid 4 Zwischeräume) Oder: a4 a1 = d also a4 = a1 + d (Zwische der 1. ud 4. Latte sid drei Zwischeräume). Allgemeie Berechugsformel: a a = 1 d bzw. 1 a a 1 d MERKE: 1 a = a + m d = + ud m

10 40012 Arithmetische ud geometrische Folge 10 (4) Traiig: Wir schaue us die Beispiele aus 1.1 : Beispiel 1 war: + 1= + 4 mit a 1 = 12. M erket d= + 1 = 4 ud folgert: a = a + 1 d. h. 1 a = d. h. = Ergebis: = 8+ 4 Beispiel 2 war: + 1= + 1 mit a 1 = -20. M erket d= + 1 = 1 ud folgert: a = d. h. = = 1+ 1 Beispiel war: + 1= 10 mit a 1 = 14. M erket d= + 1 = 10 ud folgert: a = d. h. = = Beispiel 4 war: a + = a + mit a =. M erket d = a a = ud folgert: a = + 1 d. h. a = a = 1+ 2 () Weitere Beispiele: a) 4; 9; 14; 19;..24;... Es ist a2 a1 = 9 4 = a a2 = 14 9 = a4 a = = ud a a4 = = Aufstellug der explizite Folge mit der Formel 1 = + ( ) Pflichttext: Da die Differez aufeiderfolgeder Glieder kostt ist, ud zwar, liegt eie arithmetische Folge vor. a = a + 1 d: a 4 1 = 4+ = 1 b) 28 ; 12 ; 4 ; 20 ;... Es ist a2 a1 = = 16 a a2 = 4 12 = 16 a a = 20 4 = = 16 Pflichttext: Da die Differez aufeiderfolgeder Glieder kostt ist, ud zwar, liegt eie arithmetische Folge vor. 4 Aufstellug der explizite Folge mit der Formel = a1 + ( 1) d: a = 28+ ( 1) ( 16) = =

11 40012 Arithmetische ud geometrische Folge GRUNDAUFGABEN mit Musterlösuge Grudaufgabe 1 Vo eier arithmetische Folge ket m a4 = 17 ud a10 = 9 Bereche a, a 1 ud a 1. Stelle eie Fuktiosterm für a auf. LÖSUNG Zwische a 4 ud a 10 liege 6 Differeze: 6d = a10 a4 = 9 17 = 42 d = 7 Also erhält m a = a4 + d= 17+ 7= 24 a1 = a10 + d a = a d = 17 7 = 17 21= ud Ergebis: = a1 + 1 d= = = 7 11 = 7 11 Übriges k m die explizite Berechugsformel (bzw. de Fuktiosterm) aus jedem beliebige Glied der Folge bereche. M muss icht vo a 1 ausgehe: Berechug vo a aus a 4 = 17: 4 Berechug vo a aus a 10 = 9: usw. a = a + 4 d = = = 7 11 a = a + 10 d = = = Grudaufgabe 2 LÖSUNG Vo eier arithmetische Folge ket m a12 = 80 ud a20 = 176. Sid b = 44 oder c = 142 Glieder dieser Folge? Zwische a 12 ud a 20 liege 8 Differeze: 8d = a a = = 96 d = Fuktiosterm der Folge: a = a + 12 d= = = Überprüfug vo b = 44: = = = = Überprüfug vo c = 142: = = = = 12 Ergebis: b = 44 = a 4, c ist kei Glied der Folge, de es gibt dazu keie passede atürliche Zahl ,1...

12 40012 Arithmetische ud geometrische Folge 12 Grudaufgabe Beweise, dass die Folge a mit eie arithmetische Folge ist. = BEWEIS Methode: M muss überprüfe, ob die Bedigug für eie arithmetische Folge erfüllt ist, also ob die Differez aufeider folgeder Glieder kostt ist. Aus a = berechet m a +1. Dazu muss m durch +1 ersetze: a ( 1) Der eigetliche Beweis begit jetzt: d= a a = (+ 1) = +. d = = 16 Ergebis: Das muss m aufschreibe! Weil die Differez aufeiderfolgeder Glieder kostt ist, liegt eie arithmetische Folge vor. Grudaufgabe 4 2 Zeige, dass die Folge a mit = ud b mit b = + 4 keie arithmetische Folge sid. BEWEIS Achtug: Jetzt reicht je ei Zahlebeispiel, das zeigt, dass die Differeze aufeider folgeder Glieder icht kostt sid! a1= = ; a2 = = 4; a = = 7 Also ist a 2 a 1 = 1 ud a a 2 =. b = ; b = = ; b = Also ist = = 10 9 = ud b b = = 2 21 = b b Ergebis: 2 7 Weil die Differeze aufeider folgeder Glieder icht kostt sid, liege i beide Fälle keie arithmetische Folge vor.

13 40012 Arithmetische ud geometrische Folge 1 1. Musterbeispiele mit Lösuge Fortsetzug auf der CD

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gaz ausführliches Traiig Datei Nr. 4002 Neu Überarbeitet Stad: 7. Juli 206 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische

Mehr

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Analysis ZAHLENFOLGEN Teil 4 : Monotonie Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik

Mehr

Arithmetische Reihen Geometrische Reihen. Theorie und Musterbeispiele. Es wird auch das Arbeiten mit dem Summenzeichen geübt! Datei Nr.

Arithmetische Reihen Geometrische Reihen. Theorie und Musterbeispiele. Es wird auch das Arbeiten mit dem Summenzeichen geübt! Datei Nr. Zahlefolge Teil 3: Reihe Arithmetiche Reihe Geometriche Reihe Theorie ud Muterbeipiele E wird auch da Arbeite mit dem Summezeiche geübt! Datei Nr. 40050 Stad 7. September 06 Friedrich W. Buckel INTERNETBIBLIOTHEK

Mehr

Demo-Text für INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. ANALYSIS Vollständige Induktion FRIEDRICH W.

Demo-Text für   INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.   ANALYSIS Vollständige Induktion FRIEDRICH W. ANALYSIS Vollstädige Iduktio Datei Nr. 40080 Stad 14. März 018 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 40080 Beweismethode: Vollstädige Iduktio Vorwort Die Methode der vollstädige Iduktio

Mehr

Berechnung von Abständen zu Geraden und Ebenen. Einfache Darstellung der Grundlagen: Die wichtigsten Aufgabenstellungen und Methoden- Datei Nr.

Berechnung von Abständen zu Geraden und Ebenen. Einfache Darstellung der Grundlagen: Die wichtigsten Aufgabenstellungen und Methoden- Datei Nr. Vektorgeometrie gaz eifach Teil 6 Abstäde Berechug vo Abstäde zu Gerade ud Ebee Eifache Darstellug der Grudlage: Die wichtigste Aufgabestelluge ud Methode- Datei Nr. 640 Stad 28. Dezember 205 Demo-Text

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 8 Defiitioe ud Beispiele für Folge Defiitio Eie

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Einführung in die Grenzwerte

Einführung in die Grenzwerte Eiführug i die Grezwerte Dieser Text folgt hauptsächlich der Notwedigkeit i sehr kurzer Zeit eie Idee ud Teile ihrer Awedug zu präsetiere, so dass relativ schell mit dieser Idee gerechet werde ka. Der

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

Goldener Schnitt und Fünfecke. Ein Streifzug durch einige Wunder der Mathematik. Geeignet für Klasse 9 (teilweise) und 11 sowie Facharbeiten

Goldener Schnitt und Fünfecke. Ein Streifzug durch einige Wunder der Mathematik. Geeignet für Klasse 9 (teilweise) und 11 sowie Facharbeiten Aalysis Fiboacci-Folge Goldeer Schitt ud Füfecke Ei Streifzug durch eiige Wuder der Mathematik Geeiget für Klasse 9 (teilweise) ud sowie Facharbeite Datei Nr. 40070 Stad 8. Jauar 009 INTERNETBIBLIOTHEK

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung Aufgabe zur Übug ud Vertiefug ARITHMETISCHE ZAHLENFOLGEN Berufliches Gymasium / Uterstufe () Stelle Sie fest, welche der gegebee Folge arithmetisch sid: Bestimme Sie zuächst die erste füf Folgeglieder,

Mehr

Klausur 1 über Folgen

Klausur 1 über Folgen www.mathe-aufgabe.com Klausur über Folge Hiweis: Der GTR darf für alle Aufgabe eigesetzt werde. Aufgabe : Bestimme eie explizite ud eie rekursive Darstellug! a) für eie arithmetische Folge mit a = 6, ;

Mehr

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung... KAPITEL 7 Zahlefolge 7. Kovergete Zahlefolge.............................. 30 7.2 Grezwertbestimmug............................... 32 7.3 Grezwertbestimmug durch Abschätzug..................... 35 7.4

Mehr

5.7. Aufgaben zu Folgen

5.7. Aufgaben zu Folgen 5.7. Aufgabe zu Folge Aufgabe : Lieares ud beschräktes Wachstum Aus eiem Quadrat mit der Seiteläge dm gehe auf die rechts agedeutete Weise eue Figure hervor. Die im -te Schritt agefügte Quadrate sid jeweils

Mehr

KAPITEL 2. Zahlenfolgen

KAPITEL 2. Zahlenfolgen KAPITEL Zahlefolge. Kovergete Zahlefolge...................... 35. Grezwertbestimmug....................... 38.3 Grezwertbestimmug durch Abschätzug............. 4.4 Mootoe Folge..........................

Mehr

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

Lösungen zum Thema Folgen und Reihen

Lösungen zum Thema Folgen und Reihen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Lösuge zum Thema Folge ud Reihe Lösug zu Aufgabe 1. a) (a ) N ist eie arithmetische Folge mit d = 11 ud damit ist a 75 = 7 + (75 1)

Mehr

Demo-Text für Darlehen Bausparverträge. Finanzmathematik Teil 3 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Demo-Text für   Darlehen Bausparverträge. Finanzmathematik Teil 3 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Fiazmathematik Teil 3 Darlehe Bausparverträge Vor allem für die Oberstufe geeiget Text Nr. 18931 Stad: 17. November 2018 FIEDICH W. BUCKEL INTENETBIBLIOTHEK FÜ SCHULMATHEMATIK 18931 Fiazmathematik 3: Darlehe

Mehr

Seminarausarbeitung: Gegenbeispiele in der Wahrscheinlichkeitstheorie. Unterschiedliche Konvergenzarten von Folgen von Zufallsvariablen

Seminarausarbeitung: Gegenbeispiele in der Wahrscheinlichkeitstheorie. Unterschiedliche Konvergenzarten von Folgen von Zufallsvariablen Semiarausarbeitug: Gegebeispiele i der Wahrscheilichkeitstheorie - Uterschiedliche Kovergezarte vo Folge vo Zufallsvariable Volker Michael Eberle 4. März 203 Eileitug Die vorliegede Arbeit thematisiert

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen.

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen. Wurzelgesetze Gesetzmäßigkeite Grudlage Das Wurzelziehe (oder Radiziere) ist die Umkehrug des Potezieres. Daher sid die Wurzelgesetze de Potezgesetze sehr ählich. Die Wurzel aus eier positive Zahl ergibt

Mehr

Demo-Text für Sammlung von Aufgaben. Vollständige Induktion. Höhere Analysis INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Demo-Text für   Sammlung von Aufgaben. Vollständige Induktion. Höhere Analysis INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Höhere Aalysis Vollstädige Idutio Sammlug vo Aufgabe Text Nr. 00 Stad 7. Jui 08 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Demo-Text für 00 Beispiele zur Vollstädige Idutio Vorwort Diese

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben Expoetielles Wachstum Höhere Fiazmathematik Sehr ausführliches Themeheft (d. h. mit Theorie) Aber auch mit viele Traiigsaufgabe Es hadelt sich um eie Awedug vo Expoetialfuktioe (Wachstumsfuktioe) Datei

Mehr

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen Thema Fit i Mathe Musterlösuge 1 April Klassestufe 10 Wurzelfuktioe Uter der -te Wurzel eier icht-egative Zahl (i Zeiche: ) versteht ma die icht-egative Zahl, die mal mit sich selber multipliziert, die

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik für Iformatiker -- 9 Folge -- 6.1.215 1 Folge: Defiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reihefolge wichtig,

Mehr

Index. Majorante, 24 Minorante, 23. Partialsumme, 17

Index. Majorante, 24 Minorante, 23. Partialsumme, 17 Folge, Reihe Idex Kovergezkriterie Hauptkriterium, Leibiz-Kriterium, Majoratekriterium, 4 Mioratekriterium, otwediges Kriterium, 0 Quotietekriterium, teleskopierede Summe, Wurzelkriterium, Majorate, 4

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

Prüfungsaufgaben der Abschlussprüfung an Realschulen in Bayern! mit ausführlichen Musterlösungen. und Querverweise auf Theoriedateien der Mathe-CD

Prüfungsaufgaben der Abschlussprüfung an Realschulen in Bayern! mit ausführlichen Musterlösungen. und Querverweise auf Theoriedateien der Mathe-CD Vektor-Geometrie Koordiategeometrie Prüfugsaufgabe uter Verwedug vo Abbildugsgleichuge Prüfugsaufgabe der Abschlussprüfug a Realschule i Bayer! mit ausführliche Musterlösuge ud Querverweise auf Theoriedateie

Mehr

Quadratfraktal. Abbildung 1 Abbildung 2 Abbildung 3

Quadratfraktal. Abbildung 1 Abbildung 2 Abbildung 3 Nimm ei quadratisches Blatt Papier. Scheide lägs eier Diagoale eimal die Hälfte ab. Zerlege die zweite Hälfte i vier rechtwiklige gleichscheklige Dreiecke (Abb. ). Zwei dieser vier Dreiecke kast du u abscheide

Mehr

3 Grenzwerte. 3.1 Grenzwerte von Folgen

3 Grenzwerte. 3.1 Grenzwerte von Folgen 03-grezwerte.cdf 3 Grezwerte 3. Grezwerte vo Folge Kovergez Mache Folge zeige ei spezielles Verhalte, we der Idex sehr groß wird. Sie äher sich eier bestimmte Zahl. Betrachte wir zum Beispiel die Folge

Mehr

(8) FOLGEN und REIHEN

(8) FOLGEN und REIHEN Folge ud Reihe ÜBUNGEN Bestimme die gegeseitige Lage der Ebee ud gib die gemeisame Pukte bzw. Gerade a. x+4y - 6z= x + y - z = 4x - 4y+4z=0 x + y z = 0 x - y+z = x + y + z = x+y -5z= 4x - 7y+z= -x+y -z=8

Mehr

Denition 27: Die Fakultät ist eine Folge f : N N mit f(1) := 1 und f(n + 1) := (n + 1) f(n) für alle n N. Wir schreiben n! := f(n) für diese Folge.

Denition 27: Die Fakultät ist eine Folge f : N N mit f(1) := 1 und f(n + 1) := (n + 1) f(n) für alle n N. Wir schreiben n! := f(n) für diese Folge. Vorkurs Mathematik, PD Dr. K. Halupczok, WWU Müster Fachbereich Mathematik ud Iformatik 22.9.20 Ÿ3.2 Folge ud Summe (Fortsetzug) Eie wichtige Möglichkeit, wie ma Zahlefolge deiere ka, ist die über eie

Mehr

Übungen zum Ferienkurs Analysis 1, Vorlesung 2

Übungen zum Ferienkurs Analysis 1, Vorlesung 2 F. Hafer, T. Baldauf c Techische Uiversität Müche Übuge zum Feriekurs Aalysis, Vorlesug Witersemester 06/07. Richtig oder Falsch? Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche

Mehr

Die erste Zeile ("Nummerierung") denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen.

Die erste Zeile (Nummerierung) denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen. Folge ud Reihe (Izwische Stoff der Hochschule. ) Stad: 30.03.205. Folge Was sid Zahlefolge? Z.B. oder Das ist die vereifachte Wertetabelle eier Fuktio geschriebe wie üblich bei Fuktioe i eier Wertetabelle.

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I Aufgabe ud Lösuge Weihachtsgescheke zur Vorlesug Aalysis I Der Witersemester 008/009 Übug am 4.., 5..008 sowie 0.0.009 Aufgabe. Folge Aufgabe Ma bestimme, ob die Folge (a ) mit a = + 3 + 4 kovergiert ud

Mehr

Tutorial zum Grenzwert reeller Zahlenfolgen

Tutorial zum Grenzwert reeller Zahlenfolgen MAE Mathematik: Aalysis für Igeieure Herbstsemester 206 Dr. Christoph Kirsch ZHAW Witerthur Tutorial zum Grezwert reeller Zahlefolge I diesem Tutorial lere Sie, die logische Aussage i der Defiitio des

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Techische Uiversität Müche Fakultät für Iformatik Lehrstuhl für Effiziete Algorithme Dr. Hajo Täubig Tobias Lieber Sommersemester 2011 Übugsblatt 1 13. Mai 2011 Grudlage: Algorithme ud Datestrukture Abgabetermi:

Mehr

10 Aussagen mit Quantoren und

10 Aussagen mit Quantoren und 0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits

Mehr

5. Übungsblatt Aufgaben mit Lösungen

5. Übungsblatt Aufgaben mit Lösungen 5. Übugsblatt Aufgabe mit Lösuge Aufgabe 2: Bestimme Sie alle Häufugspukte der komplexe) Folge mit de Glieder a) a = ) 5 + 7 + 2 ) b) b = i Lösug 2: a) Die Folge a ) zerfällt vollstädig i die beide Teilfolge

Mehr

Demo-Text für Potenzfunktionen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL.

Demo-Text für   Potenzfunktionen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.   FRIEDRICH W. BUCKEL. Potezfuktioe Theme:. Grudeigeschafte, Schaubilder. Kurvegleichuge aufstelle Datei Nr. 8005 Stad 7. Juli 0 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Demo-Tet für 8005 Potezfuktioe Hiweis

Mehr

Grenzwertberechnungen

Grenzwertberechnungen Katosschule Solothur Grezwertberechuge Grezwertberechuge Grezwertberechuge bei Folge ud Reihe Folge sid Fuktioe; die Begriffe beschräkt ud mooto trete daher auch bei Folge auf. Isbesodere habe sie eie

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Übungsblatt Folgen, Reihen, Finanzmathematik

Übungsblatt Folgen, Reihen, Finanzmathematik Tutorium zu Mathematik für WFB Übugsblatt Folge, Reihe, Fiazmathematik Aufgabe (Grezwerte vo Folge) Bestimme Sie die Grezwerte der Folge ( ), N 4 b) c) d) e) si( ) f) a () g) a cos( ) Aufgabe (4 ) 4 b)

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VM Schuljhr 7/8 Zusmmefssug Folge ud Kovergez Ihltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 7 Defiitioe ud Beispiele für

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo suge zu Blatt 0 Kleigruppe zur Service-Verastaltug Mathematik I fu r Igeieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 9.. Theme: Kovergez vo Folge Aufgabe P (i) Sei a : k kk.

Mehr

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 4 LÖSUNGEN MAT/MAT3 ANALYSIS I HERBSTSEMESTER 00 PROF. DR. AMILLO DE LELLIS Aufgabe. Etscheide Sie für folgede Folge (wobei N \ {0}), ob diese koverget sid, ud bereche sie gegebeefalls ihre

Mehr

Lösungsvorschlag zu den Hausaufgaben der 1. Übung

Lösungsvorschlag zu den Hausaufgaben der 1. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Patrizio Neff Christia Thiel 4.04.04 Lösugsvorschlag zu de Hausaufgabe der. Übug Aufgabe : (6 Pukte Bereche Sie für die Fuktio f : R R, f( : ep( a der Stelle 0 0 das Taylorpolyom

Mehr

$Id: komplex.tex,v /04/13 15:09:53 hk Exp $

$Id: komplex.tex,v /04/13 15:09:53 hk Exp $ Mathematik für Igeieure IV, SS 206 Mittwoch 3.4 $Id: komplex.tex,v.2 206/04/3 5:09:53 hk Exp $ Komplexe Zahle I diesem Kapitel wolle wir erst eimal zusammestelle was aus de vorige Semester über die komplexe

Mehr

Kapitel 9: Geometrische Summe und ein Mischmodell

Kapitel 9: Geometrische Summe und ein Mischmodell Kapitel 9: Geometrische Summe ud ei Mischmodell Dr. Dakwart Vogel Ui Esse WS 2009/10 1 Die Summeformel der geometrische Reihe + 1 2 1 q 1 + q+ q +... + q =, 0, q> 0, 1 1 q Bemerkuge 1. Mit Hilfe des -Zeiches

Mehr

Übung 2 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 1. Oktober 2018 in den Übungsstunden

Übung 2 (für Pharma/Geo/Bio) Uni Basel. Besprechung der Lösungen: 1. Oktober 2018 in den Übungsstunden Mathematik I für Naturwisseschafte Dr. Christie Zehrt 7.09.18 Übug (für Pharma/Geo/Bio) Ui Basel Besprechug der Lösuge: 1. Oktober 018 i de Übugsstude Aufgabe 1 Sid die folgede Abbilduge f : X Y umkehrbar?

Mehr

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern

FormelnfürdieAnzahlmöglicherQuadrateaufn*nSpielfeldern Modrago Formel Herleitug, Azahl Quadrate ud Differeze 01.doc 1 FormelfürdieAzahlmöglicherQuadrateauf*Spielfelder Mit Erläuteruge zur Ableitug der Formel vo Dr. Volker Bagert Berli, 11.03.010 Ihaltsverzeichis

Mehr

4. Übungsblatt Aufgaben mit Lösungen

4. Übungsblatt Aufgaben mit Lösungen 4. Übugsblatt Aufgabe mit Lösuge Aufgabe 6: Bestimme Sie alle Häufugspukte der Folge mit de Folgeglieder a) a 2 + cosπ), b) b i) i j, ud gebe Sie jeweils eie Teilfolge a, die gege diese Häufugspukte kovergiert.

Mehr

Das Erstellen von Folgen mit der Last Answer Funktion

Das Erstellen von Folgen mit der Last Answer Funktion Schülerarbeitsblatt Wisseschaftlicher Recher EL-W5 WriteView Das Erstelle vo Folge mit der Last Aswer Fuktio 5 9 Die obige Folge wird ach eier eifache Regel gebildet: Zu jedem Glied wird addiert. Über

Mehr

Lösungen zur Nachklausur zur Analysis einer Variablen F. Merkl

Lösungen zur Nachklausur zur Analysis einer Variablen F. Merkl Lösuge zur Nachlausur zur Aalysis eier Variable F. Merl 3.4.7. Die folgede Teilaufgabe baue teilweise aufeiader auf. Sie dürfe die Ergebisse vorhergeheder Teilaufgabe auch da verwede, we Sie diese icht

Mehr

Kapitel 6. Aufgaben. Verständnisfragen. Rechenaufgaben

Kapitel 6. Aufgaben. Verständnisfragen. Rechenaufgaben Kapitel 6 Aufgabe Verstädisfrage Aufgabe 6. Gegebe sei die Folge (x ) 2 mit x ( 2)/( + ) für 2. Bestimme Sie eie Zahl N N so, dass x ε für alle N gilt, we (a) ε 0, (b) ε 00 ist. Aufgabe 6.2 Stelle Sie

Mehr

Funktionenreihen. 1-E1 Ma 2 Lubov Vassilevskaya

Funktionenreihen. 1-E1 Ma 2 Lubov Vassilevskaya Fuktioereihe Erst durch Newto wurde die Theorie uedlicher Reihe zu eiem eigestädige Forschugsgebiet i der Mathematik, das da i Britaie besodere Beachtug ud weitere Etwicklug durch Brook Taylor ud Coli

Mehr

SPIRALE AUS RECHTECKEN

SPIRALE AUS RECHTECKEN SPIRALE AUS RECHTECKEN Die Rechtecke sid aus eiem Papierblatt im Format DIN A4 durch sukzessives Halbiere herausgeschitte ud da "über Eck" eu ageordet worde. Welche Folge bilde die Flächeihalte der Rechtecke

Mehr

Mathematische Vorgehensweise

Mathematische Vorgehensweise Kapitel 2 Mathematische Vorgehesweise Um eue Ergebisse zu erziele, ist es häufig otwedig, Aussage präzise zu formuliere ud zu beweise. Daher werde i diesem Kapitel die mathematische Begriffsbilduge ud

Mehr

6 Grenzwerte von Zahlenfolgen

6 Grenzwerte von Zahlenfolgen 6 Grezwerte vo Zahlefolge Ei zetraler Begriff der Aalysis ist der des Grezwertes. Wir begie mit der Betrachtug vo Grezwerte vo Zahlefolge. 6. Zahlefolge 6.. Grudbegriffe Defiitio 6... Eie Fuktio f : Z

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Mathematik für Physiker (Aalysis ) MA90 Witersem 07/8 Lösugsblatt 4 http://www-m5matumde/allgemeies/ma90 07W (007)

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB 2004 Ihltsverzeichis Ihltsverzeichis... Folge ud Grezwerte... 2 Aäherug eie Grezwert... 2 Die Fläche des 5 Ecks... 3 Nährugsweise Berechug vo Pi... 4 Die Folge... 5 Defiitio der Folge... 5 Beispiele

Mehr

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität),

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität), Aalysis 1, Woche 2 Reelle Zahle A1 2.1 Ordug Defiitio 2.1 Ma et eie Ordug für K, we 1. für alle a K gilt a a (Reflexivität), 2. für alle a, b K mit a b ud b a gilt a = b (Atisymmetrie), 3. für alle a,

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015 Lösuge zum Feriekurs Aalysis, Vorlesug Witersemester 04/05 Fabia Hafer, Thomas Baldauf I Richtig oder Falsch Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche Aussage. Gebe Sie

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

Lösungsvorschlag zur 2. Hausübung in Analysis II im SS 12

Lösungsvorschlag zur 2. Hausübung in Analysis II im SS 12 FAKULTÄT FÜR MATHEMATIK, CAMPUS ESSEN Prof. Dr. Patrizio Neff 0.04.0 Lösugsvorschlag zur. Hausübug i Aalysis II im SS Hausaufgabe (8 Pute): Bereche Sie für die Futio f : R! R; f() : ep( ) a der Stelle

Mehr

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3.

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3. Folge Eie Folge ist eie Aordug vo reelle Zahle. Die eizele Zahle heiße Glieder der Folge. Kapitel 4 Folge ud Reihe Formal: Eie Folge ist eie Abbildug a : N R, a Folge werde mit a i i oder kurz a i bezeichet.

Mehr

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln

Wallis-Produkt, Gammafunktion und n-dimensionale Kugeln Wallis-Produkt, Gammafuktio ud -dimesioale Kugel Thomas Peters Thomas Mathe-Seite www.mathe-seite.de 6. Oktober 3 Das Ziel dieses Artikels ist es, Formel für das Volume ud die Oberfläche vo -dimesioale

Mehr

Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38. a : N R, n a n

Kapitel 4. Folgen und Reihen. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 4 Folgen und Reihen 1 / 38. a : N R, n a n Kapitel 4 Folge ud Reihe Josef Leydold Auffrischugskurs Mathematik WS 2017/18 4 Folge ud Reihe 1 / 38 Folge Eie Folge ist eie Aordug vo reelle Zahle. Die eizele Zahle heiße Glieder der Folge. Formal: Eie

Mehr

Folgen explizit und rekursiv Ac

Folgen explizit und rekursiv Ac Folge explizit ud rekursiv Ac 03-08 Folge sid Fuktioe, bei dee atürliche Zahle ( 0; ; ; ) reelle Zahle a() zugeordet werde. Ma schreibt dafür : a() bzw. a. Für die Folge schreibt ma auch < a >. Folge köe

Mehr

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln 6 Kovergete Folge Lerziele: Kozepte: Grezwertbegriff bei Folge, Wachstumsgeschwidigkeit vo Folge Resultat: Mootoe beschräkte Folge sid koverget. Methode: Hero-Verfahre, Erweiterug vo Differeze vo Quadratwurzel

Mehr

1. Folgen ( Zahlenfolgen )

1. Folgen ( Zahlenfolgen ) . Folge ( Zahlefolge Allgemeies Beispiel für eie regelmäßige Folge: /, /3, /4, /5, /6,... Das erste Glied ist a =/ Das ist das Glied mit dem Ide Das zweite Glied ist a =/3 Das ist das Glied mit dem Ide

Mehr

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität),

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Ordnung. Definition 2.1 Man nennt eine Ordnung für K, wenn. 1. für alle a K gilt a a (Reflexivität), Aalysis, Woche 2 Reelle Zahle A 2. Ordug Defiitio 2. Ma et eie Ordug für K, we. für alle a K gilt a a (Reflexivität), 2. für alle a, b K mit a b ud b a gilt a = b (Atisymmetrie), 3. für alle a, b, c K

Mehr

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion

Vorkurs Grundlagen für das Mathematikstudium Lösungen 2: Binomialreihen, Exponential- und Logarithmusfunktion Uiversität Zürich, 3. September 0 Vorurs Grudlage für das Mathematistudium Lösuge : Biomialreihe, Expoetial- ud Logarithmusfutio Lösug zu Aufgabe Seie x, y > 0 ud a > 0. Da gilt: a log a z z für alle z

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Positiv denken! Lösungen

Positiv denken! Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Positiv deke! Lösuge Aufgabe 1 (GMAMQM (ur für die Klasse 7/8) [ Pukte]). Seie a, b reelle Zahle. 1. Sei a 0 ud b 0. Zeige, dass a

Mehr

11 Divide-and-Conquer und Rekursionsgleichungen

11 Divide-and-Conquer und Rekursionsgleichungen 160 11 DIVIDE-AND-CONQUER UND REKURSIONSGLEICHUNGEN 11 Divide-ad-Coquer ud Rekursiosgleichuge Divide-ad-Coquer Problem aufteile i Teilprobleme Teilproblem (rekursiv) löse Lösuge der Teilprobleme zusammesetze

Mehr

5.3 Wachstum von Folgen

5.3 Wachstum von Folgen 53 Wachstum vo Folge I diesem Abschitt betrachte wir (rekursiv oder aders defiierte) Folge {a } = ud wolle vergleiche, wie schell sie awachse, we wächst Wir orietiere us dabei a W Hochstättler: Algorithmische

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgabe ud Lösuge Ausarbeitug der Übugsstude zur Vorlesug Aalysis I Witersemester 2008/2009 Übug am 09.2.2008 Übug 8 Eileitug Es soll och eimal auf die agebotee Sprechstude higewiese werde, sowie auf mögliche

Mehr

Mathematischer Vorkurs zum Studium der Physik Übungen

Mathematischer Vorkurs zum Studium der Physik Übungen Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 3 (aus: K. Hefft, Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 3.1: Graphische Darstellug

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady

Mehr

1 Lösungen zu Analysis 1/ 12.Übung

1 Lösungen zu Analysis 1/ 12.Übung Lösuge ausgewählter Beispiele zu Aalysis I, G. Bergauer, Seite Lösuge zu Aalysis / 2.Übug. Eileitug Gleichmäßige Kovergez ist eie starke Eigeschaft eier Fuktioefolge. Formuliert ma sie für Netze, statt

Mehr

Übersicht. Datenstrukturen und Algorithmen. Rekursionsgleichungen. Übersicht. Vorlesung 6: Mastertheorem (K4) Joost-Pieter Katoen

Übersicht. Datenstrukturen und Algorithmen. Rekursionsgleichungen. Übersicht. Vorlesung 6: Mastertheorem (K4) Joost-Pieter Katoen Übersicht Datestrukture ud Algorithme Vorlesug 6: (K) Joost-Pieter Katoe Lehrstuhl für Iformatik 2 Software Modelig ad Verificatio Group 1 Substitutiosmethode Rekursiosbäume http://moves.rwth-aache.de/teachig/ss-15/dsal/

Mehr

( 1) n a n. a n 10. n=1 a n konvergiert, dann gilt lim a n = 0. ( 1) n+1

( 1) n a n. a n 10. n=1 a n konvergiert, dann gilt lim a n = 0. ( 1) n+1 Kapitel 8 Aufgabe Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe 8. Gegebe ist eie Folge

Mehr

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5 FU Berli: WiSe 13-14 (Aalysis 1 - Lehr.) Übugsaufgabe Zettel 9 Aufgabe 37 Idiziere Sie die folgede Summe ud Produte gemäß der Vorgabe um ud schreibe Sie sie eimal explizit aus: 5 (a) + 1) 0( Lösug. Die

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1 Istitut für Aalysis ud Algebra Mathematik I für Studierede der E-Techik Prof Dr Volker Bach WiSe 06/7 M Sc Birgit Komader M Sc Christoph Brauer Theme: Groe Übug - Lösuge Vollstädige Iduktio - Teleskopsumme

Mehr

ZAHLENFOLGEN Teil 1. Einführende Beispiele Arithmetische Folgen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr

ZAHLENFOLGEN Teil 1. Einführende Beispiele Arithmetische Folgen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr ZAHLENFOLGEN Teil Eiführede Beispiele Arithmetische Folge Dtei Nr. 400 Friedrich Buckel Std: August 006 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de Ihlt Eiführede Beispiele. Erste Defiitio. Beispiele:

Mehr

Aufgaben zu Kapitel 6

Aufgaben zu Kapitel 6 Aufgabe zu Kapitel 6 Aufgabe zu Kapitel 6 Verstädisfrage Aufgabe 6. Gegebe sei die Folge x ) 2 mit x 2)/ + ) für 2. Bestimme Sie eie Zahl N N so, dass x ε für alle N gilt, we a) ε 0, b) ε 00 ist. Aufgabe

Mehr

Lösungen zur Präsenzübung 6

Lösungen zur Präsenzübung 6 Lösuge zur Präsezübug 6 Mirko Getzi Uiversität Bielefeld Fakultät für Mathematik. Dezember 203 Ich gebe keie Gewähr auf eie vollstädige Richtigkeit der Lösuge zu de Übugsaufgabe. Das Dokumet hat jedoch

Mehr