Monotonie einer Folge
|
|
|
- Caroline Kaufman
- vor 6 Jahren
- Abrufe
Transkript
1 Mootoie eier Folge 1 E
2 Mootoe Folge We jedes Folgeglied eier Folge größer oder gleich dem vorhergehede Folgeglied ist a 1 a ℕ so et ma die Folge mooto steiged (oder mooto wachsed). Die geometrische Folge a 2 1 die dem Beispiel über die Weizekörer auf de Schachbrettfelder zugrude liegt ist eie streg mooto steigede Folge de für alle Folge glieder gilt a a 1 1
3 Mootoe Folge Aalog zur Eigeschaft mooto steiged defiiert ma die Eigeschaft mooto falled. Defiitio: Eie Folge heißt 1) mooto steiged we a 1 a 2) streg mooto steiged we a 1 a 3) mooto falled we a 1 a 4) streg mooto falled we a 1 a für alle ℕ 1 2
4 Mootoe Folge: Aufgabe 1 2 Aufgabe 1: Zeige Sie dass eie Folge mit dem gemeisame Glied a 1 eie steigede Folge ist. Aufgabe 2: Utersuche Sie die Mootoieeigeschafte der folgede Folge mit eiem gemeisame Glied a 2 A 2 1 2
5 Mootoe Folge: Lösug 1 a 1 ℕ a 1 a a 1 a ℕ Diese Folge ist eie mooto steigede Folge. Die Pukte der xy Ebee die ud de zugehoerige Folgeglieder etspreche liege auf der Kurve der Fuktio y(x 1)/x. 2 1a
6 Mootoe Folge: Lösug 1 Abb. L1: Die Fuktio y (x 1)/x mit de Pukte die erste Glieder der Folge ( 1)/ etspreche 2 1b
7 Mootoe Folge: Darstellug der Lösug 1 2 1c
8 Mootoe Folge: Lösug 2 a a 1 a ℕ Diese Folge ist eie mooto steigede Folge. y x Abb. 2: Die Fuktio y (2x + 1)/(x+2) mit de Pukte die de erste füf Glieder der Folge (2 + 1)/(+2) etspreche 2 2
9 Mooto steigede Folge: Beispiele Abb. 3: Mooto steigede Folge Folgede Folge sid streg mooto steigede Folge: a b 2 1 c log 2 Die Folge a ist eie mooto steigede Folge. 3
10 Mootoe Folge: Aufgabe 3 4 Aufgabe 3: Zeige Sie dass eie Folge mit dem gemeisame Glied a 1 eie fallede Folge ist. Aufgabe 4: Utersuche Sie die Mootoieeigeschafte der folgede Folge mit eiem gemeisame Glied a 1 4 A
11 Mootoe Folge: Lösug 3 a 1 a 1 a ℕ Da alle Folgeglieder egativ sid bedeutet diese Ugleichug dass a 1 a ud die Folge eie streg mooto fallede Folge ist. y x Abb. 4: Die Fuktio y - x - 1 mit de Pukte die de erste vier Glieder der Folge - ( + 1) etspreche 4 1
12 Mootoe Folge: Lösug 4 a 1 a 1 a 4 2 ℕ
13 Mooto fallede Folge: Beispiele Folgede Folge sid streg mooto fallede Folge: a 1 Die Folge 1 1 b 1 2 c ist eie mooto fallede Folge. 5 1
14 Mooto fallede Folge: Beispiele Abb.: Die Fuktio y 6/x mit de Pukte die de erste acht Glieder der Folge 6/ etspreche 5 2
15 Alterierede Folge Defiitio: Eie Folge heißt alteriered we je zwei aufeiader folgede Folgeglieder stets verschiedees Vorzeiche habe: a 1 a 0 Beispiele: a b c
16 Alterierede Folge am Beispiel eies Pedels Abb. 5: Auslekug eies Pedels aus der Ruhelage Ei Pedel werde ach rechts um 10 cm aus seier Ruhelage etfert ud losgelasse. Die Ausschläge ach beide Seite sie heiße Amplitude bilde da eie Folge a1 a 2 a3 a
17 Alterierede Folge am Beispiel eies Pedels Wir uterscheide die rechte ud die like Amplitude idem wir die like mit Miuszeiche versehe. Es sid also a 1 a 3 a 5... positiv ud a 2 a 4 a 6... egativ Aufgrud vo Reibug a der Pedelaufhägug Luftwider stad usw. Werde die auf a 1 folgede Amplitude icht mehr de Betrag der Afagsauslekug erreiche. Wir ehme a dass stets jeweils 80% des Betrags der vorher gehede Amplitude erreicht werde. Da köe wir die Glieder der Folge auf folgede Weise bereche a 1 10 a a 3 a a a
18 Alterierede Folge am Beispiel eies Pedels x Abb. 6: Folge der Pedelausschläge 6 4
19 Alterierede Folge am Beispiel eies Pedels Betrachte wir die Folgeglieder mit ugeradem Idex also die Pedelausschläge ach rechts so hadelt es sich bei dieser Teil folge um eie (streg) mooto fallede Folge. Dagege bildet die Teilfolge der Folgeglieder mit geradem Idex also die Pe delausschläge ach liks eie (streg) mooto steigede Folge. Es lasse sich auch Folge agebe die weder steiged och falled och alteriered sid. 6 5
6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung
6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez
Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden
Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem
Analysis ZAHLENFOLGEN Teil 4 : Monotonie
Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik
Zusammenfassung: Folgen und Konvergenz
LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele
Mathematischer Vorkurs zum Studium der Physik Übungen
Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 3 (aus: K. Hefft, Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 3.1: Graphische Darstellug
Klausur 1 über Folgen
www.mathe-aufgabe.com Klausur über Folge Hiweis: Der GTR darf für alle Aufgabe eigesetzt werde. Aufgabe : Bestimme eie explizite ud eie rekursive Darstellug! a) für eie arithmetische Folge mit a = 6, ;
Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8
Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir
Übungsblatt Folgen, Reihen, Finanzmathematik
Tutorium zu Mathematik für WFB Übugsblatt Folge, Reihe, Fiazmathematik Aufgabe (Grezwerte vo Folge) Bestimme Sie die Grezwerte der Folge ( ), N 4 b) c) d) e) si( ) f) a () g) a cos( ) Aufgabe (4 ) 4 b)
5. Übungsblatt Aufgaben mit Lösungen
5. Übugsblatt Aufgabe mit Lösuge Aufgabe 2: Bestimme Sie alle Häufugspukte der komplexe) Folge mit de Glieder a) a = ) 5 + 7 + 2 ) b) b = i Lösug 2: a) Die Folge a ) zerfällt vollstädig i die beide Teilfolge
8. Übungsblatt Aufgaben mit Lösungen
8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium
Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w
Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die
TECHNISCHE UNIVERSITÄT MÜNCHEN
Prof. Dr. R. Köig Dr. M. Prähofer Zetralübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik Z8.. Kriterie für strege Mootoie Mathematik für Physiker 2 (Aalysis ) MA9202 Witersem. 207/8 Lösugsblatt 8
Zusammenfassung: Folgen und Konvergenz
Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 8 Defiitioe ud Beispiele für Folge Defiitio Eie
Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.
ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede
Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen
. Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.
4. Übungsblatt Aufgaben mit Lösungen
4. Übugsblatt Aufgabe mit Lösuge Aufgabe 6: Bestimme Sie alle Häufugspukte der Folge mit de Folgeglieder a) a 2 + cosπ), b) b i) i j, ud gebe Sie jeweils eie Teilfolge a, die gege diese Häufugspukte kovergiert.
Zahlenfolgen und Konvergenzkriterien
www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit
4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa
20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle
Zahlenfolgen. Zahlenfolgen
Zahlefolge Eie Zahlefolge a besteht aus Zahle a,a,a 3,a 4,a 5,... Die eizele Zahle eier Folge heiße Glieder oder Terme. Beispiele für Zahlefolge sid die atürliche Zahle: 3 4 5 6 7 8 9 0 3 4 5..., die gerade
Aufgaben zu Kapitel 6
Aufgabe zu Kapitel 6 Aufgabe zu Kapitel 6 Verstädisfrage Aufgabe 6. Gegebe sei die Folge x ) 2 mit x 2)/ + ) für 2. Bestimme Sie eie Zahl N N so, dass x ε für alle N gilt, we a) ε 0, b) ε 00 ist. Aufgabe
Kapitel 6 Differenzierbarkeit
Kapitel 6 Differezierbarkeit Ihalt 6.1 6.1Die Defiitio 6.2 6.2Die Eigeschafte 6.3 6.3Extremwerte Seite 2 Was heißt differezierbar? Differezierbare Fuktioe sid sid glatte Fuktioe. Wir Wir beschreibe diese
Zusammenfassung: Gleichungen und Ungleichungen
LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge
Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015
Lösuge zum Feriekurs Aalysis, Vorlesug Witersemester 04/05 Fabia Hafer, Thomas Baldauf I Richtig oder Falsch Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche Aussage. Gebe Sie
Höhere Mathematik für die Fachrichtung Physik
Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 3..05 Höhere Mathemati für die Fachrichtug Physi Lösugsvorschläge zum 3. Übugsblatt Vorbemerug
(8) FOLGEN und REIHEN
Folge ud Reihe ÜBUNGEN Bestimme die gegeseitige Lage der Ebee ud gib die gemeisame Pukte bzw. Gerade a. x+4y - 6z= x + y - z = 4x - 4y+4z=0 x + y z = 0 x - y+z = x + y + z = x+y -5z= 4x - 7y+z= -x+y -z=8
Nachklausur - Analysis 1 - Lösungen
Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:
Zusatzmaterial zur Mathematik I für E-Techniker Übung 4
Mathemati I für E-Techier C. Erdma WS 0/, Uiversität Rostoc, 4. Vorlesugswoche Zusatzmaterial zur Mathemati I für E-Techier Übug 4 Wiederholug - Theorie: Reihe Zu jeder Folge {a } b Die Reihe eier zugehörige
LGÖ Ks VMa 12 Schuljahr 2017/2018
LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge
Vorkurs Mathematik für Informatiker Folgen
Vorkurs Mathematik für Iformatiker -- 9 Folge -- 6.1.215 1 Folge: Defiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reihefolge wichtig,
Mathematik Funktionen Grundwissen und Übungen
Mathematik Fuktioe Grudwisse ud Übuge Potezfuktio Hyperbel Epoetialfuktio Umkehrfuktio Stefa Gärter 004 Gr Mathematik Fuktioe Seite Grudwisse Potezfuktio Defiitio Durch die Zuordugsvorschrift f: Æ mit
KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...
KAPITEL 7 Zahlefolge 7. Kovergete Zahlefolge.............................. 30 7.2 Grezwertbestimmug............................... 32 7.3 Grezwertbestimmug durch Abschätzug..................... 35 7.4
1. Folgen ( Zahlenfolgen )
. Folge ( Zahlefolge Allgemeies Beispiel für eie regelmäßige Folge: /, /3, /4, /5, /6,... Das erste Glied ist a =/ Das ist das Glied mit dem Ide Das zweite Glied ist a =/3 Das ist das Glied mit dem Ide
Kapitel 2 Differentialrechnung in einer Variablen. 2.1 Folgen und Grenzwerte
Kapitel 2 Differetialrechug i eier Variable 2. Folge ud Grezwerte 2.. Defiitio Eie Folge ist eie Zuordug N R, a, geschriebe als Liste (a,a 2,...) oder i der Form (a ) N. Hier sid ei paar Beispiele: 2,4,6,8,...
( 1) n a n. a n 10. n=1 a n konvergiert, dann gilt lim a n = 0. ( 1) n+1
Kapitel 8 Aufgabe Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe 8. Gegebe ist eie Folge
Zusammenfassung: Gleichungen und Ungleichungen
Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud -ugleichuge 6 Für Eperte 9 Polyomgleichuge ud -ugleichuge Defiitio: Ei Term
Zahlenfolgen, Grenzwerte und Zahlenreihen
KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:
5.7. Aufgaben zu Folgen
5.7. Aufgabe zu Folge Aufgabe : Lieares ud beschräktes Wachstum Aus eiem Quadrat mit der Seiteläge dm gehe auf die rechts agedeutete Weise eue Figure hervor. Die im -te Schritt agefügte Quadrate sid jeweils
Übungen zur Analysis I WS 2008/2009
Mathematisches Istitut der Uiversität Heidelberg Prof. Dr. E. Freitag /Thorste Heidersdorf Übuge zur Aalysis I WS 008/009 Blatt 3, Lösugshiweise Die folgede Hiweise sollte auf keie Fall als Musterlösuge
Aufgaben zu Kapitel 8
Aufgabe zu Kapitel 8 Aufgabe zu Kapitel 8 Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe
Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I
Aufgabe ud Lösuge Weihachtsgescheke zur Vorlesug Aalysis I Der Witersemester 008/009 Übug am 4.., 5..008 sowie 0.0.009 Aufgabe. Folge Aufgabe Ma bestimme, ob die Folge (a ) mit a = + 3 + 4 kovergiert ud
Analysis I für M, LaG/M, Ph 8.Übungsblatt
Aalysis I für M, LaG/M, Ph 8Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr Robert Haller-Ditelma 0206200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergezkriterie/Kovergezradie) (a)
n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)
Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem
3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.
3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie
Lösungen zum Thema Folgen und Reihen
Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Lösuge zum Thema Folge ud Reihe Lösug zu Aufgabe 1. a) (a ) N ist eie arithmetische Folge mit d = 11 ud damit ist a 75 = 7 + (75 1)
Monotonie einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya
Monotonie einer Folge 1-E1 Ma 1 Lubov Vassilevskaya Monotone Folgen Definition: Eine Folge heißt 1) monoton steigend, wenn +1 2) streng monoton steigend, wenn +1 > 3) monoton fallend, wenn +1 4) streng
Tutorial zum Grenzwert reeller Zahlenfolgen
MAE Mathematik: Aalysis für Igeieure Herbstsemester 206 Dr. Christoph Kirsch ZHAW Witerthur Tutorial zum Grezwert reeller Zahlefolge I diesem Tutorial lere Sie, die logische Aussage i der Defiitio des
3 Grenzwerte. 3.1 Grenzwerte von Folgen
03-grezwerte.cdf 3 Grezwerte 3. Grezwerte vo Folge Kovergez Mache Folge zeige ei spezielles Verhalte, we der Idex sehr groß wird. Sie äher sich eier bestimmte Zahl. Betrachte wir zum Beispiel die Folge
KAPITEL 2. Zahlenfolgen
KAPITEL Zahlefolge. Kovergete Zahlefolge...................... 35. Grezwertbestimmug....................... 38.3 Grezwertbestimmug durch Abschätzug............. 4.4 Mootoe Folge..........................
Folgen und Reihen Glege 03/01
Folge ud Reihe Glege 03/0 I diesem Script werde folgede Theme behadelt: Folge (Eiführug)... Arithmetische Folge... Geometrische Folge...3 Mootoie...4 Kovergez...5 Grezwert...6 Schrake...7 Arithmetische
Klausur Höhere Mathematik I für die Fachrichtung Physik
Karlsruher Istitut für Techologie KIT) Istitut für Aalysis Prof. Dr. Tobias Lamm Dr. Patric Breuig SS 3.9.3 Klausur Höhere Mathemati I für die Fachrichtug Physi Aufgabe 4+3+3) Pute) a) Sei a ) N eie reelle
n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =
Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:
KAPITEL 3. Zahlenreihen. 3.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen... 80
KAPITEL 3 Zahlereihe 3. Geometrische Reihe......................... 7 3.2 Kovergezkriterie......................... 72 3.3 Absolut kovergete Reihe.................... 80 Lerziele 3 Eigeschafte der geometrische
KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen
KAPITEL 8 Zahlereihe 8. Geometrische Reihe................................. 53 8.2 Kovergezkriterie................................. 54 8.3 Absolut kovergete Reihe............................ 64 Lerziele
Einführung in die Grenzwerte
Eiführug i die Grezwerte Dieser Text folgt hauptsächlich der Notwedigkeit i sehr kurzer Zeit eie Idee ud Teile ihrer Awedug zu präsetiere, so dass relativ schell mit dieser Idee gerechet werde ka. Der
Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt
UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt
Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen
Thema Fit i Mathe Musterlösuge 1 April Klassestufe 10 Wurzelfuktioe Uter der -te Wurzel eier icht-egative Zahl (i Zeiche: ) versteht ma die icht-egative Zahl, die mal mit sich selber multipliziert, die
Reihen. Konvergenz. Folgen besonderer Art sind unendliche Summen. a k = a 1 + a 2 +..
6 Reihe Folge besoderer Art sid uedliche Summe a k = a + a 2 +... reeller oder komplexer Zahle, dee wir bereits i eiige Beispiele des Abschitts 5.4 begeget sid. Da ma icht sämtliche Glieder eier Folge
4 Konvergenz von Folgen
4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder
1 Funktionen und Flächen
Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,
Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 4. Übungsblatt
UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum 4. Übugsblatt
1. Zahlenfolgen und Reihen
. Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,
Folgen explizit und rekursiv Ac
Folge explizit ud rekursiv Ac 03-08 Folge sid Fuktioe, bei dee atürliche Zahle ( 0; ; ; ) reelle Zahle a() zugeordet werde. Ma schreibt dafür : a() bzw. a. Für die Folge schreibt ma auch < a >. Folge köe
KAPITEL 11. Ungleichungen. g(x) g(x 0 ) + K 0 (x x 0 ).
KAPITEL 11 Ugleichuge 111 Jese-Ugleichug Defiitio 1111 Eie Fuktio g : R R heißt kovex, we ma für jedes x R ei K = K (x ) R fide ka, so dass für alle x R gilt: g(x) g(x ) + K (x x ) Bemerkug 111 Eie Fuktio
6 Grenzwerte von Zahlenfolgen
6 Grezwerte vo Zahlefolge Ei zetraler Begriff der Aalysis ist der des Grezwertes. Wir begie mit der Betrachtug vo Grezwerte vo Zahlefolge. 6. Zahlefolge 6.. Grudbegriffe Defiitio 6... Eie Fuktio f : Z
Folgen und Reihen. 23. Mai 2002
Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2
