6.3 Folgen und Reihen

Größe: px
Ab Seite anzeigen:

Download "6.3 Folgen und Reihen"

Transkript

1 63 Folge ud Reihe Folge sid ichts aderes als Fuktioe f vo der Mege N {,,, 3, } der atürliche Zahle oder vo eiem ihrer Edabschitte N m { m, m +, m +, } i irgedeie Mege Ma schreibt i diesem Fall meist f statt f ud et dies das -te Glied der Folge f (f ) Etwas ugeau spricht ma auch vo der "Folge f " Für Folge bedeutet usere allgemeie Kovergezdefiitio vo /N f c : Zu jeder Umgebug V vo c gibt es ei, so daß f für alle > i V liegt Im Falle eier edliche Zahl c heißt dies: zu jedem > gibt es ei mit f Kc! für alle > Bei beliebig vorgegebeer Fehlerschrake weiche also fast alle Folgeglieder (dh alle bis auf edlich viele) um weiger als vo c ab Higege besagt /N f N (bzw /N f KN ), daß bei beliebig vorgegebeem fast alle Folgeglieder oberhalb vo (bzw uterhalb vo K) liege Eie Folge, die keie Grezwert (auch icht N oder KN) hat, et ma diverget Das Kovergezverhalte eier Folge hägt icht vo ihre Afagsglieder ab; dh bei Abäder edlich vieler Glieder bleibe Kovergez-Eigeschafte ud Grezwerte uverädert Beispiel : Geometrische Folge sid vo der Form c mit eier kostate Zahl c, die reell oder komplex sei darf Es gilt /N c, falls c!,, falls c, N, falls c reell ud c > ist I alle adere Fälle ist die Folge c diverget So divergiert beispielsweise die Folge K, weil für keie Zahl x fast alle Folgeglieder i der Umgebug U K x liege, also weiger als vo x abweiche: Etweder befide sich uedlich viele der Form oder uedlich viele der Form - außerhalb U Zur Illustratio des komplexe Falles zeiche wir die gege kovergete Folge der Poteze der Zahl i c 9 e 9 cos C9 si i

2 Kovergezkriterie diee dazu, vo eier Folge erst eimal festzustelle, ob sie überhaupt kovergiert (ohe de Grezwert zu kee) Eies davo bezieht sich auf mootoe Folge Mootoie Eie reelle Fuktio (speziell also eie reelle Folge) f heißt mooto wachsed, falls x! y stets f x % f y impliziert, mooto falled, falls x! y stets f y % f x impliziert, mooto, falls sie mooto wächst oder mooto fällt Vo eier streg mooto wachsede bzw fallede Fuktio spricht ma, we sie zusätzlich ijektiv ist, i de obige Bediguge also sogar < (echt kleier) gilt Die Verküpfug zweier mooto wachseder oder zweier mooto falleder Fuktioe ist mooto wachsed, währed die Verküpfug eier mooto wachsed ud eier mooto fallede Fuktio eie mooto fallede Fuktio ergibt Beispiel : Verküpfug mootoer Fuktioe Auf dem Itervall ]5,3] betrachte wir die Fuktioe f x x, g x x, h x C cos x

3 3 f h g,,5,,5 3, f ud h sid streg mooto falled, g ist streg mooto wachsed Deshalb sid f+g ud g+ h streg mooto falled, wogege f+h ud h+ f streg mooto wachse 3 goh foh hof fog,,5,,5 3, Für die Mootoie vo Folge reicht es, je zwei beachbarte Glieder zu teste: Eie Folge f ist mooto wachsed (bzwfalled), falls stets f % f C (bzw f C % f ) gilt, streg mooto wachsed (bzw falled), falls stets f! f C (bzw f C! f ) gilt De aus f % f C folgt zum Beispiel mit Iduktio: f % f Ck % f CkC, also f % f m für alle! m Das Mootoiekriterium Jede mooto wachsede Folge ist koverget, ud der Grezwert ist geau da edlich (dh icht N), we die Folge ach obe beschräkt ist I diesem Fall ist der Grezwert das Supremum der Folge, dh die kleiste über alle Folgeglieder liegede Zahl

4 Idem ma die Vorzeiche wechselt, sieht ma: Jede mooto fallede Folge ist koverget, ud der Grezwert ist geau da edlich (dh icht KN), we die Folge ach ute beschräkt ist I diesem Fall ist der Grezwert das Ifimum der Folge, dh die größte uter alle Folgeglieder liegede Zahl Ei etsprechedes Mootoiekriterium gilt allgemei für Fuktioe Formuliere Sie es selbst! Beispiel 3: Zwei streg mootoe Folge Die Folge K ist streg mooto wachsed, da ud auch die Fuktio Kx streg mooto fällt Die Folge K kovergiert gege Die Folge si ist streg mooto falled, da streg mooto fällt ud die Siusfuktio im Itervall [,] streg mooto wächst Diese Folge kovergiert gege,,8 -/,6,4, si(/) 3 Nullfolge sid gege kovergete Folge, also zb, oder l C Reihe Aus jeder Folge f kostruiert ma die zugehörige Reihe s durch Summatio der jeweils erste Glieder (Partialsumme) s > k f k f + f ++f Falls s kovergiert, schreibt ma N >k f k : /N s Später werde wir us mit solche Reihe och ausführlich befasse Für de Augeblick möge es geüge, ei paar Kovergezkriterie für Reihe ud eiige Beispiele zu erwähe

5 Nullfolgekriterium Zuächst stelle wir fest, daß die Glieder f eie Nullfolge bilde müsse, damit die zugehörige Reihe gege eie edliche Wert kovergiere ka De /N s c impliziert /N f /N s C Ks /N s C Kc C /N cks Beispiel 4: Die geometrische Reihe s >k kovergiert für alle komplexe Zahle c, dere Betrag kleier als ist Der Grezwert ist da N >k c k c k /N s Kc De für die Partialsumme ergibt sich mittels Iduktio >k c k KcC Kc ud c C geht gege, Für c kovergiert die Reihe gege N Für alle adere c ist sie diverget; für c O sieht ma das umittelbar mit dem Nullfolgekriterium Was passiert bei c? Das Nullfolgekriterium liefert leider ur eie otwedige Bedigug für die Kovergez eier Reihe Daß die zu eier Nullfolge gehörige Reihe keieswegs gege eie edliche Wert zu kovergiere braucht, zeigt Beispiel 5: Die harmoische Reihe s >k k C C 3 CC kovergiert gege N, wie die folgede Abschätzug zeigt: s O Diese bekommt ma wieder iduktiv: s C s C C CC C O C C $ C Diese Reihe wächst allerdigs sehr lagsam, ud zwar, wie wir später sehe werde, etwa so wie der atürliche Logarithmus Um die Zahl 4 zu überbiete, muß ma fast eie Millio Summade bilde!

6 3 l(x) >k k () Das Quotietekriterium liefert eie hireichede (aber icht otwedige) Bedigug für die Kovergez eier reelle oder komplexe Reihe s >k f k : Falls die Quotiete f C f vo eiem ab durch eie feste Zahl q! ach obe beschräkt sid, so kovergiert s gege eie edliche Wert; sid die Quotiete higege durch ach ute beschräkt, so hat die Reihe de ueigetliche Grezwert N oder ist diverget Der erste Teil ergibt sich durch eie Vergleich mit der geometrische Reihe q >k k ud eie Awedug der Dreiecksugleichug De zweite Teil bekommt ma mit eier ähliche Überlegug Wie die harmoische Reihe zeigt, geügt es icht, daß alle Quotiete kleier als sid! Adererseits ka eie Reihe eie edliche Grezwert habe, obwohl das Quotietekriterium verletzt ist:

7 Beispiel 6: Die reziproke Quadratsumme s >k k C C 3 CC kovergiere gege eie edliche Wert, da sie mooto wachse ud durch beschräkt sid: s %+ >k K Das Leibizkriterium kk k C $ C $3 CC K C K 3 C K K K ist häufig da hilfreich, we die Reihe s icht mooto ist Es besagt: Ist f eie mootoe Nullfolge, so ist die alterierede Reihe s >k K k f k ebefalls koverget, ud zwar liegt der Grezwert zwische je zwei Folgeglieder s ud s C Beispiel 7: Die Leibizreihe K K 7 dere Summade die alterierede ugerade Stammbrüche sid, ist ebeso wie das obige Kriterium ach dem Namespatro userer Uiversität beatda die uegrade Stammbrüche mooto gege Null gehe, ist die Leibizreihe koverget Wie wir später sehe werde, ist ihr Grezwert 4 Das wußte Leibiz scho um 67; er sah i dieser erstaulich eifache Formel ei Wuderwerk der Schöpfug Leider ist die Kovergez sehr lagsam ud für praktische Zwecke ugeeiget Beispiel 8: Die Eulersche Zahl e ist eie der wichtigste Zahle der gesamte Aalysis ud wird us immer wieder begege Ma berechet sie, idem ma die reziproke Fakultäte aufsummiert: s > k k! Auf diese Weise bekommt ma eie mooto wachsede, durch 4 ach obe beschräkte Folge: >k k! % k > Kk < 4 (geometrische Reihe!) Daher ist s koverget gege eie Zahl N e k > k! Die Kovergez ist wege der große Neer der Summade recht schell:

8 s : s : s : 5 s 3 : s 4 : s 5 : s 6 : s 7 : s 8 : s 9 : s : 7888 s : s : s 3 : s 4 : () Das sieht sehr ach eiem periodische Dezimalbruch aus! Diese Hoffug wird jedoch durch das folgede Argumet widerlegt: Wäre e ei Bruch mit dem Neer, so wäre! ek >k k! eie vo verschiedee atürliche Zahl, da sich alle Neer wegkürze Aber das widerspricht der Ugleichug! ek > k k! N! k > C k! N < > k C k (geometrische Reihe!) Zugleich habe wir eie gute Abschätzug für die -te Näherugssumme gefude: eks!!, ud das ist scho für 8 deutlich kleier als K5 Die Kovergez der Reihe s > k Quotiete f C f k!! C! C sieht ma übriges sofort mit dem Quotietekriterium: Die kovergiere gege

9 Ahag Regelmäßige Vielecke ud eie Näherugsfolge für die Kreiszahl Die achfolged beschriebee Methode der äherugsweise Berechug vo mit Hilfe vo regelmäßige -Ecke war scho Archimedes bekat Er hat damit (im 3 Jahrhudert vor Chr!) die auf drei Dezimalstelle geaue Abschätzug 7! < 3 7 gefude I der achstehede Skizze ist S die halbe Seite eies regelmäßige -Ecks ud s die halbe Seite des durch Wikelhalbierug etstehede -Ecks Die zugehörige Sektorwikel sid bzw C S s s S Aus der Skizze liest ma ab (bei ormiertem Kreisradius ): S si, C cos KS,,

10 S C KC KC s si ud erhält die Formel für de Sius des halbe Wikels: si Kcos K Ksi K KS Damit ka ma u s si s si, s C Geometrisch beschreibt u s si rekursiv bestimme: K Ks de halbe Umfag des regelmäßige -Ecks, das dem Eiheitskreis eibeschriebe ist Damit ist aschaulich klar, daß u gege de halbe Kreisumfag kovergiert Dies folgt auch aus der früher hergeleitete Beziehug si x x/ x durch Eisetze vo x ud Multiplikatio mit : /N si Die obige Rekursiosformel führt beim Übergag vo s zu u auf die Gleichug u C K K u, ud die erste Glieder dieser Folge berechet MAPLE exakt ud geähert wie folgt: u : u : u 3 : 4 K u 4 : 8 K C

11 u 5 : 6 K C C u 6 : 3 K C C C u 7 : 64 K C C C C u 8 : 8 K C C C C C (3) Das ist immerhi auf 4 Stelle geau, aber wege der Wurzel sehr ubequem zu reche Außerdem passiert wege der Rudugsfehler bei weitere Iteratioe etwas gäzlich Uerwüschtes: Die Zahle bewege sich lagsam wieder vo 3459 weg! , , , , , (4) 3,5 3,3 3, 3,9 3,7,,,4,6,8,,,4,6 Später werde wir viel eifacher auszuwertede ud besser kovergierede Folge zur äherugsweise Berechug vo keelere

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch Ma zeige, daß IR, d i ), i,, metrische Räume sid, we für x x,, x ), y y,, y ) IR die Abstadsfuktioe durch d x, y) x y, d x, y) x y ), d x, y) max x y gegebe sid Lösug: Ma muß für alle drei Fuktio d i x,

Mehr

Index. Majorante, 24 Minorante, 23. Partialsumme, 17

Index. Majorante, 24 Minorante, 23. Partialsumme, 17 Folge, Reihe Idex Kovergezkriterie Hauptkriterium, Leibiz-Kriterium, Majoratekriterium, 4 Mioratekriterium, otwediges Kriterium, 0 Quotietekriterium, teleskopierede Summe, Wurzelkriterium, Majorate, 4

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung... KAPITEL 7 Zahlefolge 7. Kovergete Zahlefolge.............................. 30 7.2 Grezwertbestimmug............................... 32 7.3 Grezwertbestimmug durch Abschätzug..................... 35 7.4

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

KAPITEL 2. Zahlenfolgen

KAPITEL 2. Zahlenfolgen KAPITEL Zahlefolge. Kovergete Zahlefolge...................... 35. Grezwertbestimmug....................... 38.3 Grezwertbestimmug durch Abschätzug............. 4.4 Mootoe Folge..........................

Mehr

6 Grenzwerte von Zahlenfolgen

6 Grenzwerte von Zahlenfolgen 6 Grezwerte vo Zahlefolge Ei zetraler Begriff der Aalysis ist der des Grezwertes. Wir begie mit der Betrachtug vo Grezwerte vo Zahlefolge. 6. Zahlefolge 6.. Grudbegriffe Defiitio 6... Eie Fuktio f : Z

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

Tutorium Mathematik I, M Lösungen

Tutorium Mathematik I, M Lösungen Tutorium Mathematik I, M Lösuge 16. November 2012 *Aufgabe 1. Ma utersuche die folgede Reihe auf Kovergez (a) ( 1) (1 ) (b) ( ) 2 +1 (c) (!) 3 10 (3)! (d) (e) (f) 2 +3 3 2 +1 3 ( 2 +1) 2 + 3 ( 2 +3) (g)

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen

KAPITEL 8. Zahlenreihen. 8.1 Geometrische Reihe Konvergenzkriterien Absolut konvergente Reihen KAPITEL 8 Zahlereihe 8. Geometrische Reihe................................. 53 8.2 Kovergezkriterie................................. 54 8.3 Absolut kovergete Reihe............................ 64 Lerziele

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

Kapitel 2 Differentialrechnung in einer Variablen. 2.1 Folgen und Grenzwerte

Kapitel 2 Differentialrechnung in einer Variablen. 2.1 Folgen und Grenzwerte Kapitel 2 Differetialrechug i eier Variable 2. Folge ud Grezwerte 2.. Defiitio Eie Folge ist eie Zuordug N R, a, geschriebe als Liste (a,a 2,...) oder i der Form (a ) N. Hier sid ei paar Beispiele: 2,4,6,8,...

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr. A. Müller-Rettkowski Dr. T. Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

5. Übungsblatt Aufgaben mit Lösungen

5. Übungsblatt Aufgaben mit Lösungen 5. Übugsblatt Aufgabe mit Lösuge Aufgabe 2: Bestimme Sie alle Häufugspukte der komplexe) Folge mit de Glieder a) a = ) 5 + 7 + 2 ) b) b = i Lösug 2: a) Die Folge a ) zerfällt vollstädig i die beide Teilfolge

Mehr

4. Übungsblatt Aufgaben mit Lösungen

4. Übungsblatt Aufgaben mit Lösungen 4. Übugsblatt Aufgabe mit Lösuge Aufgabe 6: Bestimme Sie alle Häufugspukte der Folge mit de Folgeglieder a) a 2 + cosπ), b) b i) i j, ud gebe Sie jeweils eie Teilfolge a, die gege diese Häufugspukte kovergiert.

Mehr

( 1) n a n. a n 10. n=1 a n konvergiert, dann gilt lim a n = 0. ( 1) n+1

( 1) n a n. a n 10. n=1 a n konvergiert, dann gilt lim a n = 0. ( 1) n+1 Kapitel 8 Aufgabe Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe 8. Gegebe ist eie Folge

Mehr

Aufgaben zu Kapitel 6

Aufgaben zu Kapitel 6 Aufgabe zu Kapitel 6 Aufgabe zu Kapitel 6 Verstädisfrage Aufgabe 6. Gegebe sei die Folge x ) 2 mit x 2)/ + ) für 2. Bestimme Sie eie Zahl N N so, dass x ε für alle N gilt, we a) ε 0, b) ε 00 ist. Aufgabe

Mehr

Reihen. Folgen besonderer Art sind unendliche Summen. a k = a 1 + a

Reihen. Folgen besonderer Art sind unendliche Summen. a k = a 1 + a 6 Reihe Folge besoderer Art sid uedliche Summe a k = a + a 2 +... reeller oder komplexer Zahle, dee wir bereits i eiige Beispiele des Abschitts 5-d begeget sid. Da ma icht sämtliche Glieder eier Folge

Mehr

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015 Lösuge zum Feriekurs Aalysis, Vorlesug Witersemester 04/05 Fabia Hafer, Thomas Baldauf I Richtig oder Falsch Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche Aussage. Gebe Sie

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln 6 Kovergete Folge Lerziele: Kozepte: Grezwertbegriff bei Folge, Wachstumsgeschwidigkeit vo Folge Resultat: Mootoe beschräkte Folge sid koverget. Methode: Hero-Verfahre, Erweiterug vo Differeze vo Quadratwurzel

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgabe ud Lösuge Ausarbeitug der Übugsstude zur Vorlesug Aalysis I Witersemester 2008/2009 Übug am 09.2.2008 Übug 8 Eileitug Es soll och eimal auf die agebotee Sprechstude higewiese werde, sowie auf mögliche

Mehr

Analysis I für M, LaG/M, Ph 8.Übungsblatt

Analysis I für M, LaG/M, Ph 8.Übungsblatt Aalysis I für M, LaG/M, Ph 8Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr Robert Haller-Ditelma 0206200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergezkriterie/Kovergezradie) (a)

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik ür Iormatiker -- 8 Folge -- 11.10.2015 1 Folge: Deiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reiheolge wichtig,

Mehr

Aufgaben zu Kapitel 8

Aufgaben zu Kapitel 8 Aufgabe zu Kapitel 8 Aufgabe zu Kapitel 8 Verstädisfrage Aufgabe 8. Ist es möglich, eie divergete Reihe der Form a zu kostruiere, wobei alle a > 0 sid ud a 0 gilt. Beispiel oder Gegebeweis agebe. Aufgabe

Mehr

Folgen explizit und rekursiv Ac

Folgen explizit und rekursiv Ac Folge explizit ud rekursiv Ac 03-08 Folge sid Fuktioe, bei dee atürliche Zahle ( 0; ; ; ) reelle Zahle a() zugeordet werde. Ma schreibt dafür : a() bzw. a. Für die Folge schreibt ma auch < a >. Folge köe

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004 Lösuge zu Aufgabeblatt 7

Mehr

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n) Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem

Mehr

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I

Aufgaben und Lösungen Weihnachtsgeschenke zur Vorlesung Analysis I Aufgabe ud Lösuge Weihachtsgescheke zur Vorlesug Aalysis I Der Witersemester 008/009 Übug am 4.., 5..008 sowie 0.0.009 Aufgabe. Folge Aufgabe Ma bestimme, ob die Folge (a ) mit a = + 3 + 4 kovergiert ud

Mehr

α : { n Z n l } n a n IR

α : { n Z n l } n a n IR 1 KAPITEL VI. ZAHLENFOLGEN UND REIHEN 1) REELLE ZAHLENFOLGEN: i) Jede Abbildug α : IN a IR heiÿt 'reelle Zahlefolge' bzw. 'Folge i IR'. Ma otiert diese i der Form α = a ) IN = a ) =0 = a 0, a 1, a 2,...)

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo suge zu Blatt 0 Kleigruppe zur Service-Verastaltug Mathematik I fu r Igeieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 9.. Theme: Kovergez vo Folge Aufgabe P (i) Sei a : k kk.

Mehr

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel.

Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel. Uiversität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dr. D. Zimmerma MSc. J. Köller MSc. R. Marczizik FDSA 4 Höhere Mathematik II 30.04.2014 el, kyb, mecha, phys 1 Kovergezkriterie

Mehr

Die erste Zeile ("Nummerierung") denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen.

Die erste Zeile (Nummerierung) denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen. Folge ud Reihe (Izwische Stoff der Hochschule. ) Stad: 30.03.205. Folge Was sid Zahlefolge? Z.B. oder Das ist die vereifachte Wertetabelle eier Fuktio geschriebe wie üblich bei Fuktioe i eier Wertetabelle.

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Folgen, Reihen, Potenzreihen, Exponentialfunktion. Musterlösung

Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Folgen, Reihen, Potenzreihen, Exponentialfunktion. Musterlösung Feriekurs Seite Techische Uiversität Müche Feriekurs Aalysis Haah Schamoi Folge, Reihe, Potezreihe, Expoetialfuktio Musterlösug 0.0.0. Folge I Utersuche Sie die Folge a N auf Kovergez bzw. Divergez ud

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen Prof. Dr. Wolfgag Koe Mathematik WS0 0.0.0. Zahlefolge.. Wozu IformatikerIe Folge brauche Kovergez vo Folge ist die Grudlage der Aalysis (Differetial- ud Itegralrechug) Traszedete Gleichuge wie l x 50

Mehr

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37 Reelle Folge Der Begriff der Folge ist ei grudlegeder Baustei der Aalysis, weil damit u.a. Grezprozesse defiiert werde köe. Er beschreibt de Sachverhalt eier Abfolge vo Elemete, wobei die Reihefolge bzw.

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

$Id: komplex.tex,v /04/13 15:09:53 hk Exp $

$Id: komplex.tex,v /04/13 15:09:53 hk Exp $ Mathematik für Igeieure IV, SS 206 Mittwoch 3.4 $Id: komplex.tex,v.2 206/04/3 5:09:53 hk Exp $ Komplexe Zahle I diesem Kapitel wolle wir erst eimal zusammestelle was aus de vorige Semester über die komplexe

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen Prof. Dr. Wolfgag Koe Mathematik WS0 08.0.0. Zahlefolge.. Wozu IformatikerIe Folge brauche Kovergez vo Folge ist die Grudlage der Aalysis (Differetial- ud Itegralrechug) Traszedete Gleichuge wie x l x

Mehr

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen. Reihen reeller Zahlen

Höhere Mathematik für technische Studiengänge Vorbereitungsaufgaben für die Übungen. Reihen reeller Zahlen Höhere Mathematik für techische Studiegäge Vorereitugsaufgae für die Üuge Reihe reeller Zahle. Utersuche Sie die folgede Reihe mit Hilfe geeigeter Kovergezkriterie otwediges Kovergezkriterium, Quotiete-,

Mehr

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 4 LÖSUNGEN MAT/MAT3 ANALYSIS I HERBSTSEMESTER 00 PROF. DR. AMILLO DE LELLIS Aufgabe. Etscheide Sie für folgede Folge (wobei N \ {0}), ob diese koverget sid, ud bereche sie gegebeefalls ihre

Mehr

Analysis I für M, LaG/M, Ph 4.Übungsblatt

Analysis I für M, LaG/M, Ph 4.Übungsblatt Aalysis I für M, LaG/M, Ph 4.Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr. Robert Haller-Ditelma 05.05.200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergez vo Folge) Beweise Sie:

Mehr

LGÖ Ks VMa 12 Schuljahr 2017/2018

LGÖ Ks VMa 12 Schuljahr 2017/2018 LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

Zahlenfolgen. Zahlenfolgen

Zahlenfolgen. Zahlenfolgen Zahlefolge Eie Zahlefolge a besteht aus Zahle a,a,a 3,a 4,a 5,... Die eizele Zahle eier Folge heiße Glieder oder Terme. Beispiele für Zahlefolge sid die atürliche Zahle: 3 4 5 6 7 8 9 0 3 4 5..., die gerade

Mehr

4-1 Elementare Zahlentheorie

4-1 Elementare Zahlentheorie 4-1 Elemetare Zahletheorie 4. Dirichlet s Satz über Primzahle i arithmetische Progressioe. Satz (Dirichlet 1837). Seie a, k atürliche Zahle. Sid die Zahle a, k teilerfremd, so gibt es uedlich viele Primzahle

Mehr

Einführung in die Grenzwerte

Einführung in die Grenzwerte Eiführug i die Grezwerte Dieser Text folgt hauptsächlich der Notwedigkeit i sehr kurzer Zeit eie Idee ud Teile ihrer Awedug zu präsetiere, so dass relativ schell mit dieser Idee gerechet werde ka. Der

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 1

Technische Universität München Zentrum Mathematik. Übungsblatt 1 Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt Hausaufgabe Aufgabe. Bestimme Sie de Kovergezbereich M der folgede Reihe für

Mehr

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09 Musterlösug zu Blatt 8 der Vorlesug Aalysis I WS08/09 Schriftliche Aufgabe Aufgabe. Voraussetzuge: Für alle N setze a : +2 ud b : ( 2. [Amerkug: I der Aufgabestellug heiÿe die Reihe beide gleich. Es steht

Mehr

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:

von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man: Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VM Schuljhr 7/8 Zusmmefssug Folge ud Kovergez Ihltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 7 Defiitioe ud Beispiele für

Mehr

Übungen zur Analysis I WS 2008/2009

Übungen zur Analysis I WS 2008/2009 Mathematisches Istitut der Uiversität Heidelberg Prof. Dr. E. Freitag /Thorste Heidersdorf Übuge zur Aalysis I WS 008/009 Blatt 3, Lösugshiweise Die folgede Hiweise sollte auf keie Fall als Musterlösuge

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

24 Konvergente Teilfolgen und Cauchy-Kriterium

24 Konvergente Teilfolgen und Cauchy-Kriterium 120 IV. Uedliche Reihe ud Taylor-Formel 24 Kovergete Teilfolge ud Cauchy-Kriterium Lerziele: Kozepte: Teilfolge, Häufugswerte, Limes superior ud iferior, Cauchy-Folge Resultate: Satz vo Bolzao-Weierstraß,

Mehr

Michael Buhlmann Mathematik > Analysis > Newtonverfahren

Michael Buhlmann Mathematik > Analysis > Newtonverfahren Michael Buhlma Mathematik > Aalysis > Newtoverfahre Eie Abbildug {a }: N -> R, die jeder atürliche Zahl eie reelle Zahl a zuordet, heißt (uedliche (Zahle- Folge: -> a oder {a } εn, a das -te Folgeglied.

Mehr

Musterlösung Vortragsübung Blatt 14 Vorwort. Variante der harmonischen Reihe.

Musterlösung Vortragsübung Blatt 14 Vorwort. Variante der harmonischen Reihe. Musterlösug Vortragsübug Blatt 4 Vorwort. Variate der harmoische Reihe. Folgede Aussage wird i der achfolgede Musterlösug ab ud a gebraucht ud öte sich für Sie auch außerhalb der HM durchaus als ützlich

Mehr

6. Folgen und Grenzwerte

6. Folgen und Grenzwerte 56 Adreas Gathma 6. Folge ud Grezwerte Wie scho am Ede des letzte Kapitels ageküdigt wolle wir u zur eigetliche Aalysis, also zur lokale Utersuchug vo Fuktioe komme. Der zetrale Begriff ist dabei der des

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 14

Technische Universität München Zentrum Mathematik. Übungsblatt 14 Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt 4 Hausaufgabe Aufgabe 4. Sie sid 0 Miute zu spät i die Vorlesug gekomme ud stelle

Mehr

5-1 Elementare Zahlentheorie

5-1 Elementare Zahlentheorie 5- Elemetare Zahletheorie 5 Noch eimal: Zahletheoretische Fuktioe 5 Der Rig Φ als Rig der formale Dirichlet-Reihe! Erierug: Ei Polyom mit Koeffiziete i eiem Körper K ist ach Defiitio ichts aderes als eie

Mehr

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Aalysis I 5. Übugsstude Steve Battilaa steveb@studet.ethz.ch battilaa.uk/teachig March 9, 07 Erierug Satz. Quotietekriterium (bei!,,...) Das Quotietekriterium zeigt absolute Kovergez. lim a +

Mehr

5 Folgen. 5.1 Konvergenz von Folgen. Definition: Zu jedem 0 existiert ein N so, daß. Eine Folge, die gegen 0 konvergiert, heißt

5 Folgen. 5.1 Konvergenz von Folgen. Definition: Zu jedem 0 existiert ein N so, daß. Eine Folge, die gegen 0 konvergiert, heißt Prof. Dr. Berd Dreseler 5 Folge 5.1 Kovergez vo Folge Defiitio: Eie Folge a heißt koverge t, we es eie Zahl a mit folgeder Eigeschaft gibt: Zu jedem 0 existiert ei N so, daß a a für alle > N Die Zahl a

Mehr

Kapitel IV: Unendliche Reihen

Kapitel IV: Unendliche Reihen Igeieurmathemati I WS 13/14 - Prof. Dr.. Mafred Leitz Kapitel IV: Uedliche Reihe 11: Uedliche Zahlereihe Kapitel IV: Uedliche Reihe 11 Uedliche Zahlereihe A Zum Begriff uedliche Zahlereihe B Uedliche Reihe

Mehr

Tutorial zum Grenzwert reeller Zahlenfolgen

Tutorial zum Grenzwert reeller Zahlenfolgen MAE Mathematik: Aalysis für Igeieure Herbstsemester 206 Dr. Christoph Kirsch ZHAW Witerthur Tutorial zum Grezwert reeller Zahlefolge I diesem Tutorial lere Sie, die logische Aussage i der Defiitio des

Mehr

Grundkurs Mathematik II

Grundkurs Mathematik II Prof. Dr. H. Breer Osabrück SS 2017 Grudkurs Mathematik II Vorlesug 48 Itervallschachteluge Eie weitere Möglichkeit, reelle Zahle zu beschreibe, eizuführe, zu approximiere ud recherisch zu hadhabe, wird

Mehr

Kapitel 9. Aufgaben. Verständnisfragen

Kapitel 9. Aufgaben. Verständnisfragen Kapitel 9 Aufgabe Verstädisfrage Aufgabe 9. Hadelt es sich bei de folgede für z C defiierte Reihe um Potezreihe? Falls ja, wie lautet die Koeffizietefolge ud wie der Etwicklugspukt? a c 3! j0 x! j x j

Mehr

5.3 Wachstum von Folgen

5.3 Wachstum von Folgen 53 Wachstum vo Folge I diesem Abschitt betrachte wir (rekursiv oder aders defiierte) Folge {a } = ud wolle vergleiche, wie schell sie awachse, we wächst Wir orietiere us dabei a W Hochstättler: Algorithmische

Mehr

Klausur 1 über Folgen

Klausur 1 über Folgen www.mathe-aufgabe.com Klausur über Folge Hiweis: Der GTR darf für alle Aufgabe eigesetzt werde. Aufgabe : Bestimme eie explizite ud eie rekursive Darstellug! a) für eie arithmetische Folge mit a = 6, ;

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

2 Differentialrechnung und Anwendungen

2 Differentialrechnung und Anwendungen Differetialrechug ud Aweduge Differetialrechug ud Aweduge Der Begriff des Differetialquotiete hat sich i zahlreiche Aweduge ierhalb ud außerhalb der Mathematik als äußerst fruchtbar erwiese. Bestimmug

Mehr

Inhaltsverzeichnis. 2 Grenzwerte, Folgen und Reihen. 2.1 Intervalle in R. 2.2 Umgebungen (in R und C)

Inhaltsverzeichnis. 2 Grenzwerte, Folgen und Reihen. 2.1 Intervalle in R. 2.2 Umgebungen (in R und C) Ihaltsverzeichis 2 Grezwerte, Folge ud Reihe I diesem Kapitel führe wir de zetrale Begriff der Kovergez eier Folge vo Zahle (x ) N gege eie Grezwert x ei. Aschaulich bedeutet dies, dass i jeder och so

Mehr

Folgen und Reihen Glege 03/01

Folgen und Reihen Glege 03/01 Folge ud Reihe Glege 03/0 I diesem Script werde folgede Theme behadelt: Folge (Eiführug)... Arithmetische Folge... Geometrische Folge...3 Mootoie...4 Kovergez...5 Grezwert...6 Schrake...7 Arithmetische

Mehr

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Analysis ZAHLENFOLGEN Teil 4 : Monotonie Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die

Mehr

3 Konvergenz, Folgen und Reihen

3 Konvergenz, Folgen und Reihen 3 Kovergez, Folge ud Reihe Für die Eiführug der reelle Zahle ware Cauchy-Folge vo ratioale Zahle vo großer Bedeutug. Gaz Allgemei lasse sich Folge vo Elemete i eier beliebige Mege A betrachte. Defiitio

Mehr

( 1) n 1 n n n + 1. n=1

( 1) n 1 n n n + 1. n=1 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmud Musterlösug zum 6. Übugsblatt zur Höhere Mathematik I P/ET/AI/IT/IKT/MP) WS 20/2 Aufgabe mittels Zeige Sie die Kovergez der Reihe )

Mehr

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze

Analysis II für M, LaG und Ph, WS07/08 Übung 2, Lösungsskizze Gruppeübug Aalysis II für M, LaG ud Ph, WS7/8 Übug, Lösugsskizze G 4 (Zum warm werde). Begrüde die vo Physiker beliebte Näheruge si(x) x, cos(x) ud ta(x) x für kleie x R. Dies folgt direkt aus der Tayloretwicklug

Mehr

Aufgaben zu Kapitel 9

Aufgaben zu Kapitel 9 Aufgabe zu Kapitel 9 Aufgabe zu Kapitel 9 Verstädisfrage Aufgabe 9. Hadelt es sich bei de folgede für z C defiierte Reihe um Potezreihe? Falls ja, wie lautet die Koeffizietefolge ud wie der Etwicklugspukt?

Mehr

Lösungen der Übungsaufgaben von Kapitel 2

Lösungen der Übungsaufgaben von Kapitel 2 Aalysis I Ei Lerbuch für de safte Wechsel vo der Schule zur Ui Lösuge der Übugsaufgabe vo Kapitel zu... Ma zeige: Jede Teilfolge eier Umordug eier Folge ka als Umordug eier Teilfolge geschriebe werde.

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Resultate: Vertauschbarkeit von Grenzprozessen, Konvergenzverhalten von Potenzreihen

Resultate: Vertauschbarkeit von Grenzprozessen, Konvergenzverhalten von Potenzreihen 26 Gleichmäßige Kovergez ud Potezreihe 129 26 Gleichmäßige Kovergez ud Potezreihe Lerziele: Kozepte: Puktweise ud gleichmäßige Kovergez Resultate: Vertauschbarkeit vo Grezprozesse, Kovergezverhalte vo

Mehr

Kapitel VI. Reihen. VI.1 Definitionen und Beispiele. Definition VI.1. Sei (a n ) n=1 K N eine Zahlenfolge. Dann heißt die Folge (s m ) m=1 K N, mit

Kapitel VI. Reihen. VI.1 Definitionen und Beispiele. Definition VI.1. Sei (a n ) n=1 K N eine Zahlenfolge. Dann heißt die Folge (s m ) m=1 K N, mit Kapitel VI Reihe VI.1 Defiitioe ud Beispiele Defiitio VI.1. Sei (a K N eie Zahlefolge. Da heißt die Folge (s m K N, mit m s m : a, (VI.1 Reihe i K. Ist (s m koverget, so schreibe wir { a : lim {s m m}

Mehr

1. Folgen ( Zahlenfolgen )

1. Folgen ( Zahlenfolgen ) . Folge ( Zahlefolge Allgemeies Beispiel für eie regelmäßige Folge: /, /3, /4, /5, /6,... Das erste Glied ist a =/ Das ist das Glied mit dem Ide Das zweite Glied ist a =/3 Das ist das Glied mit dem Ide

Mehr

III. Konvergenz von Folgen und Reihen

III. Konvergenz von Folgen und Reihen III.. Die Betragsfuktio metrische Räume 4 III. Kovergez vo Folge ud Reihe Durch die Betragsfuktio erhalte wir auf de reelle Zahle eie Abstadsbegriff ud somit eie metrische Struktur. Wir köe u Kovergez

Mehr

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3.

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3. Folge Eie Folge ist eie Aordug vo reelle Zahle. Die eizele Zahle heiße Glieder der Folge. Kapitel 4 Folge ud Reihe Formal: Eie Folge ist eie Abbildug a : N R, a Folge werde mit a i i oder kurz a i bezeichet.

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2 D-MATH Topologie FS 15 Theo Bühler Musterlösug 2 1. a) Per Defiitio ist A = {x : x berührt A}. I der Vorlesug wurde die Formel (X A) = ( A ) c gezeigt, also A = ( X A ) c. Daher ist A = A A = A (A ) c

Mehr