Gebrochenrationale Funktionen (Einführung)
|
|
|
- Lieselotte Brandt
- vor 9 Jahren
- Abrufe
Transkript
1 Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle Funktion Nullstellen im Nenner, ws uf (hebbre) Lücken oder Pole hindeutet. Außerdem können Asymptoten, Extrempunkte, Wendepunkte und Nullstellen uftreten. Polgerden sind prllel zur y-achse verlufende Gerden, denen der Grph der betrchteten Funktion ( für y bzw. y ) beliebig nhe kommt, ohne sie jemls zu schneiden. Die zu den Polgerden gehörenden x-werte heißen Pole bzw. Polstellen. Asymptoten (griechisch; Nicht Übereinstimmende ) sind Gerden, denen der Grph der betrchteten Funktion ( für x bzw. x bzw. y bzw. y ) beliebig nhe kommt, ohne sie jemls zu schneiden. Polgerden sind demnch spezielle Asymptoten. D diese seprt untersucht werden betrchtet mn Asymptoten in der Regel nur in x-richtung. Es gibt Fälle, in denen der Grph sich nicht einer Gerden nähert, sondern einer beliebigen Näherungsfunktion, z.b. einer gnzrtionlen Funktion. Oft werden in der Litertur uch solche nichtlineren Näherungsfunktionen ls Asymptoten bezeichnet. Bei gebrochenrtionlen Funktionen werden die Ableitungen mit der Quotientenregel gebildet: u(x) u ' v u v' f (x) f '(x) v(x) v Zur Bestimmung von Asymptoten ( x bzw. x ) ist in der Regel eine Polynomdivision erforderlich. In vielen Fällen knn mn erstzweise eine geschickte Umformung des Bruchterms derrt vornehmen, dss der Grd des Zählerpolynoms kleiner ls der Grd des Nennerpolynoms wird. So lssen sich die Grenzwerte für x bzw. x leichter bilden. Beispiel: x 4x + 8 (x x + 4) x x + 4 x + 4 x x x + 4 x + 4 x + 4 x + 4 x + 4 (1 ) Hier sieht mn, dss der Klmmerterm gegen 1 strebt ( für betrgsgroße x), weil der Bruchterm in der Klmmer gegen 0 strebt. Die Asymptote ht demnch die Gleichung y. Im folgenden untersuchen wir einige Beispiele:
2 Beispiel 1: f(x) Zerlegt mn die Terme, so erkennt mn bereits Polstellen und Nullstellen: (x + 1)(x 1) f(x) Nullstellen: x1 sowie x-1 Polstellen: x sowie x- (x + )(x ) f ist lso n den Stellen und - nicht definiert, dher ist der Definitionsbereich D IR\{-;} Dieses Beispiel ist problemlos, weil die Nullstellen des Nenners nicht mit den Nullstellen des Zählers übereinstimmen. Andernflls müsste mn uf (hebbre) Lücken prüfen (s. weiter unten). Der Grph sieht so us: x 1 x 8 x (x 8) (x 1) 4x Ableitungen: f '(x) (x 8) Die Polgerden sind hier nicht eingezeichnet! 1x Vereinfcht ergibt sich: f '(x) (x 8). Noch einfcher: f '(x) Ebenso erhält mn für die.ableitung: f ''(x) Bestimmung der Extrempunkte: 1 Ds notwendige Kriterium f '(x) 0 liefert x0. f ''(0) 3 ( 4) < 0 HP(0 / 0,15). Wendepunkte existieren nicht, weil f ''(x) 0 keine Lösung liefert! x 1 Asymptoten: Wir betrchten lim sowie x x 8 Dzu formen wir den Funktionsterm zunächst um: x 1 1 x 1 1 x x 8 x 4 x 4 x x 16x 4x + 4x (x 8) 3x (1 ) 3 (3x + 4) 3 x 1 lim x x 8 Lssen wir nun x ± streben, so strebt der Bruchterm Funktionsterm gegen 0,5. Die Asymptote ht lso die Gleichung y 0,5. 3 x 4 gegen 0 und somit der gesmte Betrchtet mn den Funktionsgrphen, so knn mn ds Ergebnis uch bestätigen.
3 Beispiel : f(x) x x 1 3x + 6 Zunächst wird der Zähler zerlegt: f(x) Mn erkennt, dss f n der Stelle x- nicht definiert ist. Es ist lso D IR \ {-}. Für lle x-werte ußer x - knn mn den Funktionsterm kürzen, so dss sich g(x) x - ergibt. Diese Funktion g heißt Erstzfunktion bezüglich f. 3 g ist in diesem Fll eine Gerde mit dem Funktionswert y-10/3 n der Stelle x-. f stimmt mit g bis uf den n der Stelle x- fehlenden Punkt überein und lässt sich n dieser Stelle stetig ergänzen, d.h.: Würde mn den fehlenden Punkt P(- ; -10/3) einsetzen, so wäre f lückenlos. Eine solche stetige Ergänzbrkeit ist bei Polstellen nicht möglich! Grph von f: (x x 6) (x 3)(x + ) 3(x + ) 3(x + ) Wegen der Einfchheit der Erstzfunktion verzichten wir hier uf eine Kurvendiskussion.
4 (x k)(x + 3) Beispiel 3: f k (x) ( eine nicht gnz einfche Funktionenschr ) x 4 Hier sieht mn, dss gilt: D IR\{-;}. Dies gilt für lle k. Flls der Zähler nicht gleichzeitig Null wird hben wir es bei den Stellen - und mit Polstellen zu tun. Dies gilt ber ersichtlich nicht für lle k, sondern es gibt Ausnhmen, k sowie k-: (x )(x + 3) (x )(x + 3) x + 3 k: f (x), flls x gilt. x 4 (x )(x + ) x + x + 3 Die Erstzfunktion ist hier g (x) ; x x + Es gilt g () 5/4 1,5. Der Punkt P( ; 1,5) stopft die Lücke bei f ( s. Grfik unten ). f ht demnch einen Pol n der Stelle x-, eine hebbre Lücke n der Stelle x mit dem Erstzfunktionswert 1,5 und eine Nullstelle bei x-3. x + 3 k-: Die Erstzfunktion ist hier g - (x) ; x x Es gilt g - (-) -1/4-0,5. Der Punkt Q(- ; -0,5) stopft die Lücke bei f - ( s. Grfik unten ). f - ht demnch einen Pol n der Stelle x, eine hebbre Lücke n der Stelle x- mit dem Erstzfunktionswert -0,5 und eine Nullstelle bei x-3. Grphen (mit ihren Polgerden): Für lle k und k existieren Pole und keine hebbren Lücken! Dies knn mn n den unten bgebildeten Grphen sehen.
5 Einige Beispiele für k und k - : Wie mn sieht können die Grphen gnz unterschiedlich verlufen. Anmerkung: Aus Gründen der Übersichtlichkeit wurden hier die Pole weggelssen. Asymptote: Es sieht so us, ls hätte die Asymptote die Gleichung y 1. Für welche k-werte lässt sich ds nchweisen?? Lösung: (x k)(x + 3) x 3k + (3 k)x x k + (3 k)x 4 + 3k + (3 k)x 1 + x 4 x 4 x 4 x 4 Der Term strebt gegen 1, flls x ± strebt, und dies unbhängig von k!! Also ht bei llen Grphen der Schr die Asymptote die Gleichung y 1.
6 Nullstellen: xk ( flls k und k ) sowie x-3 1. Ableitung: f k '(x) (x + 3 k) (x + 3x kx 3k) x 3 3 x + 3x kx 8x 1 + 4k x 6x + kx + 6kx (k 3)x + (6k 8)x + 4k 1 ds wr schon ziemlich viel Arbeit! Wegen der ufwändigen Rechnerei verzichten wir uf eine llgemeine Bestimmung der Extremund Wendepunkte. Ds wäre eine schöne Aufgbe für ein CAS! Beispiel 4: f(x) x 3x 10 x 5 x 3x 10 (x 5)(x + ) Hier knn mn folgendermßen zerlegen: x 5 x 5 Mn erkennt nun bereits folgendes: - Nullstelle x - - hebbre Definitionslücke bei x 5 ( Erstzfunktion g(x) x+ ) - keine Polstelle Zur Bestimmung der Asymptote zerlegt mn so: x 3x 10 x(x 5) + x 10 x 10 x + x 5 x 5 x 5 D der Bruchterm gegen strebt ergibt sich für die Asymptote die Gleichung y x+. Grph:
7 Ein Anwendungsbeispiel us der Physik: Ein Stromversorgungsgerät ht unbelstet eine Spnnung von U 30V und besitzt einen Innenwiderstnd von R i 8Ω. Welchen Widerstnd R muss ein ngeschlossenes Gerät ufweisen, wenn die ufzunehmende Leistung P mximl werden soll ( Leistungsnpssung )? Lösung: Die ufgenommene Leistung beträgt P I U Kl I I R I R ( U Kl Klemmenspnnung ) Für die Stromstärke gilt: I Uo R + R Uo ist die sog. Urspnnung Setzt mn dies in die Gleichung für P ein, so ergibt sich P P hängt lso von R b gemäß der Vorschrift: i P(R ) U U R ( ) R R R (R R ) (30V) (8Ω + R ) o o i + i + R Die Grfik zeigt, dss die Leistung im Bereich von 8Ω mximl ist. Rechnerisch knn mn nchweisen, dss die Lösung exkt 8Ω ist. Dher ist die Leistung genu dnn mximl, wenn ds ngeschlossene Gerät den gleichen Widerstnd besitzt wie der Innenwiderstnd.
Analysis mit dem Voyage 1
Anlysis mit dem Voyge 1 1. Kurvendiskussion Gegeben ist die Funktionschr Den Nenner erhält mn mit Hilfe der Funktion getdenom. Zeros liefert die Nullstellen des Nenners und dmit die Werte, die us dem Definitionsbereich
Arkus-Funktionen. Aufgabensammlung 1
ANALYSIS Arkus-Funktionen Aufgbensmmlung 1 Dtei Nummer 4730 Stnd: 15. November 017 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 4730 Aufgbensmmlung Arkusfunktionen Aufgbe 1 (Lösung Seite
Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1
www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)
Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften:
1 KURVENDISKUSSION Unter Kurvendiskussion versteht man die Untersuchung einer gegebenen Funktion auf bestimmte Merkmale und Eigenschaften: 1.1 Definitionsbereich Zuerst bestimmt man den maximalen Definitionsbereich
Lösungen zum Pflichtteil (ohne GTR und Formelsammlung) Gebrochenrationale Funktionen
www.mthe-ufgben.com Lösungen zum Pflichtteil (ohne GTR und Formelsmmlung) Gebrochenrtionle Funktionen Aufgbe : ) wgr. Asymptote: y, b) wgr. Asymptote: y 0 senkr. Asymptote: x - mit VZW senkr. Asymptote:
Kapitel 7. Integralrechnung für Funktionen einer Variablen
Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre
Ortskurven besonderer Punkte
Ortskurven besonderer Punkte 1. Wir betrchten die Funktionenschr f mit f (x = x+ e x, D f =R und R\{0}. ( Bestimme in Anhängigkeit des Schrprmeters die Nullstellen von f und ds Verhlten von f für x ±.
Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.
Strophoiden Tet Nr. 5415 Stnd 17. April 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5415 Strophoiden Vorwort Strophoiden sind wenig beknnte Kurven. Sie werden über eine
Zusammenfassung der Kurvendiskussion
Zusammenfassung der Kurvendiskussion Diskussionspunkte 1 Größtmögliche Definitionsmenge D f 2 Symmetrieeigenschaften des Graphen G f 3 Nullstellen, Polstellen, Schnittpunkte mit der y-achse, Vielfachheit
Gebrochen-rationale Funktionen
Definition Eine gebrochen-rationale Funktion ist eine Funktion, bei der sich im Zähler und Nenner eine ganzrationale Funktion (Polynom) befindet: Eigenschaften f(x) = g(x) h(x) Echt gebrochen-rationale
Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0
Ferienkurs Anlysis 1 WS 11/12 Florin Drechsler Antworten uf Anfrgen von Kursteilnehmern Zu Tylorreihen Zu folgender Aussge us den Multiple-Choice-Aufgben: Es gibt Funktionen f C (R) mit konvergenter Tylorreihe
Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme
Bruchterme und gebrochen rtionle Funktionen Der Quotient zweier Terme Es ist ist 3 : 4 3 und. 4 : 3 4 3 4 Dehnt mn die Bruchschreibweise uf Terme us, dnn erhält mn sog. Bruchteme. ² ( + ) : (3 + 4) + 3
Aufgabe 1 mit Lösung. Stelle x x + 2a x 2a VZW EPArt Wert
Aufgbe mit Lösung 4 ( 8 ) ( 4 8 ) f x = x x x + x= f x Achsensymmetrie + =. 4 lim x x + : Fll = c+ d 0! < 0 + x ±... Extrempunkte = = =. NB: f ( x) ( 4x 6 x) x( x ) x( x ) x MESt ( f ) { ;0;}. HB: 0 =
5 Gebrochen rationale Funktionen
c 003, Thomas Barmetler FOS, 11 Jahrgangsstufe (technisch) 5 Gebrochen rationale Funktionen Unter einer gebrochen rationalen Funktion versteht man den Quotienten zweier ganzrationaler Funktionen Dabei
D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9
D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2
Apsel/Wende Probeabitur LK Mathematik 2004/2005 Seite 2
Apsel/Wende Probebitur LK Mthemtik 004/005 Seite Hinweise für Schüler Aufgbenuswhl Von den vorliegenden Aufgben sind die Pflichtufgben P und P zu lösen. Von den Whlufgben W3 bis W6 sind Aufgben uszuwählen
Die gebrochenrationale Funktion
Die gebrochenrationale Funktion Definition: Unter einer gebrochenrationalen Funktion versteht man den Quotienten zweier ganzrationaler Funktionen, d.h. Funktionen der Form f :x! a n xn + a n 1 x n 1 +...+
Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration
Integrieren Regeln (f() + g())d = f()d + g()d c f()d = c f()d b f()d = f()d b Einige Integrle die mn uswendig kennen sollte s d = s + s+ + C (für s ) d = ln + C cos d = sin + C sin d = cos + C sinh d =
Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2
Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes
Mathematik Name: Vorbereitung KA2 K1 Punkte:
Pflichtteil (etw 40 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet werden dürfen.) Aufgbe : [4P] Leiten Sie
4.5 Integralrechnung II. Inhaltsverzeichnis
4.5 Integrlrechnung II Inhltsverzeichnis 1 Integrlrechnung 22.02.2010 Theorie und Übungen 2 Wir hben im ersten Skript beobchtet, dss ein Zusmmenhng besteht zwischen der Formel für die Fläche A 0b und der
Analysis f(x) = x 2 1. (x D f )
Analysis 15 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f mit f(x) = x3 x 1 (x D f ) a) Geben Sie den maximalen Definitionsbereich der Funktion f an. Zeigen Sie, dass der Graph der Funktion
Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.
Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn
Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung
Herzlich willkommen zur der Um sich schnell innerhlb der c. 50.000 Mthemtikufgben zu orientieren, benutzen Sie unbedingt ds Lesezeichen Ihres Acrobt Reders: Ds Icon finden Sie in der links stehenden Leiste.
UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009
UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis
3. Ganzrationale Funktionen
3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)
Grundwissen Mathematik 8
Grundwissen Mthemtik 8 Proportionle Zuordnung Gehört bei einer Zuordnung zweier Größen zu einem Vielfchen der einen Größe ds gleiche Vielfche der nderen Größe, so heißt sie proportionle Zuordnung. Die
Es berechnet die Fläche zwischen Kurve und x-achse.
1. Welche Idee steckt hinter dem Integrl? 2. Welche geometrische Bedeutung ht ds Integrl? 3. Wie erechnet mn ein Integrl? Aufsummieren unendlich vieler infinitesiml kleiner Beiträge, die lle die Form eines
Das Bogenintegral einer gestauchten Normalparabel
Ds Bogenintegrl einer gestuchten Normlprbel Jn Günther und Luks Vrnhorst Im Mthemtikleistungskurs der Jhrgngsstufe sind wir uf folgende Aufgbe gestoÿen: Bestimmen Sie eine Stmmfunktion von f(x) + x mit
Kapitel 13. Taylorentwicklung Motivation
Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von
Abiturvorbereitung Mathematik Analysis. Copyright 2013 Ralph Werner
Aiturvorereitung Mthemtik Anlysis Copyright 2013 Rlph Werner 1 Aleitung einer Funktion Geometrische Entsprechung: Aleitung Die Aleitung einer Funktion f (2) = 4 y = 4 x - 4 n der Stelle x 0 f (x 0 ) git
Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.
Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden
A.25 Stetigkeit und Differenzierbarkeit ( )
A.5 Stetigkeit / Differenzierbrkeit A.5 Stetigkeit und Differenzierbrkeit ( ) Eine Funktion ist wenn die Kurve nicht unterbrochen wird, lso wenn mn sie zeichnen knn, ohne den Stift vom Bltt bzusetzen.
fa x = VZW fa bei x x Extremstelle von fa 1 Stelle 3 x + 2a 3 x 2a VZW PA Wert
Die Veröffentlichung dieser Lösung geschieht ohne inhltliche Prüfung durch die Bezirksregierung Düsseldorf und den Mthe-Treff. Die Lösung stmmt nicht vom Originlutor der Aufgbe, sondern von einem Leser
Flächenberechnung. Aufgabe 1:
Flächenerechnung Aufge : Berechnen Sie den Flächeninhlt zwischen dem Funktionsgrphen und der -Achse in den Grenzen von is von: ) f() = ) f() = - Skizzieren Sie die Funktionsgrphen und schrffieren Sie die
Aufgaben: 1. Gib eine Gleichung der Ebene E an, die durch A in Richtung von u und v verläuft.
Prmeergleichung und Koordinenform einer Ebene Prmeergleichung und Koordinenform einer Ebene Die Lge einer Ebene E im Rum is durch drei Größen eindeuig fesgeleg: X. Einen Punk A, durch den die Ebene verläuf..
Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:
Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:
mathphys-online Abschlussprüfung Berufliche Oberschule 2010 Mathematik 12 Nichttechnik - A II - Lösung
mthphys-online Abschlussprüfung Berufliche Oberschule Mthemtik Nichttechnik - A II - Lösung Teilufgbe. Der Grph G f einer gnzrtionlen Funktion f dritten Grdes besitzt den Extrempunkt E( / ), 7 schneidet
7.9A. Nullstellensuche nach Newton
7.9A. Nullstellensuche nch Newton Wir hben früher bemerkt, dß zur Auffindung von Nullstellen einer gegebenen Funktion oft nur Näherungsverfhren helfen. Eine lte, ber wirkungsvolle Methode ist ds Newton-Verfhren
Integralrechnung. Fakultät Grundlagen
Integrlrechnung Fkultät Grundlgen März 2016 Fkultät Grundlgen Integrlrechnung Bestimmtes Integrl I n Teilintervlle: x 0 = < x 1 < x 2
Probeklausur Mathematik für Ingenieure C3
Deprtment Mthemtik Dr. rer. nt. Lrs Schewe Mthis Sirvent Wintersemester 013/014 Probeklusur Mthemtik für Ingenieure C3 Anmerkungen zur Klusur: Die Arbeitszeit wird 90 Minuten betrgen. Sie können sämtliche
Lösungen zur Probeklausur Lineare Algebra 1
Prof. Dr. Ktrin Wendlnd Dr. Ktrin Leschke WS 2006/2007 Lösungen zur Probeklusur Linere Algebr Ausgbe: 2. Dezember 2006 Aufgbe.. Geben Sie die Definition des Begriffs Gruppe n. Eine Gruppe ist eine Menge
2.4 Elementare Substitution
.4 Elementre Substitution 7.4 Elementre Substitution Im Übungsteil finden Sie folgende Aufgben zum Trining der in diesem Abschnitt behndelten Themen: Linere Substitution (LSub): Aufgbe 4.5 (S.4) und Aufgbe
1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom:
Tutorium Ynnick Schrör Lösung zur Bonusklusur vom WS 1/13 [email protected] 1. Februr 016 ID 03/455 1 Folgen ) Folgende Folge ist gegeben: n+1 7 n 1 n 1, 0 1, 1 0 (1) Chrkteristisches Polynom: q 7q
SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c.
SBP Mthe Grundkurs 2 # 0 by Clifford Wolf # 0 Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert
1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7
Universität Bsel Wirtschftswissenschftliches Zentrum Abteilung Quntittive Methoden Mthemtischer Vorkurs Dr. Thoms Zehrt Differentil- und Integrlrechnung Inhltsverzeichnis 1 Differenzen- und Differentilquotient
Funktionen. Kapitel 6. Reelle Funktion. Graph einer Funktion. Beispiel. Beispiel. Zeichnen eines Graphen. Bijektivität
Reelle Funktion Kpitel 6 Funktionen Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge ls uch die Wertemenge Teilmengen von R üblicherweise Intervlle) sind. Bei reellen Funktionen
Quadratische Funktionen
Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung
Musterlösung der 1. Klausur zur Vorlesung
Prof. Dr. M. Röger Dipl.-Mth. C. Zwilling Fkultät für Mthemtik TU Dortmund Musterlösung der. Klusur zur Vorlesung Anlysis I (24.02.206) Wintersemester 205/6 Aufgbe. Sei R mit sin() 0. Der Beweis erfolgt
a) Prüfen Sie, ob die Graphen der Funktionen f und g orthogonal sind: f(x) = 1,5x 1; g(x) =
50 Kapitel 2: Rationale Funktionen und ihre Anwendungen 2.2.5 Orthogonale Geraden Geraden, die senkrecht aufeinander stehen, werden als zueinander orthogonale Geraden bezeichnet. Der Graph von g entsteht
1 Differentialrechnung
1 Differentilrechnung 1.1 Ableitungen und Ableitungsregeln Nützliche Ableitungen 1. ( ) 1 = 1 x x 2 = x 2 2. Trigonometrische Funktionen: ( x) = 1 2 x [sin(x)] = cos(x) [cos(x)] = sin(x) 3. f(x) = e x
R. Brinkmann Seite Aufgabe Die Gerade g verläuft durch die Punkte P 4 3,5 und P 2,5 1.
R. Brinkmnn http://brinkmnn-du.de Seite 9.09.0 Lösung linere Funktionen Teil IX en: A A A A Die Gerde g verläuft durch die Punkte P,5 und P,5. 5 Die Gerde h verläuft durch die Punkte P( 5,5 ) und P. Wie
Crashkurs - Integration
Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).
Wir lassen die Funktionen grafisch darstellen: plotfunc2d(dq_f_a(h),dq_f_b(h),dq_f_c(h),h=-1..1)
Lösungen zum Wochenpln Ableitungen f := -> *^; g := -> -^; k := -> sqrt(); - Wir können den Differenzenquotienten n den Stellen,b,c uch ls Funktion von h definieren dq_f_ := h->(f(+h)-f())/h; dq_f_b :=
DEMO. Algebraische Kurven 2. Ordnung ohne xy-glied INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL
Algerische Kurven. Ordnung ohne x-glied Üersicht üer lle möglichen Formen und Gleichungen Text Nr. 5301 DEO tnd 1. Juli 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR CHULATHEATIK 5301 Algerische Kurven.
Mathematik 1 für Bauwesen 14. Übungsblatt
Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,
Grundlagen der Integralrechnung
Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe
Die Keplersche Fassregel
Die Keplersche Fssregel K. Gerer Bei vielen Aufgen, z.b. ei der Lösung von Differentilgleichungen, tucht die Schwierigkeit uf, dss Integrtionen nicht durchgeführt werden können. So können z.b. die folgenden
7-1 Elementare Zahlentheorie. 1 a ist quadratischer Rest modulo p, 1 falls gilt a ist quadratischer Nichtrest modulo p, 0 p a. mod p, so ist.
7-1 Elementre Zhlentheorie 7 Ds udrtische Rezirozitätsgesetz 70 Erinnerung Sei eine ungerde Primzhl, sei Z In 114 wurde ds Legendre-Symbol eingeführt: 1 ist udrtischer Rest modulo, 1 flls gilt ist udrtischer
Die Hyperbeläste kommen den Koordinaten-achsen beliebig nahe. Sie sind Asymptoten der Hyperbel.
.8. Die indirekte (umgekehrte) Proportionlität Die Funktion f : y \ heisst umgekehrte (indirekte) Proportionlität. Spezilfll : f: Bilde den Kehrwert der gegebenen Zhl. An der Stelle ist die Funktion nicht
Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt.
64 Kpitel. Integrlrechnung Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel ls uch die prtielle Integrtion zur Anwendung kommt..4.6 Beispiel Um eine Stmmfunktion für rctn zu finden, beginnen
Höhere Mathematik für Ingenieure , Uhr
Studiengng: Mtrikelnummer: 3 5 6 Z Punkte Note Prüfungsklusur zum Modul Höhere Mthemtik für Ingenieure 0. 7. 05, 8.00 -.00 Uhr Zugelssene Hilfsmittel: A-Blätter eigene, hndschriftliche Ausrbeitungen ber
Karlsruher Institut für Technologie (KIT) SS 2013 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning
Krlsruher Institut für Technologie KIT SS 3 Institut für Anlysis 943 Prof Dr Tobis Lmm Dr Ptrick Breuning Höhere Mthemtik II für die Fchrichtung Physik 3 Übungsbltt Aufgbe Sei K ein Kreis im R vom Rdius
Lösungsvorschläge zum 9. Übungsblatt.
Übung zur Anlysis II SS 1 Lösungsvorschläge zum 9. Übungsbltt. Aufgbe 33 () A : {(x, y) R : x [ 1, 1] und y oder x und y [ 1, 1]}. (b) A : {(x, y) R : x < y < 1 + x }. (c) A : {(x, y) R : x < y < 1 + x
Multiplikative Inverse
Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll
Differenzial- und Integralrechnung III
Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in
Zentrale schriftliche Abiturprüfung Mathematik. Leistungskurs
Ministerium für Bildung, Jugend und Sport Zentrle schriftliche Abiturprüfung 005 Aufgbenstellungen A und A (Whl für Schülerinnen und Schüler) Mthemtik Aufgbenstellungen A3 (siehe Extrbltt) (wird durch
Zentrale schriftliche Abiturprüfung Mathematik. Leistungskurs
Ministerium für Bildung, Jugend und Sport Zentrle schriftliche Abiturprüfung 008 Mthemtik Aufgbenstellung A1 und A (Whl für Prüflinge) Aufgbenstellung A3 (siehe Extrbltt) (wird durch die Lehrkrft usgewählt)
Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:
Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x
f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i
Funktionentheorie Komplexe Kurvenintegrle Themen des Tutoriums m 24.6.25: Jede komplexe Funktion f : D C knn mn drstellen ls f(x + iy) = u(x, y) + iv(x, y), wobei u und v reellwertige Funktionen uf R 2
Mathematik Rechenfertigkeiten
2 Mthemtik Rechenfertigkeiten Skript Freitg Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Irmgrd Bühler (Überrbeitung: Dominik Tsndy) 9.August 2 Inhltsverzeichnis
Numerische Integration durch Extrapolation
Numerische Integrtion durch Extrpoltion Pblo Thiel Romberg-Verfhren Idee: Im Gegenstz zur numerischen Integrtion mit Hilfe der einfchen bzw. zusmmengesetzten Trpez-, Simpson-, 3/8- oder zum Beispiel der
+ 2 2 = 0 = 1 ± Die drei Nullstellen. x x x 2,3
Hilfsmittelfreier Teil. Beispielufgbe 1 zur Anlysis Gegeben ist die Funktion f mit der Gleichung f ( x ) = x 3 + x x. Die zeigt den Grphen der Funktion f. (1) Berechnen Sie lle Nullstellen der Funktion
Die Versiera der Agnesi
Vermischte Aufgben: Anlysis und Geometrie S.. 1 Die Versier der Agnesi Am 16. Mi 014 zeigte Google ls Erinnerung n den 96. Geburtstg der itlienischen Mthemtikerin Mri Getn Agnesi ein sogennntes Doodle.
VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen)
VII. Folgen und Reihen von Funktionen (Vertuschung von Grenzprozessen) Definition. Sei {f n } eine Folge von Funktionen, die uf einer Menge E definiert sind. Die Folgen der Funktionswerte {f n (x)} seien
Bayern Musterlösung zu Klausur Analysis, Aufgabengruppe I
Diese Lösung wurde erstellt von Tanja Reimbold. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. Teil 1 Aufgabe 1 Definitionsbereich: Bestimmung der Nullstelle
Anforderungsniveau Prüfungsteil Sachgebiet digitales Hilfsmittel erhöht B Analysis CAS
Gemeinsme Abiturufgbenpools der Länder Aufgbensmmlung Aufgbe für ds Fch Mthemtik Kurzbeschreibung Anforderungsniveu Prüfungsteil Schgebiet digitles Hilfsmittel erhöht B Anlysis CAS 1 Aufgbe 1 Gegeben ist
Lerninhalte Fakten-Regeln-Beispiele Quelle. -fache
Friedrich-Alender-Gymnsium Grundwissen Mthemtik. Jhrgngsstufe Lerninhlte Fkten-Regeln-Beispiele Quelle Proportionlität Gehört bei einer Zuordnung zum r-fchen der einen Größe ds r-fche der nderen Größe,
π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x
Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei
