Numerische Integration durch Extrapolation

Größe: px
Ab Seite anzeigen:

Download "Numerische Integration durch Extrapolation"

Transkript

1 Numerische Integrtion durch Extrpoltion Pblo Thiel Romberg-Verfhren Idee: Im Gegenstz zur numerischen Integrtion mit Hilfe der einfchen bzw. zusmmengesetzten Trpez-, Simpson-, 3/8- oder zum Beispiel der Milne-Regel, wird bei der Integrtion durch Extrpoltion eine Annäherung n den Integrlwert durch eine Extrpoltion über diskrete Werte, die eine zusmmengesetzte Regel mit verschiedenen Schrittweiten liefert, erreicht. Ds heisst, dss ds gesuchte Integrl I mit Hilfe einer zusmmengesetzen Regel für verschiedene Schrittweiten h pproximiert wird. Über diese gefundenen Werte wird nun ein Interpoltionspolynom gelegt, und n der Stelle h = usgewertet. D usserhlb des Intervlls liegt, in dem ds Interpoltionspolynom entstnd, nennt mn ds Verfhren Extrpoltion. Mn extrpoliert bei h =, d nzunehmen ist, dss wenn mn immer kleiner werdende Schrittweiten betrchtet, die Approximtion immer genuer wird. Die Annhme lso, dss lim h = I ist. Zur numerischen Integrtion des Integrls wir die Trpezregel T (h) zusmmen mit der Romberg-Folge h i T (h i ) = h i f(x) dx durch Extrpoltion verwenden i (f() + (f( + jh j )) + f(b)) j= mit der Romberg-Folge h i := b i für i =,,..., m.

2 Numerische Integrtion durch Extrpoltion Dbei knn mn T (h i+ ) rekursiv us T (h i ) berechnen. Es gilt: T (h i+ ) = T ( h i) = T (h i) + h i+ (f( + h i+ ) + f( + 3h i+ ) f(b h i+ )) T (h) besitzt folgende Entwicklung welche in Abschnitt bewiesen wird. T (h) = τ + τ h + τ h τ m h m + α m+ (h)h m+ mit τ := f(x) dx. Dbei sind die τ i von h unbhängige Konstnten und α m+ (h) ist eine beschränkte Funktion. D mn T (h) nur für h > nicht ber für h = berechnen knn, interpoliert mn T n den Stützstellen h, h,..., h m > mit den Funktionswerten T (h ), T (h ),..., T (h m ) und extrpoliert für h = mit Hilfe des Neville-Schems. Neville-Schem zur Polynomwertbestimmung: x i T i, = T (x i ) T +i, T +i,... T m +i,m T m,m x T, = T (x ) T, T,... T m,m T m,m x T, = T (x ) T, T 3,... T m,m x T, = T (x ) T 3, T 4, T m,.. T m, x m T m, = T (x m ) mit m i k und T i, = T (h i ) T i,k (x) = (x x i k)t i,k (x x i )T i,k (x) x i x i k k Drus folgt: T i,k = (x x i)t i,k +(x i x i k )T i,k (x x i )T i,k (x) x i x i k = T i,k + T i,k T i,k x x i k x x i (Der Übersicht hlber schreibe ich T i,k sttt T i,k (x), d x fest ist.)

3 Romberg-Verfhren 3 D hier n der Stelle x = usgewertet werden soll und T (h) eine Entwicklung in h ht muss lso x i = h i gesetzt werden. Es gilt lso der sogennnte Neville-Aitken-Algorithmus: T i,k () = T i,k + T i,k T i,k h i k h i Hierus knn mn verschiedene interessnte Zusmmenhänge bleiten: Zum Beispiel erhält mn für T, die Simsonregel: T, = T, + T, T, h = 4T h 3, T 3, = b b (f() + f(+b) + f(b)) (f() + f(b)) 3 6 = (b )(f() + 4f(+b) + f(b)) (Simpsonregel) 6 Anlog folgt zum Beispiel uch bei T, die Milne-Regel und für h i = b 3 i in T, die pulcherim zurück. Obrige Rechnung lässt sich uch generell für T i, mchen: T i, = 4T 3 i, T 3 i, = 4T (h 3 i) T (h 3 i) = 4(τ 3 + τ h i + τ h 4 i τ m h m i +...) (τ 3 + τ 4h i + τ 6h 4 i τ m m h m i +...) = τ 4τ h 4 i τ 3 h 6 i... Ds heisst lso, dss der Fehler in der zweiten Splte des Neville-Schems wie h 4 i gegen strebt. Insgesmmt strebt der Fehler in der k-ten Splte (d.h. von T i,k ) wie h k i gegen. Beispiel: Gesucht ist eine Näherung für dx = log() = x x i T i, = T (x i ) T +i, T +i, T 3+i,3 T 4, Unterstrichen sind hier jeweils die mit dem exktem Ergebniss übereinstimmenden Stellen.

4 4 Numerische Integrtion durch Extrpoltion Euler-Mclurinsche Summenformel Stz.: Für f ζ m+ [, b] (d.h. f ist uf [, b] (m + ) ml stetig differenzierbr) besitzt die Trpezsumme die Entwicklung mit τ := T (h) = τ + τ h + τ h τ m h m + α m+ (h)h m+ () f(x) dx. Dbei sind die τ i von h unbhängige Konstnten und α m+ (h) ist eine beschränkte Funktion. Beweis: Zum Beweis benötigt mn zuerst folgende Vorbemerkungen: Bernulli Polynome: B k (x) mit k =,,... rekursiv definiert durch: Aus () folgt: () B (x) = (b) B k (x) = kb k (x) k () (c) B k (x) dx = k (d) B k (x) = A k + B k (t) dt k mit der Konstnten A k = B k () so, dss Insbesondere ist z.b.: B k (x) dx =. B (x) = x B (x) = x x + 6 B 3 (x) = x 3 3 x + x B 4 (x) = x 4 x 3 + x 3 Für B k (x) gelten die folgenden wichtigen Eigenschfften: () B k () = B k () k (b) Die Polynome P k (x) := B k ( + x) sind für gerdes k (3) gerde, für ungerdes k ungerde Polynome in x. (c) B k+ () = B k+ () = k

5 Euler-Mclurinsche Summenformel 5 Beweis: zu ) Aus (b) und (c) folgt: B k () B k () = A k + k zu b) B k (t) dt A k k B k (t) dt = P (x) = B ( + x) = ist gerde. Sei nun P k (x) für ein k ein gerdes Polynom. Es gilt weiterhin wegen (b) und (c): P k+ (x) = B k+ (x + ) = (k + )B k(x + ) = (k + )P k(x) und P k+ (x) dx = P k+ (x ) dx = B k+ (x) dx = D P k (x) gerde ist, ist ds Polynom q(x) := (k + ) P k (t) dt ein ungerdes Polynom und es gilt: q(x) dx = q( x) dx = q(x) dx = q(x) dx = Dmit ht q(x) die chrkteristischen Eigenschften (q (x) = (k+)p k (x); q(x) dx = ) von P k+ (x): q(x) = P k+ (x) P k+ (x) ist ungerde. Wegen P k+ = (k +) P k+ (t) dt+a mit A konstnt ist P k+ (x) eine gerde Funktion. zu c) Aus (3) und (3b) folgt: B k+ () = B k+ () = P k+ ( ) = P k+( ) = B k+() =. Als Bernullische Zhlen bezeichnent mn: B k := ( ) k+ B k () Also zum Beispiel: B = 6, B = 3, B 3 = 4, B 4 = 3.

6 6 Numerische Integrtion durch Extrpoltion Nun definieren wir uns -periodische Funktionen: S k : R R mit: S k (x) := B k (x i) mit x I = {x i x < i + }, i gnz. Diese genügen folgender Rekursion: S k (x) = S k () + k S k+ (t) dt k (4) d wegen (d) gilt: S k (x) = B k (x i) = A k + k x i B k (t) dt = B k () + k x i S k (t + i) dt x = S k () + k S k (t) dt f r k Ausserdem gilt wegen (3) für lle k : () B k () = S k () = S k () = S k () =... (b) S k+ () = (5) (c) S k () = ( ) k+ B k. Beweis: zu ) gilt, d für lle x Z gilt: S k (x) = S k () + k zu b) S k (t) dt = S k () = B k () S k+ () = B k+ () = zu c) S k () = B k () = ( ) k+ B k Zum Beweis von Stz. betrchten wir sttt f die Funktion g mit g(t) := f( + th)

7 Euler-Mclurinsche Summenformel 7 Durch schrittweiser prtieller Integrtion von Mn knn n S (t)g (t) dt = g() n S (t)g (t) dt folgt: + g() g(n ) + g(n) n S (t)g (t) dt ber uch so umformen: n g(t) dt (6) n S (t)g (t) dt = m ( ) k+ B k (k)! (g(k ) (n) g (k ) ()) + R m+ (7) k= mit dem Restglied R m+ = (m + )! n (S m+ (t) S m+ ()) = g (m+) (t) dt (8) Wegen g(t) = f( + th) folgt durch einfches umrechnen: () n g(t) dt = h f(x) dx (b) g (k) (t) = h k f (k) ( + th) k =,,,... (9) (c) f() g() g(n) +g()+...+g(n )+ = f(b) +f(+h)+...+f(b h)+ = h T (h) Aus diesen Überlegungen und nch (6),(7) und (8) gilt nun: T (h) = τ + τ h + τ h τ m h m + α m+ (h)h m+ wegen: T (h) = h g() (f() + f( + h) f(b h) + f(b)) = h( + g() g(n ) + g(n) ) n = h( g(t) dt + m (( ) k+ B k (k)! (g(k+) (n) g (k ) ())) + R m+ ) = = k= f(x) dx + h m ( ( )k+ B k k= (k)! (h k f (k ) ( + tn) h k f (k ) ( + n))) + hr m+ f(x) dx + m k= ( ( )k+ B k (k)! (f (k ) (b) f (k ) ())) + hr m+

8 8 Numerische Integrtion durch Extrpoltion Mit dem Restglied: hr m+ = h = h (m+)! hm+ m+ = h (m+)! (m+)! (S m+ ( x ) S h m+())f (m+) (x) dx f (m+) (x)(s m+ ( s ) S h m+()) dx n (S m+ (t) S m + ())g (m+) (t) dt Genu erhält mn lso die Euler-Mclurinsche Summenformel durch: α m+ (h) = τ = f(x)dx τ k = ( )k+ B k (f (k ) (b) f (k ) () k =,,..., m (k)! b (m+)! f (m+) (x)(s m+ ( x ) S h m+()) dx S m+ ist eine stetige periodische Funktion, es gibt lso eine von h unbhängige obere Schrnke für α m+ (h). Dmit ist Stz. bewiesen.

Numerische Integration

Numerische Integration Numerische Integrtion Bei vielen Problemen des nturwissenschftlichen Rechnens treten Integrle uf, die nicht in expliziter Form drgestellt werden können, sei es, dß kein geschlossener Ausdruck für eine

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt Metrische Räume Sei X eine nichtleere Menge. Definition.. Eine Abbildung: d : X X R heißt Metrik uf X, flls für lle x, y, z X gilt (i) d(x, y) 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) d(x, z) + d(z, y)

Mehr

Numerische Integration

Numerische Integration TU Ilmenu Institut für Mthemtik FG Numerische Mthemtik und Informtionsverrbeitung PD Dr. W. Neundorf Dtei: UEBG9.TEX Übungsufgben zum Lehrgebiet Numerische Mthemtik - Serie 9 Numerische Integrtion. Mn

Mehr

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) =

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) = Es seien U R n offen und ψ : U R n stetig differenzierbr. Weiter sei f : U R zweiml stetig differenzierbr. Kennzeichnen Sie whre Aussgen mit W und flsche Aussgen mit F. F Flls dψ(x) ein Isomorphismus für

Mehr

6. Integration 6.1 Das Riemann-Integral

6. Integration 6.1 Das Riemann-Integral 6. Integrtion 6. Ds Riemnn-Integrl 6. Integrtion 6. Ds Riemnn-Integrl Mthemtik für Chemiker 6. Integrtion 6. Ds Riemnn-Integrl Flächenberechnung: Problemstellung und Lösungsidee Sei f : [, b] [0, ) eine

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Crashkurs - Integration

Crashkurs - Integration Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).

Mehr

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k Integrlrechnung Definition 1 (Treppenfunktion, Zerlegung eines Intervlls): Sei [, b] R ein Intervll. Eine Funktion g : [, b] R heißt Treppenfunktion, flls es eine Zerlegung := { =: 0 < 1

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Kapitel 4. Numerische Integration

Kapitel 4. Numerische Integration Kpitel 4. Numerische Integrtion 4.1 Interpoltorische Qudrturformeln 4.2 Gußsche Qudrturformeln 4.3 Ds Rombergsche Integrtionsverfhren 4.4 Prktische Aspekte der Integrtion Numerische Mthemtik I 147 Interpoltorische

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

Lösungsvorschläge zum 9. Übungsblatt.

Lösungsvorschläge zum 9. Übungsblatt. Übung zur Anlysis II SS 1 Lösungsvorschläge zum 9. Übungsbltt. Aufgbe 33 () A : {(x, y) R : x [ 1, 1] und y oder x und y [ 1, 1]}. (b) A : {(x, y) R : x < y < 1 + x }. (c) A : {(x, y) R : x < y < 1 + x

Mehr

Musterlösung zu Blatt 9, Aufgabe 2

Musterlösung zu Blatt 9, Aufgabe 2 Musterlösung zu Bltt 9, Aufgbe Anlysis II MIIA SoSe 7 Mrtin Schottenloher Musterlösung zu Bltt 9, Aufgbe I Aufgbenstellung Es sei J [, ] und f : J R deniert durch fx x 3. Finden Sie eine Folge f n n N

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

7.9A. Nullstellensuche nach Newton

7.9A. Nullstellensuche nach Newton 7.9A. Nullstellensuche nch Newton Wir hben früher bemerkt, dß zur Auffindung von Nullstellen einer gegebenen Funktion oft nur Näherungsverfhren helfen. Eine lte, ber wirkungsvolle Methode ist ds Newton-Verfhren

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmnn SS Höhere Mthemtik II für die Fchrichtung Informtik Lösungsvorschläge zum 8. Übungsbltt Aufgbe 9 erechnen

Mehr

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen)

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen) VII. Folgen und Reihen von Funktionen (Vertuschung von Grenzprozessen) Definition. Sei {f n } eine Folge von Funktionen, die uf einer Menge E definiert sind. Die Folgen der Funktionswerte {f n (x)} seien

Mehr

Mathematik II. Partielle Integration. f (t)g(t)dt =

Mathematik II. Partielle Integration. f (t)g(t)dt = Prof. Dr. H. Brenner Osnbrück SS 1 Mthemtik II Vorlesung 33 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln.

Mehr

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c.

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c. SBP Mthe Grundkurs 2 # 0 by Clifford Wolf # 0 Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

5.1 Charakterisierung relativ kompakter und kompakter

5.1 Charakterisierung relativ kompakter und kompakter Kpitel 5 Kompkte Mengen 5.1 Chrkterisierung reltiv kompkter und kompkter Mengen X sei im weiteren ein Bnchrum. Definition 5.1. Eine Menge K X heißt kompkt, wenn us jeder offenen Überdeckung von K eine

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mthemtik für Wirtschftsinformtik Wintersemester 202/3 Stefn Etschberger Hochschule Augsburg Existenz von bestimmten Integrlen Mthemtik 2 Stefn Etschberger Gegeben: Reelle Funktion f : [, b] R. Dnn gilt:

Mehr

Klausurvorbereitungsausfgaben für die Feiertage Analysis II im WS 2013/2014

Klausurvorbereitungsausfgaben für die Feiertage Analysis II im WS 2013/2014 Institut für Mthemtik Freie Universität Berlin C. Hrtmnn, A. Ppke Wer spricht von Siegen, Überleben ist lles. Riner Mri Rilke Lösung zu Klusurvorbereitungsusfgben für die Feiertge Anlysis II im WS 23/24

Mehr

VI. Das Riemann-Stieltjes Integral.

VI. Das Riemann-Stieltjes Integral. VI. Ds Riemnn-Stieltjes Integrl. Es stellt sich herus, dss der hier entwickelte Integrlbegriff strk von der Ordnungsstruktur von R bhängt. Definition. Sei [, b] ein Intervll in R. Unter einer Prtition

Mehr

FernUniversität Gesamthochschule in Hagen

FernUniversität Gesamthochschule in Hagen FernUniversität Gesmthochschule in Hgen FACHBEREICH MATHEMATIK LEHRGEBIET KOMPLEXE ANALYSIS Prof. Dr. Andrei Dum Proseminr 9 - Anlysis Numerische Integrtion Ulrich Telle Mtrikel-Nr. 474 Köln, den 7. Dezember

Mehr

Thema 7 Konvergenzkriterien (uneigentliche Integrale)

Thema 7 Konvergenzkriterien (uneigentliche Integrale) Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe

Mehr

9.6 Parameterabhängige Integrale

9.6 Parameterabhängige Integrale Kpitel 9: Integrtion 9.6 Prmeterbhängige Integrle Beispiel: Die Gmm-Funktion Γ(x) := f(x, t)dt = e t t x 1 dt. Zunächst: Prmeterbhängige eigentliche Integrle. Sei f : I [, b] R, I R, so dss f für festes

Mehr

10.5 Vektorfelder. Beispiele. . x. 2. Sei F(x,y) =. y 2. Jedes Gradientenfeld ist ein Vektorfeld, aber nicht jedes Vektorfeld ist ein Gradientenfeld.

10.5 Vektorfelder. Beispiele. . x. 2. Sei F(x,y) =. y 2. Jedes Gradientenfeld ist ein Vektorfeld, aber nicht jedes Vektorfeld ist ein Gradientenfeld. 28.5 Vektorfelder Wir hben gesehen, dss der Grdient einer Funktion z = f(x,y : D R jedem Punkt (x,y D einen Vektor, nämlich f(x,y R 2, zuordnet. Eine solche Zuordnung nennt mn Vektorfeld. Ds Vektorfeld

Mehr

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor) Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, [email protected] 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Vorbereitung für ds Probestudium n der LMU München 3. bis 7. September von W. Frks und O. Forster Integrle ls Flächeninhlte. Motivtion Flächeninhlte von Rechtecken sind

Mehr

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei Kpitel 8: Integrtion Erläuterung uf Folie 8.1 Ds bestimmte Integrl Sei f : [, b] R eine beschränkte Funktion uf einem (zunächst) kompkten Intervll [, b]. Definition: 1) Eine Menge der Form Z = { = x 0

Mehr

Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001

Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001 Grundlgen zu Dtenstrukturen und Algorithmen Schmitt, Schömer SS 001 http://www.mpi-sb.mpg.de/~sschmitt/info5-ss01 U N S A R I V E R S A V I E I T A S N I S S Lösungsvorschläge für ds 4. Übungsbltt Letzte

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

6.6 Integrationsregeln

6.6 Integrationsregeln 50 KAPITEL 6. DAS RIEMANN-INTEGRAL Beispiel 6.5.4 (Differenzierbreit und gleichmäßige Konvergenz) Die Funtionenfolge {f n (x)} n N definiert durch f n (x) = n sin(nx) onvergiert uf jedem Intervll gleichmäßig

Mehr

8 Integralrechnung. 8.1 Das Riemann-Integral

8 Integralrechnung. 8.1 Das Riemann-Integral 8 Integrlrechnung Der Integrlbegriff ist wie der Ableitungsbegriff motiviert durch die physiklische Beschreibung von Bewegungsbläufen (Geschwindigkeit, Beschleunigung). Er ist u.. uch von Bedeutung bei

Mehr

Doppel- und Dreifachintegrale

Doppel- und Dreifachintegrale KAPITEL 6 Doppel- und Dreifchintegrle 6. Doppelintegrle................................... 74 6.. Flächeninhlt ebener ereiche.......................... 74 6..2 Definition und Eigenschften des Doppelintegrls..............

Mehr

Funktionenfolgen. Kapitel 6

Funktionenfolgen. Kapitel 6 Kpitel 6 Funktionenfolgen Bemerkung 6.1 Motivtion. Dieser Abschnitt betrchtet die Konvergenz von Folgen von uf einem gemeinsmen Intervll definierten Funktionen. Dies ist eine wichtige Grundlge, um eine

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Höhere Mathematik für Ingenieure , Uhr

Höhere Mathematik für Ingenieure , Uhr Studiengng: Mtrikelnummer: 3 5 6 Z Punkte Note Prüfungsklusur zum Modul Höhere Mthemtik für Ingenieure 0. 7. 05, 8.00 -.00 Uhr Zugelssene Hilfsmittel: A-Blätter eigene, hndschriftliche Ausrbeitungen ber

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

7 Bewegung von Punkten

7 Bewegung von Punkten 81 7 Bewegung von Punkten 7.1 Übersicht Bewegung von Punkten Differenzierbrkeit. Wo liegt die Ableitung Tylorreihe, Vektordreieck Physiklische Bezeichnungen Abstnd zu einer Kurve Geschwindigkeit Bogenlänge

Mehr

Hilfsblätter Folgen und Reihen

Hilfsblätter Folgen und Reihen Hilfsblätter Folgen und Reihen Sebstin Suchnek unter Mithilfe von Klus Flittner Steffen Hofmnn Mtthis Stb c 2002 by Sebstin Suchnek Printed with L A TEX Inhltsverzeichnis 1 Folgen 1 1.1 Definition.........................................

Mehr

t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene.

t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene. Kpitel Kurvenintegrle Kurven Sei I = [, b] R ein Intervll Eine Weg ist eine Abbildung dieses Intervlls in den R d, d, : I R d Dbei nennt mn () den Anfngspunkt, (b) den Endpunkt und ds Bild ([, b]) die

Mehr

4.6 Integralrechnung III. Inhaltsverzeichnis

4.6 Integralrechnung III. Inhaltsverzeichnis 4.6 Integrlrechnung III Inhltsverzeichnis 1 Integrlrechnung 10.03.2010 Theorie und Übungen 2 1 Exponentilfunktionen Aus der Differentilrechnung wissen wir, dss gilt: f(x)=e x f (x)=e x Stz 1 Für die ntürliche

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

Taylorreihen - Uneigentlische Integrale

Taylorreihen - Uneigentlische Integrale Anlysis II für M, LG und Ph, WS 2006/07, Übung 2, Lösungsskizze Gruppenübung Tylorreihen - Uneigentlische Integrle G 5 Berechnen Sie die Tylorreihe mit der Entwicklungsmitte 0 von f (x) = log(x + ), f

Mehr

Integrationsmethoden

Integrationsmethoden Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()

Mehr

Mathematik-Tutorium: Handwerkszeug und Kochrezepte für Maschinenbauer

Mathematik-Tutorium: Handwerkszeug und Kochrezepte für Maschinenbauer Vektorrechnung Differentilrechnung Integrlrechnung Mthemtik-Tutorium: Hndwerkszeug und Kochrezepte für Mschinenbuer Johnnes Wiedersich 7. Dezember 007 http://www.e13.physik.tu-muenchen.de/wiedersich/ Vektorrechnung

Mehr

Definition 3.33 (Oberintegral und Unterintegral). Es sei f : [a,b] R eine beschränkte Funktion. Weiter sei

Definition 3.33 (Oberintegral und Unterintegral). Es sei f : [a,b] R eine beschränkte Funktion. Weiter sei 8. Integrierbre Funktionen Definition 3.3 (Treppenfunktionen). Eine Funktion t : [,b] R heißt Treppenfunktion, flls es endlih viele Punkte x < x 1 < < x n mit x = und x n = b gibt, so dss f uf jedem der

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0

Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0 Ferienkurs Anlysis 1 WS 11/12 Florin Drechsler Antworten uf Anfrgen von Kursteilnehmern Zu Tylorreihen Zu folgender Aussge us den Multiple-Choice-Aufgben: Es gibt Funktionen f C (R) mit konvergenter Tylorreihe

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL 98 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr