R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen

Größe: px
Ab Seite anzeigen:

Download "R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen"

Transkript

1 Die ntürlichen Zhlen (zusmmen mit der Addition und der Multipliktion) wurden in Kpitel 3 xiomtisch eingeführt. Aus den ntürlichen Zhlen knn mn nun die gnzen Zhlen Z = {..., 2, 1, 0, 1, 2,...} die rtionlen Zhlen, die reellen Zhlen und uch die komplexen Zhlen (zusmmen mit den jeweiligen Additionen und Multipliktionen) konstruieren. Die mit Abstnd ufwendigste Konstruktion ist die der reellen Zhlen. Ds wird ber erst Teil der Vorlesung Anlysis sein. Wir führen hier nur exemplrisch vor wie mn us den ntürlichen Zhlen die gnzen Zhlen konstruiert. Gnze Zhlen Gegeben seien lso die ntürlichen Zhlen (zusmmen mit der Addition und der Multipliktion). Wir betrchten nun wieder die Äquivlenzreltion us Beispiel Es sei lso M = N N und R die Reltion R := {((, b), (c, d)) + d = c + b}. Die Element des Quotienten M/R sind die Klssen...,Kl(1, 3), Kl(1, 2), Kl(1, 1), Kl(2, 1), Kl(3, 1),... Wir denieren nun eine Addition uf M/R vi Kl(, b) Kl(c, d) = Kl( + c, b + d). Mn bechte, dss die neue Abbildung nur us der beknnten Opertion + in N hervorgeht. Problemtisch ist, dss ds Ergebnis der Addition Kl(, b) Kl(c, d) nscheinend von der Whl der Repräsentnten (,b) Kl(,b) bzw. (c, d) Kl(, b) bhängt 1. Mn muss lso noch die wohldeniertheit der Abbildung testen. Sei lso (ã, b) ein Elemente us der gleichen Äquivlenzklsse wie (, b) und ( c, d) ein Elemente us der gleichen Äquivlenzklsse wie (c, d), dnn ist Kl(ã, b) Kl( c, d) = Kl(ã + c, b + d). Wegen + b = b + ã und c + d = d + c gilt ber Kl(ã + c, b + d) = Kl( + c, b + d). 1 Klr ws gemeint ist? Sowohl (1,2) wie uch (2,3) sind j Elemente der gleichen Äquivlenzklsse Kl(1,2). Trotzdem muss die Summe eindeutig sein. 27

2 Ähnlich wird nun uch eine Multipliktion uf M/R deniert. Nämlich Kl(, b) Kl(c, d) = (c + bd, d + bc). Mn bechte, dss für jedes Element Kl(c, d) M/R sowohl Kl(1, 1) Kl(c, d) = Kl(1+c, 1+d) = Kl(c, d) wie uch Kl(1, 1) Kl(c, d) = Kl(c+d,c+d) = Kl(1, 1) gilt. Ds ElementKl(1, 1) nennen wir b jetzt 0. Die Elemente Kl(1, 2), Kl(1, 3),... nennen wir 1, 2,... und dieelemente Kl(2, 1), Kl(3, 1),... nennen wir 1, 2... Auÿerdem schreiben wir in Zukunft Z sttt M/R, + b sttt b und b sttt b. Wir hben lso uf einer neuen Menge Z eine neue Addition und eine neue Multipliktion deniert. Mn knn nun nchrechnen, dss sämtliche us der Schule beknnten Rechenregeln uch uf unserer Menge Z stimmen. Insbesondere gelten lle Rechenregeln von N uf Z eingeschränkt uf 1, 2, 3. Deshlb stellt mn sich uch weiterhin N ls Teilmenge von Z vor (obwohl N in unserer Konstruktion forml etws nderes ist). Rtionle Zhlen und reelle Zhlen Im Gegenstz zum Zhlenbereich N läÿt sich jede dditive Gleichung + x = b mit, b Z lösen. Andererseits läst sich nicht jede multipliktive Gleichung x = b mit, b Z in Z lösen. Dher betrchtet mn die Rtionlen Zhlen, lso die Brüche { n } Q := m n Z, m N. Auch hier müÿte mn nun die Menge Q zusmmen mit einer Addition und einer Multipliktion forml usn und Z konstruieren. Auch hier werden wieder pssende Äquivlenzklssen gebildet. Diese Konstruktion wird im Prpädeutikum zum Them Äquivlenzreltionen nchgeholt. In der linren Algebr werden Sie lernen ws ein Körper ist. Hier sei schon einml gesgt, dss Q (genu wie R und C) ein Beispiel für einen Körper ist, N und Z ber nicht. Für jetzt reicht uns die Erkenntnis, dss Q bezüglich Addition und Multipliktion bgeschlossen ist, d.h. für lle p, q Q ist q + p Q und pq Q. Ich hoe Sie erinnern sich noch drn wie mn eine solche Addition bzw. Multipliktion durchführt. Nämlich nch den Formeln b + c d = d + bc bd bzw b c d = b cd. Um vernünftig Mthemtik betreiben zu können reicht die Menge der rtionlen Zhlen noch nicht us. Z.B. ist die Gleichung x 2 = 2 in Q nicht lösbr. Trotzdem knn mn sich Probleme vorstellen, deren Lösung eben genu die Bedingung x 2 = 2 erfüllt 2. Dher erweitert mn die rtionlen Zhlen noch uf die 2 Z.B. die Frge, wie lnge ist die Digonle eines rechtwinkligen Dreiecks dessen Ktheten beide die Länge 1 hben. Wenn wir eine Mthemtik nur in Q ufziehen wollten dnn wäre die Antwort: So ein Dreieck gibt es nicht. 28

3 reellen Zhlen. Wie ds genu geht werden Sie in der Vorlesung Anlysis erfhren. Vernschulichen knn mn sich die reellen Zhlen ber ls die Punkte uf einer Gerden. Sowohl uf Q wie uch uf R gibt es eine Ordnungsreltion > bzw.. Auch hier verzichten wir uf eine formle Konstruktion. Für Q und R führen wir noch ein pr Bezeichnungen ein: Sei F = Q oder F = R und, b F mit < b. Ds bgeschlossene Intervll [, b] sei deniert durch [, b] := {x F x b}. Anlog denieren wir oene Intervlle ], b[:= {x F <x < b}. Desweiteren sei [, b[ := {x F x < b}, ], b] := {x F < x b}, ], [ := {x F < x}, [, [ := {x F x}, ], [ := {x F x < }, [, [ := {x F x } Die Gleichung X = 0 besitzt keine Lösung in reellen Zhlen. Um diese Gleichung ber trotzdem lösen zu können, führen wir eine neue Zhl i = 1 ls Lösung dieser Gleichung ein: i = 0; diese Zhl heiÿt uch imginäre Einheit. Wir hben noch nicht richtig erklärt, ws denn nun eigentlich i = 1 für eine Zhl sein soll. Wir führen dzu die komplexen Zhlen geometrisch ls Punkte in der Guÿschen Ebene ein. Stz und Denition 4.1 Die Menge C := R 2 ller Pre reeller Zhlen versehen mit der Addition und der Multipliktion (x 1, y 1 ) + (x 2, y 2 ) := (x 1 + x 2, y 1 + y 2 ) (x 1, y 1 ) (x 2, y 2 ) := (x 1 x 2 y 1 y 2, x 1 y 2 + x 2 y 1 ) ist ein Körper, der sogennnte Körper der komplexen Zhlen. Hierbei ist (0, 0) ds Nullelement (0, 0) und (1, 0) ds Einselement (1, 0). Die komplexe Zhl heiÿt imginäre Einheit. i := (0, 1) Oenbr gilt i 2 = (0, 1) (0, 1) = ( 1, 0). Also ist i 2 ds dditiv Inverse des Einselements. 29

4 Jede komplexe Zhl (x, y) läÿt sich eindeutig zerlegen, ls Summe us dem 1- Anteil (den sogennnten Relnteil) und dem i-anteil (den sogennnten Imginärnteil), d.h. (x, y) = x(1, 0) + y(0, 1) = x + iy. Für ds prktische Rechnen in komplexen Zhlen ist diese Schreibweise uch geeigneter. Mn veriziert leicht: (+ib)+(c+id) = (+c)+i(b+d), (+ib) (c+id) = (c bd)+i(d+bc); hierbei hben wir in der zweiten Gleichung die Gleichung i 2 = 1 usgenutzt. Ds multipliktiv Inverse von +ib C \ {0} berechnet sich wie folgt: 1 + ib = 1 + ib ib ib = ib 2 + b = b + i b b 2. Zu einer komplexen Zhl z = + ib heiÿt der Relteil von z und wird mit Rez bezeichnet und b heiÿt der Imginärteil von z und wird mit Im z notiert. Zu z = + ib bezeichnet z = ib die zu z konjugierte komplexe Zhl (bei der Berechnung des Inversen von z 0 hben wir lso mit dem Konjugierten von z erweitert). Es gilt z = Re z + i Im z, Rez = 1 2 (z + z), Im z = 1 (z z). 2i Komplexe Zhlen lssen sich gut in der Guÿschen Zhlenebene drstellen: i Im z +ib + ib ib ib Rez Für z = + ib C ist z z = ( + ib)( ib) = 2 + b 2 eine nicht-negtive reelle Zhl, und für z 0 ist diese Zhl positiv. Wir setzen z = zz und nennen dises Zhl den Absolutbetrg der komplexen Zhl z. Geometrisch misst z den Abstnd von z zum Ursprung 0 in der Guÿschen Zhlenebene (Pythgors). Es gilt die Dreiecksungleichung z + w z + w. 30

5 Die komplexen Zhlen hben sehr schöne nlytische und lgebrische Eigenschften: Z.B. ist C lgebrisch bgeschlossen, d.h. jede lgebrische Gleichung über C besitzt eine Lösung (Fundmentlstzes der Algebr). Ferner gibt es eine Verbindung zu den trigonometrischen Funktionen. (Dzu später mehr!) 31

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit WS 008/09 7 Elementrmthemtik (LH) und Fehlerfreiheit. Zhlenbereiche... Die rtionlen Zhlen... Definition Die Definition der rtionlen Zhlen erfolgt hier innermthemtisch ebenflls wie diejenige der gnzen Zhlen

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b Grundlgen 0.0. Zhlbereiche ntürliche Zhlen: N = {0; ; 2;...} (nch DIN 547) N = N \ {0} gnze Zhlen: Z = {... 2; ; 0; ; 2;...} rtionle Zhlen: Q = { p p, q Z, q 0} q Q besteht us llen Bruchzhlen. reelle Zhlen:

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

4 Stetigkeit. 4.1 Intervalle

4 Stetigkeit. 4.1 Intervalle 4 Stetigkeit Der Grenzwertbegriff für Zhlenfolgen lässt sich uf Funktionen übertrgen. Funktionen (oder Abbildungen) wren bereits im Kpitel über Mengen ufgetreten. Hier wird nun der Fll betrchtet, dss Definitionsbereich

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = 3 Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

8 Die rationalen Zahlen

8 Die rationalen Zahlen 8 Die rtionlen Zhlen Die Konstruktion der rtionlen Zhlen ist eine Umbu, der Anlogien zur Umbu- Konstruktion von Z ht. Wir werden sehen, dss Brüche Äquivlenzklssen von Pren gnzer Zhlen sind. Es gelte die

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mthemtik für Informtiker I (Wintersemester 00/00) Aufgbenbltt (. Oktober 00)

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

Einführung in die Analysis. Prof. Dr. René Grothmann

Einführung in die Analysis. Prof. Dr. René Grothmann Einführung in die Anlysis Prof. Dr. René Grothmnn 2011 2 Vorwort Es hndelt sich bei diesem Skript nur um eine Zusmmenfssung der Vorlesung. Beweise und Beispiele wurden uf ein Minimum reduziert. Auch eine

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

Lernumgebungen zu den binomischen Formeln

Lernumgebungen zu den binomischen Formeln Lernumgebungen zu den binomischen Formeln Die Fchmittelschule des Kntons Bsel-Lnd ist ein dreijähriger Bildungsgng der zum Fchmittelschulzeugnis führt. Dbei entspricht die 1.FMS dem 10. Schuljhr. Zu Beginn

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik Grundsätzliche Vorussetzungen für die Fchoberschule b Klsse im Fch Mthemtik Zum Eintritt in die Fchoberschule ist der mittlere Bildungsbschluss Vorussetzung. Ds heißt, im Fch Mthemtik werden die, bis zur

Mehr

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg Arithmetik Lösungen Lö. Kpitel: Arithmetik. Ergenisse mit und ohne Lösungsweg Zu Aufge.: ) 7 ist eine rtionle Zhl, d sie sich ls Bruch us zwei gnzen Zhlen (Nenner 0) drstellen lässt: 7 7. 6 ) Eenso, denn

Mehr

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα.

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα. Trigonometrie Wenn mn die Trigonometrischen Funktionen Sinus, Kosinus und Tngens berechnen will, ist es wichtig, uf welchen Winkel sie sich beziehen. Die Kthete, die direkt m Winkel nliegt, heißt Ankthete

Mehr

Proseminar über Multimediale Lineare Algebra und Analytische Geometrie

Proseminar über Multimediale Lineare Algebra und Analytische Geometrie Studiengng Diplom-Berufspädgogik Unterrichtsfch Mthemtik Proseminr über Multimedile Linere Algebr und Anlytische Geometrie Ausrbeitung einer Sttsexmensufgbe us der Lineren Algebr Aufgbe 5 usgerbeitet von:

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3 .6 Bruchterme Inhltsverzeichnis Einführung und Repetition 2 2 Multipliktion und Division von Bruchtermen 3 3 Die Addition von zwei Bruchtermen-Methode I 3 4 Doppelbrüche 5 5 Die Addition von zwei Bruchtermen

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS Grundlgen in Mthemtik für die. Klssen der HMS und der FMS Einleitung In der Mthemtik wird häufig uf bereits Gelerntem und Beknntem ufgebut. Wer die Grundlgen nicht beherrscht, ht deshlb oft Mühe und Schwierigkeiten,

Mehr

Mathematik Brückenkurs

Mathematik Brückenkurs Rumpfskript zur Vorlesung Mthemtik-Brückenkurs /86 Mthemtik Brückenkurs im Fchbereich Informtik & Elektrotechnik Rumpfskript V7 Rumpfskript zur Vorlesung Mthemtik-Brückenkurs /86 Inhltsverzeichnis Mengen...

Mehr

Übungen zu Wurzeln III

Übungen zu Wurzeln III A.Nenner rtionl mchen: Nenner ist Qudrtwurzel: 5 bc 1.).).).) 5.) 1 15 9 bc.).) 8.) 9.) 10.) 5 5 B.Nenner rtionl mchen: Nenner ist höhere Wurzel: 1 1 9 5 1 1.).).).) 5.).) 5 C.Nenner rtionl mchen: Nenner

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Analysis I/II. Skript zur Vorlesung 2009/2010. Peter Junghanns

Analysis I/II. Skript zur Vorlesung 2009/2010. Peter Junghanns Skript zur Vorlesung Anlysis I/II 9/ Peter Junghnns Hinweis: Ds vorliegende Skript stellt nur ein Gerüst zu den Inhlten der Vorlesung dr. Die Vorlesung selbst bietet weiterführende Erläuterungen, Beweise

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

Analysis I im SS 2011 Kurzskript

Analysis I im SS 2011 Kurzskript Anlysis I im SS 2011 Kurzskript Prof. Dr. C. Löh Sommersemester 2011 Inhltsverzeichnis -2 Literturhinweise 2-1 Einführung 4 0 Grundlgen: Logik und Mengenlehre 5 1 Zählen, Zhlen, ngeordnete Körper 14 2

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

1.6 Bruchterme. 1 Theorie Lernziele Repetition Die Addition von zwei Bruchtermen-Methode I Doppelbrüche...

1.6 Bruchterme. 1 Theorie Lernziele Repetition Die Addition von zwei Bruchtermen-Methode I Doppelbrüche... .6 Bruchterme Inhltsverzeichnis Theorie. Lernziele............................................ Repetition............................................3 Die Addition von zwei Bruchtermen-Methode I.......................

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Vorbereitung für ds Probestudium n der LMU München 3. bis 7. September von W. Frks und O. Forster Integrle ls Flächeninhlte. Motivtion Flächeninhlte von Rechtecken sind

Mehr

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme Bruchterme und gebrochen rtionle Funktionen Der Quotient zweier Terme Es ist ist 3 : 4 3 und. 4 : 3 4 3 4 Dehnt mn die Bruchschreibweise uf Terme us, dnn erhält mn sog. Bruchteme. ² ( + ) : (3 + 4) + 3

Mehr

Übungen zur Analysis 2

Übungen zur Analysis 2 Mthemtisches Institut der Universität München Prof. Dr. Frnz Merkl Sommersemester 2013 Bltt 2 26.4.2013 Übungen zur Anlysis 2 2.1 Vernschulichung der Cuchy-Schwrz-Ungleichung. Gegeben seien die Vektoren

Mehr

Aufgaben zur Kreisgeometrie

Aufgaben zur Kreisgeometrie Dr. Krlhorst Meer Aufgben zur Kreisgeometrie 1. Frgen Die folgenden Aufgben sind entsprechend MEYER [1] geordnet und beziehen sich uf dieses Mnuskript. 1. Aufgben findet mn in jedem Buch über komplee Zhlen,

Mehr

$Id: integral.tex,v /05/15 13:14:04 hk Exp $ $Id: uneigentlich.tex,v /05/15 13:21:33 hk Exp $

$Id: integral.tex,v /05/15 13:14:04 hk Exp $ $Id: uneigentlich.tex,v /05/15 13:21:33 hk Exp $ Mthemtik für Ingenieure II, SS 9 Freitg 15.5 $Id: integrl.te,v 1.1 9/5/15 13:14:4 hk Ep $ $Id: uneigentlich.te,v 1. 9/5/15 13:1:33 hk Ep $ Integrlrechnung.5 Sonstige Integrtionstechniken Wir kommen nun

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

Analysis I Wintersemester 2002/03. W. Ebeling

Analysis I Wintersemester 2002/03. W. Ebeling Anlysis I Wintersemester 2002/03 W. Ebeling c Wolfgng Ebeling Institut für Algebrische Geometrie Leibniz Universität Hnnover Postfch 6009 30060 Hnnover E-mil: ebeling@mth.uni-hnnover.de Litertur [] M.

Mehr

2.5 Algebra. 1 Faktorisieren Terme faktorisieren (-1) ausklammern Terme mit Klammern faktorisieren... 3

2.5 Algebra. 1 Faktorisieren Terme faktorisieren (-1) ausklammern Terme mit Klammern faktorisieren... 3 2.5 Algebr Inhltsverzeichnis Fktorisieren 2. Terme fktorisieren...................................... 2.2 (-) usklmmern....................................... 2.3 Terme mit Klmmern fktorisieren..............................

Mehr

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen Themen Ntürliche und gnze gerde Eigenschften Besonderheiten - Beispiele { } Menge der ntürlichen { } Menge der ntürlichen mit Null { } Menge der gnzen IN = 1;2;3;4;... IN 0 = 0;1;2;3;4;... Z =...; 3; 2;

Mehr

Analysis I. Gunther H. Peichl. Institut für Mathematik Karl Franzens Universität Graz. Skriptum zur Vorlesung im SS 2011

Analysis I. Gunther H. Peichl. Institut für Mathematik Karl Franzens Universität Graz. Skriptum zur Vorlesung im SS 2011 Anlysis I Gunther H. Peichl Skriptum zur Vorlesung im SS 20 Institut für Mthemtik Krl Frnzens Universität Grz Inhltsverzeichnis Kpitel I. Reelle und komplexe Zhlen. Axiomtische Beschreibung der reellen

Mehr

A.25 Stetigkeit und Differenzierbarkeit ( )

A.25 Stetigkeit und Differenzierbarkeit ( ) A.5 Stetigkeit / Differenzierbrkeit A.5 Stetigkeit und Differenzierbrkeit ( ) Eine Funktion ist wenn die Kurve nicht unterbrochen wird, lso wenn mn sie zeichnen knn, ohne den Stift vom Bltt bzusetzen.

Mehr

1 Ergänzungen zur Differentialrechnung

1 Ergänzungen zur Differentialrechnung $Id: nlytisch.te,v 1.3 2011/04/13 11:01:11 hk Ep $ 1 Ergänzungen zur Differentilrechnung Dieses einleitende Kpitel wollen wir verwenden um den Anschluss n ds vorige Semester herzustellen. Eine direkte

Mehr

BRÜCKENKURS MATHEMATIK

BRÜCKENKURS MATHEMATIK Brückenkurs Linere Gleichungssysteme - Prof. r. M. Ludwig BRÜCKENKURS MATHEMATIK LINEARE GLEICHUNGSSYSTEME Schwerpunkte: Modellbildung Lösungsmethoden Geometrische Interprettion Prof. r. hbil. M. Ludwig

Mehr

Grundwissen Jahrgangsstufe 9

Grundwissen Jahrgangsstufe 9 Grundwissen Jhrgngsstufe 9 GM 9. Qudrtwurzeln und die Menge der reellen Zhlen QUADRATWURZELN Unter der Qudrtwurzel us einer Zhl (kurz: Wurzel us, Schreibweise ) versteht mn diejenige nichtnegtive Zhl,

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Verlauf Material LEK Glossar Lösungen. In acht Leveln zum Meister! Exponentialgleichungen lösen. Kerstin Langer, Kiel VORANSICHT

Verlauf Material LEK Glossar Lösungen. In acht Leveln zum Meister! Exponentialgleichungen lösen. Kerstin Langer, Kiel VORANSICHT Eponentilgleichungen lösen Reihe 0 S Verluf Mteril LEK Glossr Lösungen In cht Leveln zum Meister! Eponentilgleichungen lösen Kerstin Lnger, Kiel Klsse: Duer: Inhlt: Ihr Plus: 0 (G8) 5 Stunden Eponentilgleichungen

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Prof. Dr.Ing. W. Scheideler Brückenkurs Mthemtik WS 0/ us und überrbeitet von B. Eng. Sevd Hppel und Dipl.Ing. Jun Rojs Prof. Dr.Ing. W. Scheideler Inhltsverzeichnis Brüche, Potenzen und Wurzeln. Brüche..

Mehr

Einführung in die Mathematik. und. Analysis einer und mehrerer Veränderlicher

Einführung in die Mathematik. und. Analysis einer und mehrerer Veränderlicher Einführung in die Mthemtik und Anlysis einer und mehrerer Veränderlicher J. Wengenroth Trier, 2009/2010 Inhltsverzeichnis Kpitel 1. Mthemtische Sprche 1 Kpitel 2. Mengen und Abbildungen 5 Kpitel 3. Reelle

Mehr

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen Seminr Quntum Computtion - Finite Qunten-Automten und Qunten-Turingmschinen Sebstin Scholz sscholz@informtik.tu-cottbus.de Dezember 3. Einleitung Aus der klssischen Berechenbrkeitstheorie sind die odelle

Mehr

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt?

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt? ZÜ 2.1 Aufgbe 2.1 Drei Kugeln K 1, K 2 und K 3 Mssen, m 2 und m 3 befinden sich in einer Rille und berühren sich nicht. Die erste Kugel gleitet mit der Geschwindigkeit v1 und stößt vollkommen elstisch

Mehr

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor) Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, christin.mosch@uni-ulm.de 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art

Mehr

Wirsberg-Gymnasium Grundwissen Mathematik 8. Jahrgangsstufe. -fache

Wirsberg-Gymnasium Grundwissen Mathematik 8. Jahrgangsstufe. -fache Wirsberg-Gymnsium Grundwissen Mthemtik. Jhrgngsstue Lerninhlte Fkten-Regeln-Beispiele Proportionlität Gehört bei einer Zuordnung zum r-chen der einen Größe ds r-che der nderen Größe, so spricht mn von

Mehr

Mathematik für Physiker I

Mathematik für Physiker I Vorlesungsskript Mthemtik für Physiker I Dr. Jörg Härterich Ruhr-Universität Bochum Wintersemester 2007/08 Inhltsverzeichnis Mengen, Abbildungen und Zhlen 5. Mengen.........................................

Mehr

Zahlen und Grundrechenarten

Zahlen und Grundrechenarten Zhlen und Grundrechenrten In diesem Kpitel... Ntürliche Zhlen durch die Nchfolgeropertion erkennen Mit Differenzen zu den gnzen Zhlen Mit Quotienten zu den rtionlen Zhlen Irrtionle Zhlen hinzunehmen v

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

Numerische Integration durch Extrapolation

Numerische Integration durch Extrapolation Numerische Integrtion durch Extrpoltion Pblo Thiel Romberg-Verfhren Idee: Im Gegenstz zur numerischen Integrtion mit Hilfe der einfchen bzw. zusmmengesetzten Trpez-, Simpson-, 3/8- oder zum Beispiel der

Mehr

VORSCHAU. zur Vollversion. Inhalt. Seite. Vorwort 5. Zahlenarten 6 10 Zahlenarten. Grundrechenarten 7-11

VORSCHAU. zur Vollversion. Inhalt. Seite. Vorwort 5. Zahlenarten 6 10 Zahlenarten. Grundrechenarten 7-11 Inhlt Seite Vorwort 5 1 3 4 5 6 7 8 9 10 Zhlenrten 6 10 Zhlenrten Grundrechenrten 7-11 Die vier Grundrechenrten Übungskiste C Übungskiste D Punktrechnung und Strichrechnungen Positive und negtive Zhlen

Mehr

Lösung Arbeitsblatt Geometrie / Trigonometrie

Lösung Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Lösung Arbeitsbltt Geometrie / Trigonometrie Dozent: - Brückenkurs Mthemtik 016 Winkelbeziehugen

Mehr

1. Elementare Grundlagen 1.1. Vollständige Induktion und der binomische Lehrsatz. Wir folgen weitgehend den Überlegungen in Forster, Kapitel 1.

1. Elementare Grundlagen 1.1. Vollständige Induktion und der binomische Lehrsatz. Wir folgen weitgehend den Überlegungen in Forster, Kapitel 1. 1. Elementre Grundlgen 1.1. Vollständige Induktion und der binomische Lehrstz. Wir folgen weitgehend den Überlegungen in Forster, Kpitel 1. Die ohne Beweis ufgeführten Sätze sind mit den Sätzen identisch,

Mehr

Grundwissen Mathematik Klasse 9 Übungsaufgaben

Grundwissen Mathematik Klasse 9 Übungsaufgaben Grundwissen Mthemtik Klsse 9 Übungsufgben Rechnen mit Wurzeln:. Rdiziere so weit wie möglich! 7 8 b c d) e) ( b ) f) b c ( ) g) b b. Berechne! ( 8 8 )( 7 ) 7 9 9. Mche den Nenner rtionl und vereinfche

Mehr

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable.

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable. Sttistik I für Sttistiker, Mthemtiker und Informtiker Lösungen zu Bltt 11 Gerhrd Tutz, Jn Ulbricht, Jn Gertheiss WS 7/8 Theorie: Stetige Zufllsvriblen Begriff Stetigkeit: Eine Vrible oder ein Merkml X

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

9 Das Riemannsche Integral

9 Das Riemannsche Integral 1 9 Ds Riemnnsche Integrl 9.1 Definition und Beispiele Sei I = [, ] R mit

Mehr

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist. 6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,

Mehr

3 Brüche, Rationale Zahlen

3 Brüche, Rationale Zahlen 32 3 Brüche, Rtionle Zhlen 3.1 Brüche und Bruchzhlen Ntürliche Zhlen knn mn ls Mßzhlen benutzen, indem mn vorgegebene Gegenstände mit Mßeinheiten vergleicht: Ein Blken ist 3 Meter lng, ht eine Msse von

Mehr

Analysis I. Inhaltsverzeichnis. Martin Brokate. 1 Aussagen, Mengen, Abbildungen 1. 2 Das Prinzip der vollständigen Induktion 14

Analysis I. Inhaltsverzeichnis. Martin Brokate. 1 Aussagen, Mengen, Abbildungen 1. 2 Das Prinzip der vollständigen Induktion 14 Anlysis I Mrtin Brokte Inhltsverzeichnis Aussgen, Mengen, Abbildungen 2 Ds Prinzip der vollständigen Induktion 4 3 Die reellen Zhlen 8 4 Folgen 29 5 Die komplexen Zhlen 40 6 Reihen 44 7 Unendliche Mengen

Mehr

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt 2 Linere Opertoren Im Folgenden seien X,Y, Z stets normierte Räumen über dem selben Körper K = C oder K = R. 2.1. Definition. () Eine Abbildung T : X Y heißt liner, flls T(αx + βy) = αtx + βty x,y X, α,

Mehr

Analysis 1 und 2. Ernst Albrecht

Analysis 1 und 2. Ernst Albrecht Anlysis 1 und 2 Ernst Albrecht Vorlesungen im Wintersemester 2005/06 und Sommersemester 2006 Universität des Srlndes Srbrücken Stnd: 20. Juli 2006 Inhltsverzeichnis Kpitel 0. Zur Vorbereitung 1 1. Grundbegriffe

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Kapitel 4 Differentialrechnung in mehreren Variablen. 4.1 Topologie des R n und Stetigkeit von Funktionen

Kapitel 4 Differentialrechnung in mehreren Variablen. 4.1 Topologie des R n und Stetigkeit von Funktionen Kpitel 4 Differentilrechnung in mehreren Vriblen 4.1 Topologie des R n und Stetigkeit von Funktionen Gegenstnd dieses Kpitels sind Funktionen in mehreren Vriblen. Wir können die Definitionsbereiche solcher

Mehr

Satzgruppe des Pythagoras

Satzgruppe des Pythagoras Humboldt-Universität zu Berlin Institut für Mthemtik Dr. I. Lehmnn: Ausgewählte Kpitel der Didktik der Mthemtik WS 2008/09 Referentinnen: Undine Pierschel & Corneli Schulz 16.12.2008 Stzgruppe des Pythgors

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse Elemente der Anlysis II: Zusmmenfssung der wichtigsten Definitionen und Ergebnisse J. Wengenroth Dies ist die einzige zugelssene Formelsmmlung, die bei der Klusur benutzt werden drf. Es dürfen Unterstreichungen

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

U berblick. Knoten und Zo pfe. Knoten sind u berall in unserer 3-dimensionalen Welt. Knoten finden sich auch in den Naturwissenschaften

U berblick. Knoten und Zo pfe. Knoten sind u berall in unserer 3-dimensionalen Welt. Knoten finden sich auch in den Naturwissenschaften U berblick Knoten und Zo pfe 1 Motivierende Frgen Spin Jonglge hirlit t 2 Zo pfe Wie modelliert mn Zo pfe? Wie rechnet mn mit Zo pfen? nwendung uf Dirc Zo pfe 3 Knoten Wie modelliert mn Knoten? Wie rechnet

Mehr

60 -Verwandte der pythagoreischen Zahlentripel

60 -Verwandte der pythagoreischen Zahlentripel Elem. Mth. 58 (200) 118 126 001-6018/0/00118-9 DOI 10.1007/s00017-00-0195-y c Birkhäuser Verlg, Bsel, 200 Elemente der Mthemtik 60 -Verwndte der pythgoreischen Zhlentripel Albrecht Schultz Albrecht Schultz,

Mehr

Analysis mit dem Voyage 1

Analysis mit dem Voyage 1 Anlysis mit dem Voyge 1 1. Kurvendiskussion Gegeben ist die Funktionschr Den Nenner erhält mn mit Hilfe der Funktion getdenom. Zeros liefert die Nullstellen des Nenners und dmit die Werte, die us dem Definitionsbereich

Mehr

Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik

Der Goldene Schnitt. III. Der Goldene Schnitt in der Mathematik Der Goldene Schnitt III. Der Goldene Schnitt in der Mthemtik 1. Herleitung des Goldenen Schnitt Per Definition des Goldenen Schnitt gilt: b = b. (>b>0) Nch der Drstellung (s.o.) gilt, wenn S (der mittlere

Mehr

ARBEITSBLATT 14 ARBEITSBLATT 14

ARBEITSBLATT 14 ARBEITSBLATT 14 Mthemtik: Mg. Schmid Wolfgng reitsltt. Semester RBEITSBLTT RBEITSBLTT RBEITSBLTT RBEITSBLTT DS VEKTORPRODUKT Definition: Ds vektorielle Produkt (oder Kreuprodukt) weier Vektoren und ist ein Vektor mit

Mehr

5 Ellipsen, Parabeln und Hyperbeln

5 Ellipsen, Parabeln und Hyperbeln 5 Ellipsen, Prbeln und Hperbeln Ellipsen: Seien b > reelle Zhlen und E = E,b := { + b = } Eine Qudrik Q R heißt Ellipse, wenn es reelle Zhlen b > gibt, so dss q E,b. Die Kurven E,b heißen Ellipsen in metrischer

Mehr

2.5 Messbare Mengen und Funktionen

2.5 Messbare Mengen und Funktionen 1 2.5 Messbre Mengen und Funktionen Definition Eine beschränkte Menge M R n heißt messbr, flls die chrkteristische Funktion χ M integrierbr ist. Die Zhl vol n (M) := χ M dµ n nennt mn ds Volumen von M.

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

FernUniversität Gesamthochschule in Hagen

FernUniversität Gesamthochschule in Hagen FernUniversität Gesmthochschule in Hgen FACHBEREICH MATHEMATIK LEHRGEBIET KOMPLEXE ANALYSIS Prof. Dr. Andrei Dum Proseminr 9 - Anlysis Numerische Integrtion Ulrich Telle Mtrikel-Nr. 474 Köln, den 7. Dezember

Mehr