Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Größe: px
Ab Seite anzeigen:

Download "Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit"

Transkript

1 WS 008/09 7 Elementrmthemtik (LH) und Fehlerfreiheit. Zhlenbereiche... Die rtionlen Zhlen... Definition Die Definition der rtionlen Zhlen erfolgt hier innermthemtisch ebenflls wie diejenige der gnzen Zhlen über eine Äquivlenzklsse. Wir betrchten die Menge IN IN ller Pre ntürlicher Zhlen und definieren folgende Äquivlenzreltion: (, b) ~ (c, d) flls d = c b mit, b, c, d IN 4 (, 6) ~ (, 4) d 6 = 4 = 6 Die Zhlenpre (; 6) und (, 4) definieren lso die Eigenschft einer Äquivlenzklsse. Alle Zhlenpre mit dieser Eigenschft legen eine Äquivlenzklsse fest, hier die Zhl. = { 4 6 ; 6 9 ; 8 ;...} Auf diese Weise erhlten wir beliebig viele neue Zhlen. Wir bezeichnen sie ls rtionle Zhlen und schreiben QI. heißt Bruchzhl, 4 6 ; 6 9 ; 8 ;... sind Brüche. Im Bereich der Schulmthemtik wird die Notwendigkeit der Zhlenbereichserweiterung meist mit der Nichtbgeschlossenheit der Division in IN begründet. Beispiel: : 8 = 8 Ein Bruch ist lso eine Schreibfigur, d. h. eine ndere Drstellung eines Quotienten.... Arten von Brüchen ) Stmmbruch: Bruch mit dem Zähler b) bgeleiteter Bruch: lle Nichtstmmbrüche c) echter Bruch: b mit < b d) unechter Bruch: b mit > b e) Scheinbruch: b mit b = n f) endlicher Bruch g) reinperiodische Bruch h) gemischtperiodischer Bruch i) Kehrbruch: b heißt Kehrbruch von b. ; ;... ; 4 6 ;... Es gilt b b =., b IN

2 WS 008/09 7 Elementrmthemtik (LH) und Fehlerfreiheit..4. Fchsprchliche Anmerkungen zu QI... Kulturhistorische Anmerkungen Brüche bei den Ägyptern Die Ägypter verwendeten für die Stufenzhlen besondere Zeichen Mit diesen Zeichen und mit Hilfe der Hieroglyphe "Mund" stellten sie Brüche dr. Reichte der Pltz unter dem Zeichen "Mund" nicht us, so wurden die restlichen Zeichen dneben geschrieben. Die Ägypter knnten nur Stmmbrüche. 7 zerlegten sie deshlb in die Stmmbrüche 4 und und schrieben. 7 = 4 + Brüche im Mittellter Im 6. Jhrhundert suchte mn die Mthemtik durch die Einführung von Symbolen zu vereinfchen. Mn htte erknnt, dss die Beschreibung mthemtischer Schverhlte durch Worte sehr schwerfällig wr und den Fortschritt der Mthemtik behinderte. Aus dem Rechenbuch von Adm Riese So festigte sich in dieser Zeit erst die Verwendung des Bruchsymbols mit Bruchstrich, Zähler und Nenner...6. Rechnen in QI ) Kürzen * * b n Lässt sich ein Bruch (*, b* IN) in der Form = (, b, n IN), so nennen wir b n b diese Umwndlung Kürzen. Der umgekehrte Vorgng heißt erweitern. b) Addition und Subtrktion Es gelten die Regeln der Addition und Subtrktion in Z in nloger Weise. Insbesondere können lle rtionlen Zhlen ebenflls ls Pfeile drgestellt werden. c) Multipliktion in Q I c) Bruch ml gnze Zhl Wir vernschulichen die Multipliktion 4. 4 = Mn multipliziert den Zähler mit der gnzen Zhl und behält den Nenner bei. = 8

3 WS 008/09 7 Elementrmthemtik (LH) und Fehlerfreiheit cb) Bruch ml Bruch Wir wollen ein Drittel von 4 berechnen. Dies entspricht der Multipliktion. Wir ver- 4 nschulichen diese Multipliktion so: 4 von von von 4 = = = 4 4 Mn multipliziert Zähler mit Zähler und Nenner mit Nenner und bildet den Bruch us Zählerprodukt und Nennerprodukt. d) Division d) Bruch durch ntürliche Zhl Wir vernschulichen die Division 9 :. Bei der Division eines Bruchs durch eine ntürliche Zhl sind zwei Fälle zu unterscheiden.. Der Divisor ist Teiler des Zählers Mn dividiert den Zähler durch die Zhl und behält den Nenner bei.. Der Divisor ist kein Teiler des Zählers Der Bruch muss so erweitert werden, dss der Divisor ein Teiler des Zählers w ird. Mn v erwendet den Divisor ls Erweiterungszhl. 9 = 7 : 8 = 7 : 7 := = oder 7 7 : = 8 8 Mn multipliziert den Nenner mit der Zhl und behält den Zähler bei. db) Bruch durch Bruch Um den Wert des Quotienten der Brüche und 7 zu bestimmen, verwenden wir die Eigenschft b b = des Kehrbruchs. Wir suchen eine Zhl x, für die gilt: 7 x = x = : 7 Wegen b b = gilt uch: 7 7 = x = 7 Multipliktion mit : : 7 = : 7 Vereinfcht können wir schreiben: : 7 = 7 Sttt durch einen Bruch zu dividieren, multipliziert mn mit dem Kehrbruch. Gemischte Zhlen werden bei der Division in unechte Brüche umgewndelt.

4 WS 008/09 7 Elementrmthemtik (LH) und Fehlerfreiheit..7. Übungsbltt: Rtionle Zhlen Aufgbe Klssifizieren Sie folgende Brüche. ; ; 9 7 ; ; 6 ; 8 ; 9 4 ; Aufgbe Die Periode eines Bruchs mit dem Nenner n knn höchstens n Stellen hben. Begründen Sie diesen Stz elementrmthemtisch. Aufgbe Wnn entsteht keine Periode. Stellen Sie zur Begründung den Dezimlbruch 0,4679 ls summe von Brüchen mit Zehnerpotenzen ls Nenner dr.

5 WS 008/09 7 Elementrmthemtik (LH) und Fehlerfreiheit Lösungen zu Übungsbltt. Rtionle Zhlen Zu Aufgbe = 0, 6 = 0, =,874 = 0, echter Bruch echter Bruch unechter Bruch echter Bruch rein per. rein per. rein per. endlich 6 ; 8 ; 9 4 ; Scheinruch unechter Bruch unechter Bruch endlich gemischt per. Zu Aufgbe Es bleiben für die Zhl IN die Reste,,, 4 bis Nenner minus. Zu Aufgbe Die Zhl 0,4679 knn mn in Brüchen so schreiben: 0,4679 = Alle Brüche, deren Nenner eine Potenz von 0 (, 0, 00, 000,...) sind, hben keine Periode. Folgerung: Nur Brüche, deren Nenner (im vollständig gekürzten Zustnd) keine nderen Primfktoren ls Vielfche von und/oder besitzen, ergeben einen nichtperiodischen Dezimlbruch, der eine endliche Zhl n Kommstellen besitzt.

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

1 Grundlagen der Mathematik Lösen Sie die nachfolgenden grundlegenden Aufgaben.

1 Grundlagen der Mathematik Lösen Sie die nachfolgenden grundlegenden Aufgaben. ALGEBRA GRUNDRECHENARTEN MULTIPLIZIEREN Grundlgen der Mthemtik Lösen Sie die nchfolgenden grundlegenden Aufgben. Beweisen Sie durch Ausrechnung, dss b ) b ist! ( Wichtige mthemtische Regeln: 0 = 0 = 0

Mehr

Grundlagen der Algebra

Grundlagen der Algebra PH Bern, Vorbereitungskurs MATHEMATIK Vorkenntnisse 0 Grundlgen der Algebr Einleitung Auf den nchfolgenden Seiten werden grundlegende Begriffe und Ttschen der Algebr erläutert: Zhlenmengen, Rechenopertionen,

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen Die ntürlichen Zhlen (zusmmen mit der Addition und der Multipliktion) wurden in Kpitel 3 xiomtisch eingeführt. Aus den ntürlichen Zhlen knn mn nun die gnzen Zhlen Z = {..., 2, 1, 0, 1, 2,...} die rtionlen

Mehr

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b Grundlgen 0.0. Zhlbereiche ntürliche Zhlen: N = {0; ; 2;...} (nch DIN 547) N = N \ {0} gnze Zhlen: Z = {... 2; ; 0; ; 2;...} rtionle Zhlen: Q = { p p, q Z, q 0} q Q besteht us llen Bruchzhlen. reelle Zhlen:

Mehr

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 KARLHEINZ GRÖCHENIG So wie Sort Trining erfordert, erfordert Mthemtik ds selbständige Lösen von Übungsufgben. Ds wesentliche n den Übungen ist ds Selbermchen!

Mehr

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlgen der Mthemtik, WS 2014/15 Thoms Timmermnn 3. Dezember 2014 Wiederholung: Konstruktion der gnzen Zhlen (i) Betrchten formle Differenzen b := (, b) mit, b N 0 (ii) Setzen b c d, flls +

Mehr

1. Grundlagen. 2. Summenzeichen, Produktzeichen. 3. Fakultät, Binomialkoeffizient. 4. Potenzen, Wurzeln, Logarithmen. 5. Elementare Funktionen

1. Grundlagen. 2. Summenzeichen, Produktzeichen. 3. Fakultät, Binomialkoeffizient. 4. Potenzen, Wurzeln, Logarithmen. 5. Elementare Funktionen Inhlte Brückenkurs Mthemtik Fchhochschule Hnnover SS 00 Dipl.-Mth. Corneli Reiterger. Grundlgen. Summenzeichen, Produktzeichen. Fkultät, Binomilkoeffizient. Potenzen, Wurzeln, Logrithmen. Elementre Funktionen

Mehr

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme Bruchterme und gebrochen rtionle Funktionen Der Quotient zweier Terme Es ist ist 3 : 4 3 und. 4 : 3 4 3 4 Dehnt mn die Bruchschreibweise uf Terme us, dnn erhält mn sog. Bruchteme. ² ( + ) : (3 + 4) + 3

Mehr

1.2 Eigenschaften der reellen Zahlen

1.2 Eigenschaften der reellen Zahlen 12 Kpitel 1 Mthemtisches Hndwerkszeug 12 Eigenschften der reellen Zhlen Alle Rechenregeln der Grundrechenrten der reellen Zhlen lssen sich uf einige wenige Rechengesetze zurückführen, die in der folgenden

Mehr

Relationen: Äquivalenzrelationen, Ordnungsrelationen

Relationen: Äquivalenzrelationen, Ordnungsrelationen TH Mittelhessen, Sommersemester 202 Lösungen zu Üungsltt 9 Fchereich MNI, Diskrete Mthemtik 2. Juni 202 Prof. Dr. Hns-Rudolf Metz Reltionen: Äquivlenzreltionen, Ordnungsreltionen Aufge. Welche der folgenden

Mehr

Übungen zu Wurzeln III

Übungen zu Wurzeln III A.Nenner rtionl mchen: Nenner ist Qudrtwurzel: 5 bc 1.).).).) 5.) 1 15 9 bc.).) 8.) 9.) 10.) 5 5 B.Nenner rtionl mchen: Nenner ist höhere Wurzel: 1 1 9 5 1 1.).).).) 5.).) 5 C.Nenner rtionl mchen: Nenner

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Bruchrechnung. W. Kippels 6. Dezember Inhaltsverzeichnis. 1 Vorwort 2. 2 Einleitung 3

Bruchrechnung. W. Kippels 6. Dezember Inhaltsverzeichnis. 1 Vorwort 2. 2 Einleitung 3 Bruchrechnung W. Kippels 6. Dezemer 08 Inhltsverzeichnis Vorwort Einleitung Die Bruchrechenregeln. Addition gleichnmiger Brüche........................ Addition ungleichnmiger Brüche.......................

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mthemtik für Informtiker I (Wintersemester 00/00) Aufgbenbltt (. Oktober 00)

Mehr

Algebra-Training. Theorie & Aufgaben. Serie 3. Bruchrechnen. Theorie: Katharina Lapadula. Aufgaben: Bernhard Marugg. VSGYM / Volksschule Gymnasium

Algebra-Training. Theorie & Aufgaben. Serie 3. Bruchrechnen. Theorie: Katharina Lapadula. Aufgaben: Bernhard Marugg. VSGYM / Volksschule Gymnasium Algebr-Trining Theorie & Aufgben Serie Bruchrechnen Theorie: Kthrin Lpdul Aufgben: Bernhrd Mrugg VSGYM / Volksschule Gymnsium Liebe Schülerin, lieber Schüler Der Leitspruch «Übung mcht den Meister» gilt

Mehr

1.6 Bruchterme. 1 Theorie Lernziele Repetition Die Addition von zwei Bruchtermen-Methode I Doppelbrüche...

1.6 Bruchterme. 1 Theorie Lernziele Repetition Die Addition von zwei Bruchtermen-Methode I Doppelbrüche... .6 Bruchterme Inhltsverzeichnis Theorie. Lernziele............................................ Repetition............................................3 Die Addition von zwei Bruchtermen-Methode I.......................

Mehr

ist ein Quotient ganzer Zahlen m,n Z und n = 0. Dabei heißt m Zähler und n Nenner. Wegen m 1 = m ist Z eine Teilmenge von Q. Zwei Brüche sind gleich:

ist ein Quotient ganzer Zahlen m,n Z und n = 0. Dabei heißt m Zähler und n Nenner. Wegen m 1 = m ist Z eine Teilmenge von Q. Zwei Brüche sind gleich: Vorlesung 4 Zhlenbereiche 4.1 Rtionle Zhlen Wir hben gesehen, dss nicht jedes Eleent us Z ein ultipliktives Inverses besitzt. Dies führt zur Einführung der rtionlen Zhlen Q, obei der Buchstbe Q für Quotient

Mehr

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3 .6 Bruchterme Inhltsverzeichnis Einführung und Repetition 2 2 Multipliktion und Division von Bruchtermen 3 3 Die Addition von zwei Bruchtermen-Methode I 3 4 Doppelbrüche 5 5 Die Addition von zwei Bruchtermen

Mehr

Brüche gleichnamig machen

Brüche gleichnamig machen Brüche gleichnmig mchen L Ds Erweitern von Brüchen (siehe L ) ist lediglich ein Instrument, ds vorwiegend eingesetzt wird, um Brüche mit unterschiedlichem Divisor gleichnmig zu mchen. Brüche gleichnmig

Mehr

3. Das Rechnen mit Brüchen (Rechnen in )

3. Das Rechnen mit Brüchen (Rechnen in ) . Ds Rechnen mit Brüchen (Rechnen in ) Brüche sind Teile von gnzen Zhlen. Zwischen zwei unterschiedlichen gnzen Zhlen ht es immer unendlich viele Brüche. Brüche entstehen us einer Division; eine gnze Zhl

Mehr

RESULTATE UND LÖSUNGEN

RESULTATE UND LÖSUNGEN TG TECHNOLOGISCHE GRUNDLAGEN Kpitel 3 Mthemtik Kpitel 3.2 Alger Grundrechenrten RESULTATE UND LÖSUNGEN Verfsser: Hns-Rudolf Niedererger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausge:

Mehr

Grundoperationen Aufgaben

Grundoperationen Aufgaben Grundopertionen Aufgben Ausklmmern Hben lle Summnden einer lgebrischen Summe einen gemeinsmen Fktor, so knn mn diesen gemeinsmen Fktor usklmmern. Die Summe wird ddurch in ein Produkt umgewndelt. Vor dem

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6. Vorbemerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Opertionen. Sie heben sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

FK03 Mathematik I: Übungsblatt 1; Lösungen

FK03 Mathematik I: Übungsblatt 1; Lösungen FK03 Mthemtik I: Übungsbltt 1; Lösungen Verständnisfrgen: 1. Woher stmmen die Objekte in einer Menge? Die Objekte einer Menge entstmmen unserer Anschuung und unserem Denken. 2. Welche Drstellungen von

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3.

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3. 5 5. Einführung Die Gleichung x 9 ht die Lösung. x 9 Z 9 x Die Gleichung x ht die Lösung. x Z x Definition Die Gleichung x, mit, Z und 0, ht die Lösung: x x Ist kein Vielfches von, so entsteht eine neue

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist 6- Elementre Zhlentheorie 6 Frey-Folgen Die Menge F n der rtionlen Zhlen mit n und (zusmmen mit der Ordnung ) nennt mn die n-te Frey-Folge, zum Beispiel ist F = { < < < < < < < < < < } Offensichtlich gilt:

Mehr

3 Hyperbolische Geometrie

3 Hyperbolische Geometrie Ausgewählte Kpitel der Geometrie 3 Hperbolische Geometrie [... ] Im Folgenden betrchten wir nun spezielle gebrochen-linere Abbildungen, nämlich solche, für die (mit den Bezeichnungen ϕ,b,c,d wie oben die

Mehr

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS Grundlgen in Mthemtik für die. Klssen der HMS und der FMS Einleitung In der Mthemtik wird häufig uf bereits Gelerntem und Beknntem ufgebut. Wer die Grundlgen nicht beherrscht, ht deshlb oft Mühe und Schwierigkeiten,

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist. 6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,

Mehr

G2 Grundlagen der Vektorrechnung

G2 Grundlagen der Vektorrechnung G Grundlgen der Vektorrechnung G Grundlgen der Vektorrechnung G. Die Vektorräume R und R Vektoren Beispiel: Physiklische Größen wie Krft und Geschwindigkeit werden nicht nur durch ihre Mßzhl und ihre Einheit,

Mehr

7-1 Elementare Zahlentheorie. 1 a ist quadratischer Rest modulo p, 1 falls gilt a ist quadratischer Nichtrest modulo p, 0 p a. mod p, so ist.

7-1 Elementare Zahlentheorie. 1 a ist quadratischer Rest modulo p, 1 falls gilt a ist quadratischer Nichtrest modulo p, 0 p a. mod p, so ist. 7-1 Elementre Zhlentheorie 7 Ds udrtische Rezirozitätsgesetz 70 Erinnerung Sei eine ungerde Primzhl, sei Z In 114 wurde ds Legendre-Symbol eingeführt: 1 ist udrtischer Rest modulo, 1 flls gilt ist udrtischer

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

Lerninhalte Fakten-Regeln-Beispiele Quelle. -fache

Lerninhalte Fakten-Regeln-Beispiele Quelle. -fache Friedrich-Alender-Gymnsium Grundwissen Mthemtik. Jhrgngsstufe Lerninhlte Fkten-Regeln-Beispiele Quelle Proportionlität Gehört bei einer Zuordnung zum r-fchen der einen Größe ds r-fche der nderen Größe,

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Doch beim Potenzieren gibt es eine zweite Umkehrung: das Logarithmieren.

Doch beim Potenzieren gibt es eine zweite Umkehrung: das Logarithmieren. 0. Logrithmen Wie die Diision die Umkehrung der Multipliktion ist, so ist ds Wurzelziehen die Umkehrung des Potenzierens. b c c : b b c c b Doch beim Potenzieren gibt es eine zweite Umkehrung: ds Logrithmieren.

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik Grundsätzliche Vorussetzungen für die Fchoberschule b Klsse im Fch Mthemtik Zum Eintritt in die Fchoberschule ist der mittlere Bildungsbschluss Vorussetzung. Ds heißt, im Fch Mthemtik werden die, bis zur

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Mthemtik: Mg Schmid Wolfgng Arbeitsbltt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Bisher hben wir die Lge von Punkten und Gerden lediglich in der Ebene betrchtet. Nun wollen wir die Lge dieser

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = 3 Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

Gib die richtigen Fachbegriffe an. Welche Information gibt der Nenner eines Bruches an?

Gib die richtigen Fachbegriffe an. Welche Information gibt der Nenner eines Bruches an? 1 6/1 Gib die richtigen Fachbegriffe an. 2 6/1 Welche Information gibt der Nenner eines Bruches an? 3 6/1 Welcher Bruchteil ist markiert? 4 6/1 Welcher Bruchteil ist markiert? 5 6/1 Welcher Bruchteil ist

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Training Abschlussprüfung Mathematik. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Training Abschlussprüfung Mathematik. Das komplette Material finden Sie hier: Unterrichtsmterilien in digitler und in gedruckter Form Auszug us: Trining Abschlussprüfung Mthemtik Ds komplette Mteril finden Sie hier: School-Scout.de Bergedorfer Unterrichtsideen Mrco Bettner, Michel

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Grundwissen l Klasse 5

Grundwissen l Klasse 5 Grundwissen l Klsse 5 1 Zhlenmengen und Punktmengen {1; 2; 3; 4; 5; 6;... } Die Menge der ntürlichen Zhlen. 0 {0; 1; 2; 3; 4; 5;... } Die Menge der ntürlichen Zhlen mit Null. M {; ; C;... } Die Menge der

Mehr

Regeln zur Bruchrechnung

Regeln zur Bruchrechnung Regeln zur Bruchrechnung Brüche und Anteile Zur Beschreibung von Anteilen verwendet man Brüche (von gebrochen, z. B. eine Glasscheibe) wie 5 ; 5 oder 9. Die obere Zahl (über dem Bruchstrich) heißt Zähler,

Mehr

2 2 Reguläre Sprachen. 2.6 Minimale DFAs und der Satz von Myhill-Nerode. Übersicht

2 2 Reguläre Sprachen. 2.6 Minimale DFAs und der Satz von Myhill-Nerode. Übersicht Formle Systeme, Automten, Prozesse Übersicht 2 2.1 Reguläre Ausdrücke 2.2 Endliche Automten 2.3 Nichtdeterministische endliche Automten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.7 Berechnung

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT Mthemtik: Mg. Schmid Wolfgng Areitsltt 5. Semester ARBEITSBLATT 5 ORTHOGONALITÄT Ws versteht mn zunächst einml unter orthogonl? Dies ist nur ein nderes Wort für norml oder im rechten Winkel. Ws uns hier

Mehr

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen 7. Mthemtik Olympide. Stufe (Kreisolympide) Klsse 9 Sison 1967/1968 Aufgben und Lösungen 1 OJM 7. Mthemtik-Olympide. Stufe (Kreisolympide) Klsse 9 Aufgben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen

Mehr

Rechenregeln. Bezeichnung Regel Bemerkung/Beispiel. Der Betrag einer Zahl ist stets ein positiver Wert. Strichrechnungen

Rechenregeln. Bezeichnung Regel Bemerkung/Beispiel. Der Betrag einer Zahl ist stets ein positiver Wert. Strichrechnungen 1 Rechenregeln Betrg einer Zhl Subtrktion Kommuttivität der Addition (Vertuschungsgesetz) Assozitivgesetz der Addition (Verbindungsgesetz) Vorzeichenregeln Vorzeichen vor Klmmern Definition der Multipliktion

Mehr

Arbeitsblatt 1 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/

Arbeitsblatt 1 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/ 1. November 006 Arbeitsbltt 1 Übungen zu Mthemtik I für ds Lehrmt n der Grund- und Mittelstufe sowie n Sonderschulen H. Strde, B. Werner WiSe 06/07 4.10.06 Präsenzufgben: 1. Zeige: Sei p eine (un) gerde

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011 Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 011 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Snder Bruggink Automten und Formle Sprchen 1 Reguläre Sprchen Wir eschäftigen uns

Mehr

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg Arithmetik Lösungen Lö. Kpitel: Arithmetik. Ergenisse mit und ohne Lösungsweg Zu Aufge.: ) 7 ist eine rtionle Zhl, d sie sich ls Bruch us zwei gnzen Zhlen (Nenner 0) drstellen lässt: 7 7. 6 ) Eenso, denn

Mehr

Übungsaufgaben 2. Komplexe Zahlen. sin 2 ; 2 sin cos D 2 cos 2 1; 2 sin cos D 1 2 sin 2 ; 2 sin cos. 3 k. kd0.cos ; 0/ k.

Übungsaufgaben 2. Komplexe Zahlen. sin 2 ; 2 sin cos D 2 cos 2 1; 2 sin cos D 1 2 sin 2 ; 2 sin cos. 3 k. kd0.cos ; 0/ k. Übungsufgben Komlexe Zhlen Aufgbe. Mn zeige (mit Hilfe der binomischen und der Moivre-Formel), dß..cos ; sin / D cos ; sin cos D sin ; sin cos,..cos ; sin / D 4 cos cos ; sin 4 sin, für lle Œ0; Œ gilt!

Mehr

Kapitel 9 Integralrechnung

Kapitel 9 Integralrechnung Kpitel 9 Integrlrechnung Kpitel 9 Integrlrechnung Mthemtischer Vorkurs TU Dortmund Seite 1 / 18 Kpitel 9 Integrlrechnung Definition 9.1 (Stmmfunktion) Es seien f, F : I R Funktionen. F heißt Stmmfunktion

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7 Universität Bsel Wirtschftswissenschftliches Zentrum Abteilung Quntittive Methoden Mthemtischer Vorkurs Dr. Thoms Zehrt Differentil- und Integrlrechnung Inhltsverzeichnis 1 Differenzen- und Differentilquotient

Mehr

Brüche. Brüche beschreiben Bruchteile. M 6.1. von 100 kg) 3 = (100 kg 4) 3 = 25 kg 3 = 75 kg

Brüche. Brüche beschreiben Bruchteile. M 6.1. von 100 kg) 3 = (100 kg 4) 3 = 25 kg 3 = 75 kg M 6. Brüche Brüche beschreiben Bruchteile. 3 4 von 00 kg = ( 4 von 00 kg) 3 = (00 kg 4) 3 = kg 3 = 7 kg Die Schokoladentafel hat 4 Stückchen, d.h. ein Stückchen entspricht dem Anteil 4 Carina Kahoun (08)

Mehr

Der Gauß - Algorithmus

Der Gauß - Algorithmus R Brinkmnn http://brinkmnn-du.de Seite 7..9 Der Guß - Algorithmus Der Algorithmus von Guss ist ds universelle Verfhren zur Lösung beliebiger linerer Gleichungssysteme. Einführungsbeispiel: 7x+ x 5x = Drei

Mehr

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen 26. Mthemtik Olympide 2. Stufe (Kreisolympide) Klsse 7 Sison 986/987 Aufgben und Lösungen OJM 26. Mthemtik-Olympide 2. Stufe (Kreisolympide) Klsse 7 Aufgben Hinweis: Der Lösungsweg mit Begründungen und

Mehr

Vorkurs Mathematik für Ingenieure WS 2016/2017 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: b h

Vorkurs Mathematik für Ingenieure WS 2016/2017 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: b h Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieure WS 206/207 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Wie subtrahiert man ungleichnamige Brüche? Wie addiert man gemischte Zahlen? muss man Brüche auf den Hauptnenner bringen?

Wie subtrahiert man ungleichnamige Brüche? Wie addiert man gemischte Zahlen? muss man Brüche auf den Hauptnenner bringen? A Was ist ein Hauptnenner? A Für welche Rechenarten muss man Brüche auf den Hauptnenner bringen? A9 Wie subtrahiert man ungleichnamige Brüche? A0 Wie addiert man gemischte Zahlen? A A A A Wie nennt man

Mehr

6c 4b 5a. 6c 4b + 5a.

6c 4b 5a. 6c 4b + 5a. Bltt Nr.0 Mthemtik Online - Übungen Bltt Klsse Bltt Kpitel Terme Addition Terme und Gleichungen Nummer: 0 0000 Kl: X Grd: Zeit: 0 Quelle: eigen W Aufgbe..: Fssen Sie den folgenden Bruchterm zusmmen und

Mehr

Einführung in das Rechnen mit Zahlen. (elementare Algebra)

Einführung in das Rechnen mit Zahlen. (elementare Algebra) Ausgbe 2008-05 Einführung in ds Rechnen mit Zhlen (elementre Algebr) Algebr ist ein Teilgebiet der Mthemtik und beschäftigt sich mit der Verknüpfung von Zhlen durch Rechenopertionen 1. Rechenregeln der

Mehr

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren.

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren. .. Orthogonle Bsen und Schmistsche Orthogonlisierungsverfhren. Definition.. Eine Bsis B = { b, b,..., b n } heit orthogonl, wenn die Vektoren b i, i =,,..., n, prweise orthogonl sind, d.h. bi b j = fur

Mehr

Die Formelsammlung: Meine Mathematische Werkzeugkiste Formel, Skizze Formel, Skizze Beispiel(e)

Die Formelsammlung: Meine Mathematische Werkzeugkiste Formel, Skizze Formel, Skizze Beispiel(e) 1. Rechenvorteile, Rechengesetze Summnd 12 plus Summnd 4 ist gleich dem Wert der Summe: 46. Minuend 10 minus Subtrhend 7 ist gleich dem Wert der Differenz: Dividend 10 geteilt durch Divisor 4 ist gleich

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Physiker II, SS 2 Freitg 2.5 $Id: uneigentlich.te,v.7 2/5/2 :49:7 hk Ep $ $Id: norm.te,v.3 2/5/2 2:2:45 hk Ep hk $ 3 Uneigentliche Integrle Am Ende der letzten Sitzung htten wir ds Mjorntenkriterium

Mehr

Mathematik K1, 2017 Lösungen Vorbereitung KA 1

Mathematik K1, 2017 Lösungen Vorbereitung KA 1 Mthemtik K, 07 Lösungen Vorbereitung KA Pflichtteil (etw 0..0 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet

Mehr

Analysis II (lehramtsbezogen): Rechnen mit Integralen

Analysis II (lehramtsbezogen): Rechnen mit Integralen Anlysis II (lehrmtsbezogen): Rechnen mit Integrlen A. Ppke. November Substitution Wir wiederholen kurz die grundlegende Methode der Substitution und wenden sie im Beispiel n. Stz. (Integrtion durch Substitution).

Mehr

Sekundarstufe I. Mathematik 2. Arbeitsheft I

Sekundarstufe I. Mathematik 2. Arbeitsheft I Sekundrstufe I Mthemtik 2 Arbeitsheft I Sekundrstufe I Mthemtik 2 Arbeitsheft I Lehrmittel der Interkntonlen Lehrmittelzentrle Autorentem Frnz Keller (Projektleitung) Brigitte Bollmnn Christin Rohrbch

Mehr

Mathematischer Vorkurs NAT-ING1

Mathematischer Vorkurs NAT-ING1 Mthemtischer Vorkurs NAT-ING1 (02.09. 20.09.2013) Dr. Robert Strehl WS 2013-2014 Mthemtischer Vorkurs TU Dortmund Seite 1 / 20 Mthemtischer Vorkurs TU Dortmund Seite 2 / 20 Definition 9.1 (Stmmfunktion)

Mehr

Schulbuchseite 7/8. 1 a) Nenner: 14 blau: 9

Schulbuchseite 7/8. 1 a) Nenner: 14 blau: 9 ) Nenner: blu: ; Zähler: weiß: ; Zähler: b) Nenner: blu: ; Zähler: weiß: ; Zähler: c) Nenner: blu: ; Zähler: weiß: ; Zähler: ) cm b) c) h Stmmbrüche: ; Echte rüche: ; ; ; Unechte rüche: ; ; ; Gemischte

Mehr

Kapitel 8 Anwendungen der Di erentialrechnung

Kapitel 8 Anwendungen der Di erentialrechnung Kpitel 8 Anwendungen der Di erentilrechnung Kpitel 8 Anwendungen der Di erentilrechnung Mthemtischer Vorkurs TU Dortmund Seite 99 / 235 Kpitel 8 Anwendungen der Di erentilrechnung Stz 8.1 (Mittelwertstz

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

4. Das quadratische Reziprozitätsgesetz.

4. Das quadratische Reziprozitätsgesetz. 4-1 Elementre Zhlentheorie 4 Ds udrtische Rezirozitätsgesetz Sei eine ungerde Primzhl, sei Z mit, 1 Frge: Wnn gibt es x Z mit x mod? Gibt es ein derrtiges x, so nennt mn einen udrtischen Rest modulo Legendre

Mehr

Lineare Algebra I 5. Tutorium mit Lösungshinweisen

Lineare Algebra I 5. Tutorium mit Lösungshinweisen Fchbereich Mthemtik Prof Dr JH Bruinier Mrtin Fuchssteiner Ky Schwieger TECHNISCHE UNIVERSITÄT DARMSTADT AWS 07/08 0607 (T ) Linere Algebr I 5 Tutorium mit Lösungshinweisen Welche Gruppen kennen Sie? Welche

Mehr

Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0

Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0 Ferienkurs Anlysis 1 WS 11/12 Florin Drechsler Antworten uf Anfrgen von Kursteilnehmern Zu Tylorreihen Zu folgender Aussge us den Multiple-Choice-Aufgben: Es gibt Funktionen f C (R) mit konvergenter Tylorreihe

Mehr

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen Themen Ntürliche und gnze gerde Eigenschften Besonderheiten - Beispiele { } Menge der ntürlichen { } Menge der ntürlichen mit Null { } Menge der gnzen IN = 1;2;3;4;... IN 0 = 0;1;2;3;4;... Z =...; 3; 2;

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

Mathematik Name: Vorbereitung KA2 K1 Punkte:

Mathematik Name: Vorbereitung KA2 K1 Punkte: Pflichtteil (etw 40 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet werden dürfen.) Aufgbe : [4P] Leiten Sie

Mehr

FORMALE SYSTEME. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. November Markus Krötzsch

FORMALE SYSTEME. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. November Markus Krötzsch FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch TU Dresden, 2. November 2017 Rndll Munroe, https://xkcd.com/851_mke_it_better/, CC-BY-NC 2.5 Mrkus Krötzsch, 2. November 2017 Formle Systeme

Mehr

0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0

0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0 0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0 0.1.1 Formveränderungen von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit derselben Zahl multiplizieren. a

Mehr

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen.

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen. Rechtslinere Sprchen Minimlutomt Es git lso sehr verschiedene endliche Beschreiungen einer regulären Sprche (DFA, NFA, rechtslinere Grmmtiken, reguläre Ausdrücke). Diese können ineinnder üersetzt werden.

Mehr

Kapitel 1 : Mathematische Grundlagen und Stöchiometrie

Kapitel 1 : Mathematische Grundlagen und Stöchiometrie pitel : Mthemtische Grundlgen und Stöchiometrie Elementre Rechenumformungen. Dreistzrechnung : Immer dnn, wenn zwei Meßgrößen zueinnder proportionl bzw. indirekt proportionl (d.h. die eine proportionl

Mehr

Vorbereitung auf die Mathematik Schularbeit

Vorbereitung auf die Mathematik Schularbeit Vorbereitung uf die Mthemtik Schulrbeit 7. März 0 Alles Gute ll deinen Bemühungen, KL, KV Viel Erfolg! . Schulrbeit: MATHEMATIK KL.: M3b/I. - S. Mi, 7.03.0 ) Zeichne ds Prllelogrmm us den Bestimmungsstücken

Mehr

3.1 Multiplikation Die Multiplikation von algebraischen Termen kennen Sie von früher. Die wichtigsten Punkte seien hier kurz wiederholt:

3.1 Multiplikation Die Multiplikation von algebraischen Termen kennen Sie von früher. Die wichtigsten Punkte seien hier kurz wiederholt: .1 Multipliktion Die Multipliktion von lgerischen Termen kennen Sie von früher. Die wichtigsten Punkte seien hier kurz wiederholt: c Multipliktor Multipliknd Produkt Kommuttivgesetz (Vertuschungsgesetz)

Mehr