Vorkurs Mathematik für Ingenieure WS 2016/2017 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: b h

Größe: px
Ab Seite anzeigen:

Download "Vorkurs Mathematik für Ingenieure WS 2016/2017 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: b h"

Transkript

1 Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieure WS 206/207 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: (i) β = 57, c = 4cm (ii) α = 24, = 27cm (iii) = 0, cm, c = 0, 35cm (iv) α = 38, c = 80cm γ b h α c β (b) Gegeben sei ein Dreieck ABC mit c = 6cm, α = 70, γ = 50. Welches ist die längste Seite? (c) Vom Dreieck ABC seien = 45cm und b = 50cm beknnt. Weiter soll der Winkel β um 0 größer ls der Winkel α sein. Wie groß ist c? (d) In einem gleichschenkligen Dreieck ist die Summe der Cosinus der Winkel gleich 5 4. Wie groß sind die Winkel? (e) Bitte vereinfchen Sie folgende Terme: (i) sin 4 (α) + 2 sin2 (2α) + cos 4 (α) (ii) +tn 2 (α) +sin(α) (iii) ( ) sin(α) (iv) +tn 2 (α) + +cot 2 (α) (v) sin(α) + cos(α) tn(α) (vi) cos(2α) (f) Wie groß sind die Koordintenmße x und y für die drei Bohrungen in der Grundpltte?

2 Vorkurs Mthemtik für Ingenieure WS 206/ x P 3 P 2 7 P y 36 Lösung: () (i) β = 57, c = 4cm gegeben. Es folgen α = 90 β = 33, = cos(β)c = 2, 7cm, b = sin(β)c = 3, 35cm (ii) α = 24, = 27cm gegeben. Es folgen β = 90 α = 66, cos(β) = c = c = 60, 64cm tn(α) = 66, 38cm, tn(α) = b = cos(β) b (iii) = 0, cm, c = 0, 35cm gegeben. Es folgen b 2 = c 2 2 b = 0, 335cm, sin(α) = c α = 6, 6, cos(β) = c β = 73, 4 (iv) α = 38, c = 80cm gegeben. Es folgen β = 90 α = 52, cos(β) = c = cos(β)c = 49, 25cm, sin(β) = b c b sin(β)c = 63, 04cm, (b) Gegeben sei ein Dreieck ABC mit c = 6cm, α = 70, γ = 50. D wir in diesem Fll ein llgemeines und kein rechtwinkliges Dreieck vorliegen hbe, müssen wir mit dem Sinusstz (bzw. Kosinusstz) rbeiten: sin (α) = b sin (β) = c sin (γ) () Dmit folgt für : = c sin (α) sin (γ) = 7.36cm und für b: b = c sin (β) sin (γ) = 6.78cm Somit ist die Seite, die dem größten Winkel gegenüber liegt, lso, die längste Seite. Dies ist immer der Fll, wie mn sich leicht überlegen knn. Der Sinus des größten Winkels ist ebenflls m größten (der Sinus ht sein Mximum bei 90 ). Dies gilt, weil: sin (α) = sin (80 α) Und wenn mn nun von den 80 den größten Winkel bzieht, bleiben zwei Winkel übrig, die dnn jeweils den Wert von sin (80 α) nicht erreichen. Also ht der größte Winkel

3 Vorkurs Mthemtik für Ingenieure WS 206/207 im Dreieck den größten Sinuswert und d der Sinusstz (siehe Formel ()) gilt, muss dementsprechend der Zähler vom größten Sinus m größten sein. Es gilt: Für c gilt es entsprechend. sin (α) > sin (β) sin (α) sin (β) = b > > b (c) Wie im zweiten Aufgbenteil, so können uch hier die Beziehungen eines rechtwinkligen Dreiecks nicht genutzt werden. Wir rbeiten deswegen hier mit dem Sinusstz (). Weil nun und b beknnt sind, nutzen wir den ersten Teil von Gleichung (), um α zu berechnen. Dzu bruchen wir llerdings β, welches sich wie folgt ergibt: Dmit erhlten wir: β = α + 0 sin (α + 0 ) sin (α) Unter Verwendung des Additionstheorems der Summe zweier Winkel folgt weiter: = b sin (α) cos (0 ) + cos (α) sin (0 ) = b sin (α) cos (0 sin (0 ) ) + tn (α) = b tn (α) = b cos sin (0 ) (0 ) α = D wir nun die einzige Vrible in unserem Dreieck bestimmt hben (durch α ergibt sich lles ndere), können wir über () gnz einfch c ermitteln: c = sin ( ) sin (53.97 ) = 49.6 cm (d) Die Summe der Cosinus ergibt sich, weil γ = α wie folgt: 2 cos (α) + cos (β) = 5 4 (2) Die vorliegende Gleichung ht zwei Vriblen. D ber α und β über die Summe der Innenwinkel zusmmenhängen, ist die Gleichung (2) nur noch von α bhängig. Ddurch ergibt sich weiterhin: 2 cos (α) + cos (80 2α) = 5 4 Der zweite Term wird wieder mit dem Summe-zweier-Winkel-Additionstheorem umgewndelt (Vorzeichen!): 2 cos (α) + cos (80 ) cos (2α) + sin (80 ) sin (2α) = 5 4

4 Vorkurs Mthemtik für Ingenieure WS 206/207 Mit sin (80 ) = 0 und cos (80 ) = folgt weiter: 2 cos (α) cos (2α) = 5 4 (3) D cos (2α) = cos (α) sin (α) und der trigonometrische Pythgors vereinfchen Gleichung (3) weiter zu: 2 cos (α) ( sin 2 (α) ) = cos (α) = 5 4 cos (α) 2 = 5 8 cos (α) + 8 = 0 Diese Form ist eine qudr. Gleichung. Indem wir nun cos (α) mit x substituieren, erhlten wir: x 2 x + 8 = 0 Diese qudr. Gleichung knn über die pq-formel bzw. qudr. Ergänzung gelöst werden. Die Lösungen sind: x = cos (α ) = 0.85 x 2 = cos (α 2 ) = 0.5 α = 3.79 α 2 = 8.37 Demnch gibt es für diese Aufgbe zwei mögliche Lösungen: α = 3, 79 oder α = (e) (i) sin 4 (α) + 2 sin2 (2α) + cos 4 (α) = sin 4 (α) + 2 sin 2 (α) + cos 4 (α) = (sin 2 (α) + ) 2 = (ii) +tn 2 (α) = + sin2 (α) (iii) +sin(α) = +sin 2 (α) = cos2 (α) ( sin(α)) = + sin(α) sin(α) = sin 2 (α) = cos(α) (iv) +tn 2 (α) + +cot 2 (α) = +sin 2 (α) (v) sin(α) + cos(α) = sin(α) + cos2 (α) tn(α) sin(α) (vi) cos(2α) = cos2 (α) sin 2 (α) = tn 2 (α) + +sin 2 (α) sin 2 (α) = sin2 (α)+ sin(α) = sin(α) = cos2 (α) + sin2 (α) = (f) Anwendung des Kosinusstzes, wenn = 36, b = 7 und c = 92: Umformung nch cos (β) führt zu cos (β) = 2 + c 2 b 2 2c b 2 = 2 + c 2 2c cos (β) = und dmit ist β = Nun bilden wir ds Lot von P uf x und bekommen durch ds rechtwinklige Dreieck die Möglichkeit, die Winkelfunktion cos (β) = Ankthete zu Hypotenuse benutzen und dmit ergibt sich für x = 25, 64 und y = 25, 26

5 Vorkurs Mthemtik für Ingenieure WS 206/207 Aufgbe 2 : Äquivlenzumformungen () Für welche x R gilt:

6 Vorkurs Mthemtik für Ingenieure WS 206/207 (i) 2x + < 7 x (ii) x 2 > 4 (iii) x (x + ) < 2 (x + ) (iv) 2x 3x+ < (v) 2 x+ = 8 (vi) ln (x + ) = ln (2x) Lösung: () (i) 2x + < 7 x 3x < 6 x < 2 (ii) x 2 > 4 (x 2) (x + 2) > 0 x < 2 oder x > 2 (iii) x (x + ) < 2 (x + ) x 2 x 2 < 0 (x + ) (x 2) < 0 < x < 2 (iv) 2x 3x+ < 2x 3x+ < 0 x+2 3x+ > 0 x < 2 oder x > 3 (v) 2 x+ = 8 Anwendung von log 2 ( ) (Log zur Bsis 2), Umkehrfkt. der Funktion f (x) 2 x uf beiden Seiten ergibt x + = log 2 (8) Zur Berechnung der rechten Seite ist lso der Exponent gesucht, so dss 2 x = 8 gilt. Offensichtlich ist y = 3, dmit x+ = 3 x = 2 (vi) ln (x + ) = ln (2x), wobei ln ntürlicher Log zur Bsis e ist, Anwendung der Umkehrfunktion f (x) = e x = exp (x) des Log. zur Bsis e uf beiden Seiten ergibt x + = 2x x =

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Vorkurs Mathematik für Ingenieur Innen WS 2017/2018 Übung 3. (a) Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck: Prof. Dr. J. Pnnek Dynmics in Logistics Vorkurs Mthemtik für Ingenieur Innen WS 207/208 Übung 3 Aufgbe : Trigonometrie () Berechnen Sie die fehlenden Strecken und Winkel im folgenden rechtwinkligen Dreieck:

Mehr

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα.

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα. Trigonometrie Wenn mn die Trigonometrischen Funktionen Sinus, Kosinus und Tngens berechnen will, ist es wichtig, uf welchen Winkel sie sich beziehen. Die Kthete, die direkt m Winkel nliegt, heißt Ankthete

Mehr

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag

Tutorium zur Vorlesung Grundlagen der Mathematik II Bearbeitungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 017 Bltt 8 0.06.017 Tutorium zur Vorlesung Grundlgen der Mthemtik II Berbeitungsvorschlg 9. Zu betrchten ist ein gleichseitiges Dreieck

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln $Id: trig.tex,v 1.8 015/05/04 10:16:36 hk Exp $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir begonnen die Additionstheoreme der trigonometrischen Funktionen zu besprechen.

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der

Mehr

Trigonometrie. Laura Katzensteiner Mary Maxion Kristina Goliasch 3BBIK 2010/2011

Trigonometrie. Laura Katzensteiner Mary Maxion Kristina Goliasch 3BBIK 2010/2011 Trigonometrie Lur Ktzensteiner Mry Mxion Kristin Golisch 3BBIK 2010/2011 Wofür Trigonometrie? Mithilfe der trigonomischen Formeln knn mn sich im rechtwinkeligen Dreieck sowohl Winkelgrößen ls uch Seitenlängen

Mehr

Lösungen von Hyperplot

Lösungen von Hyperplot ufgbensmmlung Weitere Lösungen zu Geometrieufgben der Mthemtik-Olympide Zentrles Komitee für die Olympiden Junger Mthemtiker Lösungen von Hyperplot zusmmengestellt von Steffen Polster https://mthemtiklph.de

Mehr

Lösung Arbeitsblatt Geometrie / Trigonometrie

Lösung Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Lösung Arbeitsbltt Geometrie / Trigonometrie Dozent: - Brückenkurs Mthemtik 016 Winkelbeziehugen

Mehr

Arbeitsblatt Geometrie / Trigonometrie

Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Arbeitsbltt Geometrie / Trigonometrie Dozent: - rückenkurs Mthemtik 2016 Modul: Mthemtik Dtum: 2016

Mehr

Von Winkelfunktionen zur Dreiecksgeometrie

Von Winkelfunktionen zur Dreiecksgeometrie Von Winkelfunktionen zur Dreiecksgeometrie Jens Wirth, Freiberg wirth@mth.tu-freiberg.de 1 Definition y Es sei P ein Punkt uf dem Einheitskreis, 10P = φ. Dnn besitzt 1 P P die Koordinten (cos(φ), sin(φ)).

Mehr

Ich kann den SdP anwenden, um Seitenlängen in rechtwinkligen Dreiecken zu berechnen.

Ich kann den SdP anwenden, um Seitenlängen in rechtwinkligen Dreiecken zu berechnen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.5.018 Themen: Stz des Pythgors, Qudrtische Gleichungen Checkliste Ws ich lles können soll Ich knn den Stz des Pythgors (SdP) in Worten formulieren.

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 9 Regiomontnus - Gymnsium Hßfurt - Grundwissen Mthemtik Jhrgngsstufe 9 Wissen und Können Zhlenmengen N Z Q R ntürliche gnze rtionle reelle Aufgen, Beispiele, Erläuterungen N, Z, Q, R Wurzeln (Qudrtwurzel)

Mehr

Zwei Kreise im gleichseitigen Dreieck

Zwei Kreise im gleichseitigen Dreieck -. ein Aufgbe us der pnischen Tempelgeometrie 3. August 006 Gegeben sei ds gleichseitige Dreieck ABC mit der Seitenlänge. Auf der öhenlinie h c = CD befinden sich die Mittelpunkte der Kreise k 1 und k.

Mehr

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1

Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Definition von Sinus, Cosinus und Tangens am Einheitskreis Im rechtwinkligen Dreieck ist der Winkel zwischen

Mehr

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration Integrieren Regeln (f() + g())d = f()d + g()d c f()d = c f()d b f()d = f()d b Einige Integrle die mn uswendig kennen sollte s d = s + s+ + C (für s ) d = ln + C cos d = sin + C sin d = cos + C sinh d =

Mehr

Übung Analysis in einer Variable für LAK, SS 2010

Übung Analysis in einer Variable für LAK, SS 2010 Übung Anlysis in einer Vrible für LAK, SS Christoph B ) Es sei I R ein offenes Intervll, ξ I und f,...,f n : I R seien lle in ξ differenzierbr. Beweisen Sie: Dnn ist uch f f n : I R in ξ differenzierbr

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom:

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom: Tutorium Ynnick Schrör Lösung zur Bonusklusur vom WS 1/13 Ynnick.Schroer@rub.de 1. Februr 016 ID 03/455 1 Folgen ) Folgende Folge ist gegeben: n+1 7 n 1 n 1, 0 1, 1 0 (1) Chrkteristisches Polynom: q 7q

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

Grundwissen Mathematik 9

Grundwissen Mathematik 9 Grundwissen Mthemtik 9 Die binomischen Formeln ( + b) + b + b ( - b) - b + b ( + b) ( - b) - b Insbesondere benutzt mn die binomischen Formeln um Summen und Differenzen in Produkte umzuwndeln Die Qudrtwurzel

Mehr

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen 7. Mthemtik Olympide. Stufe (Kreisolympide) Klsse 9 Sison 1967/1968 Aufgben und Lösungen 1 OJM 7. Mthemtik-Olympide. Stufe (Kreisolympide) Klsse 9 Aufgben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen

Mehr

4.4 Partielle Integration

4.4 Partielle Integration Mthemtik für Nturwissenschftler I 4.4 4.4 Prtielle Integrtion Zwei Integrtionsregeln kennen wir bereits: Stz 4.. und Stz 4..8. Stz 4.. sgt, dss mit zwei Funktionen uch deren Summe oder Differenz integrierbr

Mehr

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x Bltt 1: Hilfe zur Umformung von Gleichungen mit vielen Vriblen Im Mthemtikunterricht hben Sie gelernt, wie mn Gleichungen mit einer Vriblen umformt, um diese Vrible uszurechnen. Meistens hieß sie. In Physik

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 015 Donnerstg 7.5 $Id: trig.tex,v 1.11 015/05/19 17:1:13 hk Exp $ $Id: convex.tex,v 1.17 015/05/18 11:15:36 hk Exp $ Trigonometrische Formeln.3 Spezielle Werte der trigonometrischen

Mehr

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1.

Wir haben ein Koordinatensystem mit der x-achse und der y-achse. Nun wird ein Kreis gebildet mit dem Radius r=1. Trigonometrie In diesem Themenereih wenden wir uns den Winkeln im rehtekigen Dreiek zu. Du hst uf deinem Tshenrehner siher shon die Tsten sin, os und tn gesehen. Doh ws edeuten sie? Ds wollen wir herusfinden.

Mehr

Diagnostiktest Mathematik

Diagnostiktest Mathematik Dignostiktest Mthemtik Sie bebsichtigen b em nächsten Schuljhr ie Srlänische Meister- un Technikerschule, Führungskemie es Hnwerks zu besuchen. Herzlichen Glückwunsch zu Ihrem Vorhben. Dmit Sie zielgerichtet

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Prof. Dr.Ing. W. Scheideler Brückenkurs Mthemtik WS 0/ us und überrbeitet von B. Eng. Sevd Hppel und Dipl.Ing. Jun Rojs Prof. Dr.Ing. W. Scheideler Inhltsverzeichnis Brüche, Potenzen und Wurzeln. Brüche..

Mehr

Exponential- und Logarithmusfunktion

Exponential- und Logarithmusfunktion Mthemtik I und II für Ingenieure (IAM) Version.3/..003.0.5 Eponentil- und Logrithmusfunktion Definition.0.0: Sei +, dnn ist die llgemeine Form einer Eponentilfunktion f: + gegeben durch die Funktionsgleichung

Mehr

Das Bogenintegral einer gestauchten Normalparabel

Das Bogenintegral einer gestauchten Normalparabel Ds Bogenintegrl einer gestuchten Normlprbel Jn Günther und Luks Vrnhorst Im Mthemtikleistungskurs der Jhrgngsstufe sind wir uf folgende Aufgbe gestoÿen: Bestimmen Sie eine Stmmfunktion von f(x) + x mit

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

Lösungen der Trainingsaufgaben aus. Toolbox Mathematik für MINT-Studiengänge

Lösungen der Trainingsaufgaben aus. Toolbox Mathematik für MINT-Studiengänge Lösungen der Trainingsaufgaben aus Toolbox Mathematik für MINT-Studiengänge 1 Geometrie mit Sinus, Cosinus und Tangens Version 22. Dezember 2016 Lösung zu Aufgabe 1.1 Gemäß Abbildung 1.1 und der Definition

Mehr

(Analog nennt man a die und b die des Winkels β.)

(Analog nennt man a die und b die des Winkels β.) Mthemtik Einführung Ws edeutet ds Wort und mit ws eschäftigt sich die? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Eck' Beispiel: Pentgon ds Fünfeck mit 5 Winkeln

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6. Vorbemerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Opertionen. Sie heben sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen Teil 1: Rechenregeln us der Mittelstufe Allgemeine Termumformungen Kommuttivgesetz: Bei reinen Produkten oder Summen ist die Reihenfolge egl x y z = z y x = x z y =.. x+y+z = z+y+x = x+z+y =.. Ausklmmern:

Mehr

Integrationsmethoden

Integrationsmethoden Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()

Mehr

Grundlagen der Algebra

Grundlagen der Algebra PH Bern, Vorbereitungskurs MATHEMATIK Vorkenntnisse 0 Grundlgen der Algebr Einleitung Auf den nchfolgenden Seiten werden grundlegende Begriffe und Ttschen der Algebr erläutert: Zhlenmengen, Rechenopertionen,

Mehr

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck:

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck: Trigonometrie bekannte Zusammenhänge 4-Streckensatz: groß/klein = groß/klein Zusammenhänge im allgemeinen Dreieck: Summe zweier Seiten größer als dritte Seitenlänge: a + b > c Innenwinkelsumme: Summe der

Mehr

$Id: integral.tex,v /04/28 13:32:32 hk Exp hk $

$Id: integral.tex,v /04/28 13:32:32 hk Exp hk $ Mthemtik für Ingenieure II, SS 009 Dienstg 8.4 $Id: integrl.tex,v 1.4 009/04/8 13:3:3 hk Exp hk $ Integrlrechnung.3 Die Integrtionsregeln Mit den bisherigen Beispielen hben wir die meisten Integrle behndelt,

Mehr

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i Funktionentheorie Komplexe Kurvenintegrle Themen des Tutoriums m 24.6.25: Jede komplexe Funktion f : D C knn mn drstellen ls f(x + iy) = u(x, y) + iv(x, y), wobei u und v reellwertige Funktionen uf R 2

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

Übungsaufgaben 2. Komplexe Zahlen. sin 2 ; 2 sin cos D 2 cos 2 1; 2 sin cos D 1 2 sin 2 ; 2 sin cos. 3 k. kd0.cos ; 0/ k.

Übungsaufgaben 2. Komplexe Zahlen. sin 2 ; 2 sin cos D 2 cos 2 1; 2 sin cos D 1 2 sin 2 ; 2 sin cos. 3 k. kd0.cos ; 0/ k. Übungsufgben Komlexe Zhlen Aufgbe. Mn zeige (mit Hilfe der binomischen und der Moivre-Formel), dß..cos ; sin / D cos ; sin cos D sin ; sin cos,..cos ; sin / D 4 cos cos ; sin 4 sin, für lle Œ0; Œ gilt!

Mehr

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf: Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

Mathematik K1, 2017 Lösungen Vorbereitung KA 1

Mathematik K1, 2017 Lösungen Vorbereitung KA 1 Mthemtik K, 07 Lösungen Vorbereitung KA Pflichtteil (etw 0..0 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet

Mehr

Theoretische Physik IV - Blatt 3

Theoretische Physik IV - Blatt 3 Theoretische Physi IV - Bltt 3 Christopher Bronner, Frn Essenberger FU Berlin 4.November 006 Aufgbe 5 Energieeigenfuntionen Uns ist folgendes Potentil gegeben, wobei V 0 > 0 sei: V (x) V 0 bei x [, ] V

Mehr

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1961/1962 Aufgaben und Lösungen 1. Mthemtik Olympide 1. Stufe (Schulolympide) Klsse 12 Sison 1961/1962 Aufgben und Lösungen 1 OJM 1. Mthemtik-Olympide 1. Stufe (Schulolympide) Klsse 12 Aufgben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c.

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c. SBP Mthe Grundkurs 2 # 0 by Clifford Wolf # 0 Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert

Mehr

Lösungen zur Prüfung 2010: Pflichtbereich

Lösungen zur Prüfung 2010: Pflichtbereich 00 Pflichtbereich Lösungen zur Prüfung 00: Pflichtbereich ufgbe P: ür ds Volumen des Restkörpers gilt: V Rest = V Kegel + V Zylinder VKugel Mit ormeln: V Rest = π r h K + π r 4 h π r Mit r =,0 cm und h

Mehr

Mathematik Name: Vorbereitung KA2 K1 Punkte:

Mathematik Name: Vorbereitung KA2 K1 Punkte: Pflichtteil (etw 40 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet werden dürfen.) Aufgbe : [4P] Leiten Sie

Mehr

3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

3. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner 3. Mthemtik-Schulrbeit für die 5. Klsse Autor: Gottfried Gurtner Arbeitszeit: 75 Minuten Lernstoff: Mthemtische Grundkompetenzen: AG.1 Einfche Terme und Formeln ufstellen, umformen und im Kontext deuten

Mehr

8.4 Integrationsmethoden

8.4 Integrationsmethoden 8.4 Integrtionsmethoden 33 8.4 Integrtionsmethoden Die Integrtion von Funktionen erweist sich in prktischen Fällen oftmls schwieriger ls die Differenzition. Während sich ds Differenzieren durch Anwendung

Mehr

Doch beim Potenzieren gibt es eine zweite Umkehrung: das Logarithmieren.

Doch beim Potenzieren gibt es eine zweite Umkehrung: das Logarithmieren. 0. Logrithmen Wie die Diision die Umkehrung der Multipliktion ist, so ist ds Wurzelziehen die Umkehrung des Potenzierens. b c c : b b c c b Doch beim Potenzieren gibt es eine zweite Umkehrung: ds Logrithmieren.

Mehr

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik Grundsätzliche Vorussetzungen für die Fchoberschule b Klsse im Fch Mthemtik Zum Eintritt in die Fchoberschule ist der mittlere Bildungsbschluss Vorussetzung. Ds heißt, im Fch Mthemtik werden die, bis zur

Mehr

Lösungsskizzen zur Präsenzübung 06

Lösungsskizzen zur Präsenzübung 06 Lösungsskizzen zur Präsenzübung 06 Mirko Getzin Universität Bielefeld Fkultät für Mthemtik 23. Mi 2014 Keine Gewähr uf vollständige Richtigkeit und Präzision ller (mthemtischen) Aussgen. Ds Dokument ht

Mehr

Extrakapitel für M3 1. Integration durch Substitution (Umkehrung der Kettenregel)

Extrakapitel für M3 1. Integration durch Substitution (Umkehrung der Kettenregel) Etrkpitel für M. Integrtion durch Substitution (Umkehrung der Kettenregel Beispiel : Berechnen Sie ds Integrl I = + d D die Wurzel eine innere Funktion ht, substituieren wir diese und leiten dnn b... z

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2 R. Brinkmnn http://brinkmnn-du.de Seite 8.. Vektoren im krtesischen Koordintensystem Betrg eines Vektors Es soll der Betrg eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordintenschreibweise

Mehr

Lösungsvorschlag zu den Präsenzaufgaben der 13. Übung

Lösungsvorschlag zu den Präsenzaufgaben der 13. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Ptrizio Neff Christin Thiel 07.07.04 Lösungsvorschlg zu den Präsenzufgben der 3. Übung Präsenzufgbe : Wir hben die Determinnte bisher ls Kriterium zur Invertierbrkeit

Mehr

Quadratische Gleichungen und Funktionen

Quadratische Gleichungen und Funktionen Qudrtische Gleichungen und Funktionen Bei einer udrtischen Gleichung kommt die Unbeknnte Vrible mindestens einml in der.potenz vor, ber in keiner höheren Potenz. b c udrtischer Anteil linerer Anteil konstnter

Mehr

Aufgabe 1 mit Lösung. Stelle x x + 2a x 2a VZW EPArt Wert

Aufgabe 1 mit Lösung. Stelle x x + 2a x 2a VZW EPArt Wert Aufgbe mit Lösung 4 ( 8 ) ( 4 8 ) f x = x x x + x= f x Achsensymmetrie + =. 4 lim x x + : Fll = c+ d 0! < 0 + x ±... Extrempunkte = = =. NB: f ( x) ( 4x 6 x) x( x ) x( x ) x MESt ( f ) { ;0;}. HB: 0 =

Mehr

fa x = VZW fa bei x x Extremstelle von fa 1 Stelle 3 x + 2a 3 x 2a VZW PA Wert

fa x = VZW fa bei x x Extremstelle von fa 1 Stelle 3 x + 2a 3 x 2a VZW PA Wert Die Veröffentlichung dieser Lösung geschieht ohne inhltliche Prüfung durch die Bezirksregierung Düsseldorf und den Mthe-Treff. Die Lösung stmmt nicht vom Originlutor der Aufgbe, sondern von einem Leser

Mehr

V O R K U R S M A T H E M A T I K

V O R K U R S M A T H E M A T I K Fchbereich - Informtik und Ingenieurwissenschften V O R K U R S M A T H E M A T I K 100 = 16765060089401496700576 u v u v u v u v uv /(u v) u v u v ( + b ) 5 = 5 + 5 4 b + 10 b +10 b + 5 b 4 + b 5 Die

Mehr

Exponentialgleichungen 70 Exponentialgleichungen mit Ergebnissen und ausführlichen Lösungsweg

Exponentialgleichungen 70 Exponentialgleichungen mit Ergebnissen und ausführlichen Lösungsweg Übungen zum Kurs Eponentilgleichungen Eponentilgleichungen 70 Eponentilgleichungen mit Ergebnissen und usführlichen Lösungsweg 7.technisch verbesserte Auflge vom.09.007 (Sonderzeichen wurden teilweise

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

Mathematik Trigonometrie Einführung

Mathematik Trigonometrie Einführung Mthemtik Trigonometrie Einführung Ws edeutet ds Wort Trigonometrie und mit ws eshäftigt sih die Trigonometrie? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Ek'

Mehr

Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest

Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest Studienkolleg ei den Universitäten des Freisttes Bern Üungsufgen zur Vorereitung uf den Mthemtiktest . Polnomdivision:. Dividieren Sie! ) ( 6 + 8 ):( + ) = Lös.: = ) ( 9 7 0 + 8 + 9):(6 + +) = Lös.: =

Mehr

Teil 1: Rechenregeln aus der Mittelstufe in Physik (1.6.18)

Teil 1: Rechenregeln aus der Mittelstufe in Physik (1.6.18) Teil 1: Rechenregeln us der Mittelstufe in Physik (1.6.18) Es gibt einige Dinge, die beim Rechnen in Physik immer wieder ml gebrucht werden. Mnches dvon geht oft schief, weil die Rechenregeln flsch ngewendet

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Proleme, SS 016 Freitg 6.5 $Id: trig.tex,v 1.14 016/05/06 1:6:14 hk Exp $ Trigonometrische Formeln.1 Die dditionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der dditionstheoreme

Mehr

Quadratische Funktionen und p-q-formel

Quadratische Funktionen und p-q-formel Arbeitsblätter zum Ausdrucken von softutor.com Qudrtische Funktionen und -q-formel Gib den Vorfktor und die Anzhl der Schnittstellen mit der -Achse n. x 3 Beschreibe die Reihenfolge beim Umformen einer

Mehr

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7 Universität Bsel Wirtschftswissenschftliches Zentrum Abteilung Quntittive Methoden Mthemtischer Vorkurs Dr. Thoms Zehrt Differentil- und Integrlrechnung Inhltsverzeichnis 1 Differenzen- und Differentilquotient

Mehr

G1 Trigonometrie. G1 Trigonometrie. G1.1 Die trigonometrischen Grundfunktionen und ihre wichtigsten Eigenschaften

G1 Trigonometrie. G1 Trigonometrie. G1.1 Die trigonometrischen Grundfunktionen und ihre wichtigsten Eigenschaften G1.1 Die trigonometrischen Grundfunktionen und ihre wichtigsten Eigenschften Seitenverhältnisse und Winkel in rechtwinkligen Dreiecken Beispiel: Wenn in einem Dreieck ABC zum Beispiel die Seite genu so

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 8 Mthemtik für Wirtschftswissenschftler im WS /3 Lösunen zu den Übunsufben Bltt 8 Aufbe 3 Berechnen Sie die folenden Interle durch prtielle Intertion. ) c) e d. (Hinweis: Interieren Sie zweiml prtiell).

Mehr

3 Trigonometrische Formeln

3 Trigonometrische Formeln Mthemtische Probleme, SS 07 Montg 6.6 $Id: trig.tex,v.8 07/06/3 6:0:00 hk Exp $ $Id: convex.tex,v.40 07/06/3 6::43 hk Exp $ 3 Trigonometrische Formeln 3. Verdoppelungs- und Hlbierungsformeln m Ende der

Mehr

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus:

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus: 0 Dr Andres M Seifert Sternstunden in Mthe, Physik und Technik wwwsternstunden-odenwldde Logrithmen Die Gleichung vom Typ b wird mit Hilfe des Logrithmus gelöst Der Logrithmus von zur Bsis b ist die Zhl,

Mehr

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Strophoiden DEMO. Text Nr Stand 17. April 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Strophoiden Tet Nr. 5415 Stnd 17. April 016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5415 Strophoiden Vorwort Strophoiden sind wenig beknnte Kurven. Sie werden über eine

Mehr

Münchner Volkshochschule. Planung. Tag 07

Münchner Volkshochschule. Planung. Tag 07 Plnung Tg 07 Folie: 158 Themen Logik und Mengenlehre Zhlensysteme und Arithmetik Gleichungen und Ungleichungen Lin. Gleichungssysteme und spez. Anwendungen Geometrie und Trigonometrie Vektoren in der Eene

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2 D-MAVT/D-MATL Anlysis I HS 7 Dr. Andres Steiger Lösung - Serie.. Sei f(x) : () f() . x (c) f( ) . Die Funktion g : t t + ist, dss ds Integrl b dt. Welche der folgenden Aussgen

Mehr

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN:

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN: Heinz Klus Strick: Mthemtik ist schön, Springer-Verlg, ISBN: 978--66-79-9 Hinweise zu den nregungen zum Nchdenken und für eigene Untersuchungen zu 8.: zu 8.: Wenn die Dreiteilung des weißen Rechtecks durch

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Einige Formeln zum Goldenen Schnitt

Einige Formeln zum Goldenen Schnitt Einige Formeln zum Goldenen Schnitt Eine Strecke wird im Verhältnis geteilt, wenn ds Verhältnis der Gesmtstrecke m+m zur längeren Teilstrecke M gleich dem Verhältnis der längeren Teilstrecke M zur kürzeren

Mehr

Übung 7: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner. Aufgabe T 19 (Ober- und Untersummen)

Übung 7: Lösungen. Technische Universität München SS 2004 Zentrum Mathematik Prof. Dr. K. Buchner. Aufgabe T 19 (Ober- und Untersummen) Technische Universität München SS Zentrum Mthemtik 7.6. Prof. Dr. K. Buchner Dr. W. Aschbcher Anlysis II Aufgbe T 9 Ober- und Untersummen Übung 7: Lösungen : Nch Vorussetzung ist f R-integrierbr, d.h.

Mehr

2.4 Elementare Substitution

2.4 Elementare Substitution .4 Elementre Substitution 7.4 Elementre Substitution Im Übungsteil finden Sie folgende Aufgben zum Trining der in diesem Abschnitt behndelten Themen: Linere Substitution (LSub): Aufgbe 4.5 (S.4) und Aufgbe

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen 26. Mthemtik Olympide 2. Stufe (Kreisolympide) Klsse 7 Sison 986/987 Aufgben und Lösungen OJM 26. Mthemtik-Olympide 2. Stufe (Kreisolympide) Klsse 7 Aufgben Hinweis: Der Lösungsweg mit Begründungen und

Mehr

Brüche gleichnamig machen

Brüche gleichnamig machen Brüche gleichnmig mchen L Ds Erweitern von Brüchen (siehe L ) ist lediglich ein Instrument, ds vorwiegend eingesetzt wird, um Brüche mit unterschiedlichem Divisor gleichnmig zu mchen. Brüche gleichnmig

Mehr

Erweiterung der Euklidischen Flächensätze auf das allgemeine Dreieck nebst Anwendung zur Volumenbestimmung des allgemeinen Tetraeders.

Erweiterung der Euklidischen Flächensätze auf das allgemeine Dreieck nebst Anwendung zur Volumenbestimmung des allgemeinen Tetraeders. Arno Fehringer, Gymnsillehrer für Mthemtik und Physik 1 Erweiterung der Euklidischen Flächensätze uf ds llgemeine Dreieck nest Anwendung zur Volumenestimmung des llgemeinen Tetreders. Arno Fehringer Juni

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

Lösung zur Übung 1. In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom. r = a 2. d = 2 a (3) 2 = 2 a (4)

Lösung zur Übung 1. In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom. r = a 2. d = 2 a (3) 2 = 2 a (4) Lösung zur Übung 1 Aufgabe 1 In einem Würfel der Kantenlänge a wird ein Methanmolekül so platziert, dass das Kohlenstoffatom im Zentrum des Würfels liegt. Wie groß ist der Tangens des halben H-C-H Bindungswinkels?

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

3 Trigonometrische Formeln

3 Trigonometrische Formeln Mthemtische Proleme, SS 018 Donnerstg 1.6 $Id: trig.tex,v 1. 018/06/1 14:08:44 hk Exp $ 3 Trigonometrische Formeln 3. Verdoppelungs- und Hlierungsformeln Als Verdoppelungsformeln ezeichnet mn die Formeln

Mehr

Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken

Aufgaben mit Lösungen zum Themengebiet: Geometrie bei rechtwinkligen Dreiecken Übungsaufgaben zur Satzgruppe des Pythagoras: 1) Seiten eines rechtwinkligen Dreiecks Sind folgende Aussagen richtig oder falsch? Verbessere, wenn notwendig! Die Katheten grenzen an den rechten Winkel.

Mehr