Präfixcodes und der Huffman Algorithmus
|
|
|
- Frida Abel
- vor 10 Jahren
- Abrufe
Transkript
1 Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben und deshlb gehen wir von der Vektorschreibweise b und betrchten Codewörter ls Strings vribler Länge. Definition Sei ϕ : A Q + eine Codierung einer endlichen Menge A durch nichtleere Wörter (Strings) über einem Alphbet Q und C = Im(ϕ) der zugehörige Code. Mn bechte, dss die Abbildung ϕ dzu injektiv sein muss. Die Codierung ϕ knn wie folgt zu einer Abbildung ϕ : A Σ erweitert werden, mit der mn lle Wörter über A, lso lle Nchrichten über diesem Alphbet verschlüsseln knn: wobei die Konktention bezeichnet. ϕ (... n ) = ϕ( ) ϕ( )... ϕ( n ) Der Code C ist ein Präfixcode, wenn kein Codewort us C Präfix (lso Anfngsstück) eines nderen Codewortes us C ist. Der Code C ist eindeutig dekodierbr, wenn sich us jeder kodierten Nchricht diese Nchricht eindeutig rekonstruieren lässt, mit nderen Worten, wenn uch ϕ eine injektive Abbildung ist. Beobchtung: Jeder Präfixcode ist eindeutig decodierbr und jeder Blockcode ist uch ein Präfixcode und dmit eindeutig dekodierbr. Zuerst mcht mn sich klr, dss mn jeden Präfixcode durch einen sogennnten Bum repräsentieren knn. Ein Bum ist eine spezielle Struktur, mit der wir uns in Zukunft noch häufig beschäftigen werden. Definition: Ein Bum besteht us einer Menge V von Knoten mit einer speziellen Eltern-Kind-Reltion, welche die folgenden Eigenschften ht: Es gibt einen usgezeichneten Knoten r, den mn die Wurzel des Bums nennt und der keinen Elternknoten besitzt. Jeder Knoten ußer der Wurzel ht einen eindeutig bestimmten Elternknoten. Jeder Knoten v ist Nchfhre der Wurzel r, (d.h. v ist selbst die Wurzel oder ein Kind, Enkel, Urenkel, usw. von r). Ein Knoten, der keine Kinder ht, wir ls ein Bltt des Bums bezeichnet. Knoten, die mindestens ein Kind hben, nennt mn innere Knoten des Bums. Bäume werden häufig grphisch drgestellt, wobei die Wurzel den höchsten (bzw. niedrigsten) Punkt bildet und lle Kinder uf einem Niveu unter (bzw. über) ihre Elternknoten gezeichnet und mit dem Elternknoten durch eine Knte verbunden werden.
2 Für den Bum eines Präfixcodes verwendet mn einen speziellen Typ, in dem jeder innere Knoten v höchstens Q Kinder ht, die Knten von v zu den Kindern mit verschiedenen Symbolen us Q mrkiert sind und lle Wege, die von der Wurzel strten und ein Codewort us C ls Mrkierung hben, zu einem Bltt führen. Diese Blätter können zusätzlich durch ds codierte Symbol us A mrkiert werden. Die folgende Abbildung zeigt zwei Beispiele der Bumdrstellung eines Präfixcodes. Auf der linken Seite ist Q = {, } und in diesem Fll spricht mn von einem Binärcode und einem Binärbum. Wie mn leicht us der Abbildung erkennen knn, besteht die codierte Menge A us den Symbolen, und 3 und der Code C besteht us den Codewörtern, und. Der Bum uf der rechten Seite repräsentiert eine Codierung der Menge A = {,, 3, 4, 5 } über dem Alphbet Q = {,, } durch den Code C = {,,,, }. Wurzel r: Q = {,} Wurzel r: Q={,,} Ht mn die Bumdrstellung eines Präfixcodes gegeben, dnn knn mn für jedes Codewort c C durch Strt im Wurzelknoten und Verfolgung des Weges, dessen Kntenmrkierungen durch die Buchstbenfolge von c vorgegeben ist, zum Bltt von c gelngen und dort ds codierte Symbol uslesen. Diesen Prozess knn mn uch beim Lesen der kodierten Nchricht usführen, wobei mn immer dnn, wenn mn bei einem Bltt ngekommen ist und dmit ein Symbol decodiert ht, wieder zurück zur Wurzel springen muss. Mn bechte, dss es uch eindeutig decodierbre Codes gibt, die keine Präfixcodes sind, z.b. C = {, }. Verfolgt mn ds Ziel, die Codierung einer Nchricht möglichst kurz zu hlten, muss mn versuchen, die einzelnen Codewörter kurz zu hlten, insbesondere die von häufig vorkommenden Symbolen. Andererseits knn mn bei festgelegtem Q nicht lle Codewörter beliebig kurz hlten. Der folgende Stz gibt Auskunft drüber, welche Schrnken mn generell erreichen knn.
3 Stz von Krft, Mc Milln () Sei C = {c,...,c u } ein eindeutig dekodierbrer Code und seien n,...,n u die zugehörigen Codewortlängen über Q, wobei Q = q. Dnn gilt: u q n k k= () Wenn positive gnze Zhlen n,..., n u die Ungleichung us () erfüllen, so gibt es uch einen Präfixcode C = {c,...c u } über einem Alphbet Q der Größe q mit den Codewortlängen n,...,n u. Beweis: Wir zeigen nur (). Sei Q = {,,...,, q } und o.b.d.a. n n... n u. Als erstes setzen wir c =... bestehend us n Nullen. Seien c,...,c i mit i < u schon beknnt dnn zeigen wir jetzt, wie mn induktiv c i+ bestimmt. Wir wählen c i+ ls lexikogrfisch kleinstes Wort der Länge n i+, ds c,...,c i nicht ls Präfix enthält. Gibt es dies überhupt? J, die c j, j < i+ verbieten zwr für die Whl von c i+ einige Wörter der Länge n i+, ber nicht lle. Jedes der c j verbietet q n i+ n j Wörter der Länge n i+, insgesmt sind lso verboten i q n i+ n j = q n i+ j= i j= q n j Wörter, ber diese Zhl ist wegen () echt kleiner ls q n i+, der Anzhl ller Wörter dieser Länge. Mithin existiert ds so definierte c i+. Beispiel: Sei q = und die gewünschten Codewortlängen seien n =, n = n 3 = n 4 = 3, n 5 = n 6 = 4. Wir hben 6 k= n k = und folglich gibt es einen dzu pssenden des Präfixcode. Die n Hnd des Beweises erzeugten Codewörter sind,,,,,. Der Huffmn Algorithmus In den folgenden Überlegungen wird die Ttsche eine entscheidende Rolle spielen, dss in typischen Nchrichten die verwendeten Zeichen us A nicht gleichhäufig uftreten. Mehr noch, wir wollen dvon usgehen, dss mn bereits eine Whrscheinlichkeitsverteilung für die reltive Häufigkeit des Auftretens der Symbole x us A kennt. Wir wollen diese reltive Häufigkeit mit Pr(x) bezeichnen. Um in diesem Zusmmenhng von einer Whrscheinlichkeitsverteilung zu sprechen, muss Pr(x) für jedes x A ein Wert zwischen und sein und drüber hinus muss die Gleichung x A Pr(r) = erfüllt sein. Ziel ist die Konstruktion eines Präfixcodes C, für den der Erwrtungswert
4 der Codewortlänge x A Pr(x) n(x) miniml ist, wobei n(x) die Länge des Codeworts ϕ(x) C bezeichnet. Ein solcher Code minimiert dnn ntürlich uch die erwrtete Gesmtlänge einer codierten Nchricht. Dieses Ziel erreicht mn mit dem sogennnten Huffmn Codes, einer vielbenutzten Technik zur Dtenkompression, der eine optimle Effizienz ht. Wir werden hier nur den Fll der Binärcodes, d.h. Q = {, } betrchten. Beispiel: Wir illustrieren diese Begriffsbildung noch einml n der Drstellung von zwei Binärcodes mittels binärer Bäume. Gegeben sei A = {, b, c, d, e, f} mit den reltiven Häufigkeiten der Symbole. Wir vergleichen die Codierung von A mit einen Bockcode mit einer nderen Codierung (die sich - wie wir sehen werden - us dem Huffmn-Algorithmus ergibt). Zeichen b c d e f rel. Häufigkeit in % Blockcode opt. Präfixcode Als Binärbäume sehen die Codes dnn wie folgt us. In den Knoten sind zusätzlich die Gesmthäufigkeiten der drunter liegenden Blätter notiert : 45 b:3 c: d: 6 e: 9 f : c: b: 3 4 d: 6 f : 5 e : 9 Blockkode optimler Huffmnkode Für den Blockcode ist offensichtlich der Erwrtungswert für die Länge eines Codeworts genu 3. Dgegen ergibt sich für den zweiten Code ein wesentlich besserer Wert, nämlich =, 4 D es für den Algorithmus egl ist, ob wir mit reltiven Häufigkeiten (lso mit Whrscheinlichkeiten) oder mit bsoluten Häufigkeiten rbeiten, wird b jetzt mit f(x) eine Verteilungsfunktion bezeichnen, die für eine dieser zwei Möglichkeiten steht.
5 Die Grundidee für den Huffmn Code ist einfch: Seltene Zeichen in der Nchricht bekommen lnge Codewörter, häufiger uftretende Zeichen bekommen kurze Codewörter. Wenn x und y die seltensten Zeichen sind mit Häufigkeiten f(x) und f(y), so stelle mn sich vor, beide durch ein neues Zeichen z zu ersetzen, ds die Häufigkeit f(z) = f(x) + f(y) ht. Wenn mn dnn rekursiv ein Codewort für z berechnet ht, entstehen jene für x und y einfch durch Anhängen einer bzw.. Zur Relisierung des Huffmn-Algorithmus verwendet mn eine sogennnte Prioritätswrteschlnge. Ds ist eine Dtenstruktur, in der jeder Eintrg mit einem zusätzlichen Prioritätswert versehen ist. Dzu gibt es eine Funktion ExtrctMin, mit der mn den Eintrg mit dem kleinsten Prioritätswert entfernen knn. Der Algorithmus erzeugt die Bumdrstellung einer optimlen Codierung. Am Anfng ht mn für jedes Symbol x A einen (entrteten) Bum T(x), der nur us einer Wurzel besteht, die gleichzeitig ds einzige Bltt ist und x ls Mrkierung trägt. Der Prioritätswert dieses Bums ist p(t(x)) = f(x). Hier ist der Algorithmus im Pseudocode. Huffmn(A,f) : f Verteilungsfunktion uf A Q = empty PriorityQueue for ll x in A CreteTree T(x) Insert T(x) in Q with priority p(t(x))=f(x) repet A - times T=ExtrctMin(Q) T=ExtrctMin(Q) CreteTree T with new root r leftchild(r) = r(t) rightchild(r) = r(t) insert T in Q with priority p(t) = p(t) + p(t) T = ExtrctMin(Q) return T Der vom Algorithmus erzeugte Bum ist der Codebum eines optimlen Präfixcodes, wenn mn lle Knten zu linken Kinder mit einer und lle Knten zu rechten Kindern mit einer mrkiert. Die beiden folgenden Lemmt beweisen die Optimlität des Huffmn Codes. Lemm : Seien x, y A die Symbole mit den kleinsten Häufigkeiten f(x) f(y) f(u) für beliebige u A. Dnn gibt es einen optimlen Präfixcode für A, in dem die Codewörter für x und y die gleiche Länge hben und sich nur im letzten Bit unterscheiden. Beweis: Ein Präfixcode zur Codierung einer Symbolmenge A mit Verteilung f ist optiml, wenn für seinen Codebum T der Ausdruck B(T) := A f()d T() min-
6 imiert wird, wobei d T () die Tiefe des mit mrkierten Blttes in T bezeichnen soll. Sei nun T Codebum eines optimlen Präfixcodes und seien u, v die Symbole in zwei Zwillingsblättern mximler Tiefe, wobei f(u) f(v) gelten soll. Wir betrchten die Bäume T und T, die us T durch einfche Austuschopertionen entstehen von x gegen u und im zweiten Schritt von y gegen v, wie im Bild ngedeutet. x u u y y v u v x v x y T T T Wir wissen f(x) f(u), f(y) f(v) und d T (x) d T (u), d T (y) d T (v). Drus folgt B(T) B(T ) = A f()d T() A f()d T () = (f(u) f(x))(d T (u) d T (x)). Somit ist B(T) B(T ), ber d B(T) schon miniml ist, müssen bei Werte gleich sein. Anlog zeigt mn B(T ) B(T ) und folglich muss B(T) = B(T ) sein und wegen der Optimlität von T ist uch T optiml und T ht die behupteten Eigenschften. Ds folgende Lemm ht einen sehr ähnlichen Beweis. Lemm: Repräsentiere T einen optimlen Präfixcode für A und seinen x, y die Mrkierungen von zwei Zwillingsblätter in T. Sei z A ein neues Symbol mit f(z) = f(x)+f(y), A = (A \ {x, y}) {z} und T, der Bum, der us T durch Streichung der Blätter von x und y entsteht wobei der gemeinsme Vterknoten mit z mrkiert wird. Dnn repräsentiert T einen optimlen Präfixcode für A. Zusmmen hben wir Stz: Der Huffmn Algorithmus liefert optimle Präfixcodes.
Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:
8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.
Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre
Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt
15 Optimales Kodieren
15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen
UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009
UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis
4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.
Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel
Definition Suffixbaum
Suffix-Bäume Definition Suche nch einer Menge von Mustern Längste gemeinsme Zeichenkette Pltzreduktion Suffixbäume für Muster Alle Pre Suffix-Präfix Übereinstimmung Sich wiederholende Strukturen Definition
Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6
Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.
1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes
1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon
Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.
Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine
Funktionen und Mächtigkeiten
Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit
Mathematik. Name, Vorname:
Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig
Codierungstheorie Rudolf Scharlau, SoSe 2006 9
Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
Streuungsmaße. Grundbegriffe
Grundbegriffe Untersuchungseinheiten U,...,U n Merkml X Urliste x,...,x n geordnete Urliste x (),...,x (n) Es gilt i.llg.: xi x() i, i, Κ, n In einer westdeutschen Großstdt gibt es insgesmt drei Träger
Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)
Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein
Hausaufgabe 2 (Induktionsbeweis):
Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden
Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer!
hben Freunde Deine Zähne sind wie deine sportmnnschft und du bist der Triner! Und jeder Triner weiß, wie wichtig jeder einzelne Spieler ist eine wichtige und schöne Aufgbe! Drum sei nett zu deinen Zähnen
t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )
Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen
CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005
CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005. Das Problem.. Quellcodierung und Datenkompression. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder übertragen kann, schicken.
2.11 Kontextfreie Grammatiken und Parsebäume
2.11 Kontextfreie Grammatiken und Parsebäume Beispiel: Beispiel (Teil 3): Beweis für L(G) L: Alle Strings aus L der Länge 0 und 2 sind auch in L(G). Als Induktionsannahme gehen wir davon aus, dass alle
Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.
6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente
Mathematik schriftlich
WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv
3 Quellencodierung. 3.1 Einleitung
Source coding is what Alice uses to save money on her telephone bills. It is usually used for data compression, in other words, to make messages shorter. John Gordon 3 Quellencodierung 3. Einleitung Im
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
Mathe Warm-Up, Teil 1 1 2
Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des
Theoretische Grundlagen der Informatik WS 09/10
Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3
1 Kurvendiskussion /40
009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.
Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen
Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:
Codierung, Codes (variabler Länge)
Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls
Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999
Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden
Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.
Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren
Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen
Binäre Bäume 1. Allgemeines Binäre Bäume werden grundsätzlich verwendet, um Zahlen der Größe nach, oder Wörter dem Alphabet nach zu sortieren. Dem einfacheren Verständnis zu Liebe werde ich mich hier besonders
Programmiersprachen und Übersetzer
Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch
Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik
Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: [email protected] Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:
BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?
BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert
Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO)
Fchhochschule Düsseldorf SS 2007 Teilfchprüfung Mthemtik Studiengng: Wirtschft Neue Diplomprüfungsordnung (NPO) Prüfungsdtum: 29..2007 Prüfer: Prof. Dr. Horst Peters / Dipl. Volkswirt Lothr Schmeink Prüfungsform:
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere
Kapiteltests zum Leitprogramm Binäre Suchbäume
Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm
Mathematik für Information und Kommunikation
Mathematik für Information und Kommunikation Am Beispiel des Huffman- Algorithmus Thomas Borys und (Christian Urff) Huffman im Alltag MPEG Telefax JPEG MP3 ZIP avid Huffman avid Huffman [95-999] www.soe.ucsc.edu/people/faculty/huffman.html
Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik
Boole'sche Algebr Binäre Funktionen, Boole'sche Algebren, Schltlgebr Inhltsübersicht Verknüpfungen der mthemtischen Logik Boole sche Algebren Grundelemente der Schltlgebr Regeln der Schltlgebr Normlformen
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der
3 Wiederholung des Bruchrechnens
3 Wiederholung des Bruchrechnens Ein Bruch entsteht, wenn ein Gnzes in mehrere gleiche Teile zerlegt wird. Jeder Bruch besteht us dem Zähler, der Zhl über dem Bruchstrich, und dem Nenner, der Zhl unter
1 Mathematische Grundlagen
Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.
SPSS Clementine. Auswertung von offenen Fragen mit TextMining für Clementine. Beispiel: Haustiere
V1.1 Auswertung von offenen Frgen mit TextMining für Clementine Beispiel: Hustiere Im Dezember 2005 ht SPSS (Schweiz) AG im Auftrg von NZZ Folio eine Online-Umfrge unter den Lesern und Leserinnen durchgeführt.
Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen
4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.
Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n
Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1
Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.
Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn
4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140
4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}
Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht
Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)
Grundlagen der Theoretischen Informatik, SoSe 2008
1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)
1 topologisches Sortieren
Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung
Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.
Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen
Lineare Gleichungssysteme
Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen
Der Zwei-Quadrate-Satz von Fermat
Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat
Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele
Organisation Was kommt zum Test? Buch Informatik Grundlagen bis inkl Kapitel 74 Wissensfragen und Rechenbeispiele 3 Vorträge zur Übung Informationstheorie, Huffman-Codierung und trennzeichenfreie Codierung
7-1 Elementare Zahlentheorie. 1 a ist quadratischer Rest modulo p, 1 falls gilt a ist quadratischer Nichtrest modulo p, 0 p a. mod p, so ist.
7-1 Elementre Zhlentheorie 7 Ds udrtische Rezirozitätsgesetz 70 Erinnerung Sei eine ungerde Primzhl, sei Z In 114 wurde ds Legendre-Symbol eingeführt: 1 ist udrtischer Rest modulo, 1 flls gilt ist udrtischer
Run Length Coding und Variable Length Coding
Fachbereich Medieninformatik Hochschule Harz Run Length Coding und Variable Length Coding Referat Matthias Zittlau 11034 Abgabe: 15.01.2007 Inhaltsverzeichnis 1. RLC...1 2.1 Einführung...1 2.2 Prinzip...1
Handbuch zur Anlage von Turnieren auf der NÖEV-Homepage
Handbuch zur Anlage von Turnieren auf der NÖEV-Homepage Inhaltsverzeichnis 1. Anmeldung... 2 1.1 Startbildschirm... 3 2. Die PDF-Dateien hochladen... 4 2.1 Neue PDF-Datei erstellen... 5 3. Obelix-Datei
Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert.
Anwendungen von Bäumen 4.3.2 Huffman Code Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert. => nutzbar für Kompression Code fester
Grundlagen der Technischen Informatik. 2. Übung
Grundlagen der Technischen Informatik 2. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Organisatorisches Übungsblätter zuhause vorbereiten! In der Übung an der Tafel vorrechnen! Bei
Grundbegriffe der Informatik
Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen
Einfache kryptographische Verfahren
Einfache kryptographische Verfahren Prof. Dr. Hagen Knaf Studiengang Angewandte Mathematik 26. April 2015 c = a b + a b + + a b 1 11 1 12 2 1n c = a b + a b + + a b 2 21 1 22 2 2n c = a b + a b + + a b
Einführung in Mathcad 14.0 2011 H.
Einführung in Mthc. H. Glvnik Eitieren von Termen Tet schreiben mit Shift " + + Nvigtion mit Leertste un Cursor + Löschen mit Shift + Entf + + 5 sin( ) + Arten von Gleichheitszeichen Definition eines Terms
Einführung in die Kodierungstheorie
Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik
Pause im Alltag - Babysitterbörse der Caritas macht-s möglich
Puse im Alltg - Bbysitterbörse der Crits mcht-s möglich Um Eltern und Fmilien zu unterstützen und zu entlsten, ht die Crits-Konferenz St. Mrien in Koopertion mit der Crits-Helfergruppe St. Peter und Pul
3.2 Spiegelungen an zwei Spiegeln
3 Die Theorie des Spiegelbuches 45 sehen, wenn die Person uns direkt gegenüber steht. Denn dann hat sie eine Drehung um die senkrechte Achse gemacht und dabei links und rechts vertauscht. 3.2 Spiegelungen
1. Voraussetzung. 2. Web-Account anlegen. 3. Einloggen. 4. Kunden-Portal verwenden 5. Sub-Accounts 5.1Sub-Account anlegen. 5.2 Sub-Account bearbeiten
Anleitung DER WEG ZUM TOLL COLLECT KUNDEN-PORTAL Inhlt 1. Vorussetzung 2. Web-Account nlegen 3. Einloggen 4. Kunden-Portl verwenden 5. Sub-Accounts 5.1Sub-Account nlegen 5.2 Sub-Account berbeiten 5.3 Sub-Account
7 Rechnen mit Polynomen
7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn
Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3
Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen
Aufgaben zur Flächenberechnung mit der Integralrechung
ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph
1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:
Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V
Sport Club (SC) Swiss Re München e.v.
Sport Club (SC) Swiss Re München e.v. Außerordentliche Mitgliederversmmlung Donnerstg, 20.11.2014, 16:30 Uhr Rum 1.330, Swiss Re Europe S.A., Niederlssung Deutschlnd Dieselstrße 11, Unterföhring Außerordentliche
1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist
. Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet
Binärdarstellung von Fliesskommazahlen
Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M
Repetitionsaufgaben Wurzelgleichungen
Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen
Kurzanleitung MAN E-Learning (WBT)
Kurzanleitung MAN E-Learning (WBT) Um Ihr gebuchtes E-Learning zu bearbeiten, starten Sie bitte das MAN Online- Buchungssystem (ICPM / Seminaris) unter dem Link www.man-academy.eu Klicken Sie dann auf
Technische Informatik - Eine Einführung
Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine
Theoretische Informatik SS 04 Übung 1
Theoretische Informatik SS 04 Übung 1 Aufgabe 1 Es gibt verschiedene Möglichkeiten, eine natürliche Zahl n zu codieren. In der unären Codierung hat man nur ein Alphabet mit einem Zeichen - sagen wir die
Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12
Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben
a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:
Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend
Was man mit dem Computer alles machen kann
Was man mit dem Computer alles machen kann Wie komme ich ins Internet? Wenn Sie einen Computer zu Hause haben. Wenn Sie das Internet benutzen möchten, dann brauchen Sie ein eigenes Programm dafür. Dieses
Übungen für Woche 10
Übungen für Woche 10 Martin Rubey 12. Januar 2011 Die folgenden Übungen sollen den Umgang mit Backtracking und kombinatorischen Spezies näherbringen. Genaue Hinweise gibt es erst auf Seite 5. Zur Erinnerung:
Limit Texas Hold em. Meine persönlichen Erfahrungen
Limit Texs Hold em Meine persönlichen Erfhrungen Dominic Dietiker c Drft dte 21. September 2010 Inhltsverzeichnis 1. Spielnleitung...................................... 1 1.1 Der Spielverluf....................................
Anmerkungen zur Übergangsprüfung
DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung
a' c' Aufgabe: Spiegelung an den Dreiecksseiten und Anti-Steinersche Punkte Darij Grinberg
ufgabe: Spiegelung an den Dreiecksseiten und nti-steinersche Punkte Darij Grinberg Eine durch den Höhenschnittpunkt H eines Dreiecks B gehende Gerade g werde an den Dreiecksseiten B; und B gespiegelt;
Reinigung 146. Reinigen des Hindernissensors. Reinigung der Projektoroberfläche. Reinigen des Projektionsfensters. Warnung. Warnung.
Reinigung 146 Bei Verschmutzung oder Bildverschlechterung muss der Projektor gereinigt werden. Schlten Sie den Projektor vor der Reinigung us. Reinigung der Projektoroberfläche Reinigen Sie die Projektoroberfläche
Data Mining: Einige Grundlagen aus der Stochastik
Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener
50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte
50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien
! " # $ " % & Nicki Wruck worldwidewruck 08.02.2006
!"# $ " %& Nicki Wruck worldwidewruck 08.02.2006 Wer kennt die Problematik nicht? Die.pst Datei von Outlook wird unübersichtlich groß, das Starten und Beenden dauert immer länger. Hat man dann noch die.pst
123 Familienausgleichskasse
1 Fmilienzulgen: Anmeldung für Arbeitnehmende eines nicht beitrgspflichtigen Arbeitgebers (Anobg) Antrgstellerin / Antrgsteller Abrechnungsnummer (xxx.xxx) 123 Fmilienusgleichsksse Sozilversicherungsnstlt
Codierungsverfahren SS 2011. Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur
Reed-Solomon-Codes zur Mehrblock-Bündelfehler-Korrektur Wie die zyklischen BCH-Codes zur Mehrbitfehler-Korrektur eignen sich auch die sehr verwandten Reed-Solomon-Codes (= RS-Codes) zur Mehrbitfehler-Korrektur.
Divergenz 1-E1. Ma 2 Lubov Vassilevskaya
Divergenz 1-E1 1-E2 Vektorfeld: Aufgabe 1 Stellen Sie graphisch folgende Vektorfelder dar x, y = x i y j a) F x, y = x i y j b) F Welcher Unterschied besteht zwischen den beiden Vektorfeldern? 1-A Vektorfeld:
Einführung in. Logische Schaltungen
Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von
Kompetitive Analysen von Online-Algorithmen
Kompetitive Analysen von Online-Algorithmen jonas echterhoff 16. Juli 004 1 Einführung 1.1 Terminologie Online-Algorithmen sind Algorithmen, die Probleme lösen sollen, bei denen Entscheidungen getroffen
