Amerikanischen Optionen

Größe: px
Ab Seite anzeigen:

Download "Amerikanischen Optionen"

Transkript

1 Die Bewertung von Amerikanischen Optionen im Mehrperiodenmodell Universität-Gesamthochschule Paderborn Fachbereich 17 Seminar Finanzmathematik SS 2001 Referentin: Christiane Becker-Funke Dozent: Prof. Dr. Peter Bürgisser

2 INHAL 0. EINLEIUNG AMERIKANISCHE CLAIMS DER FAIRE PREIS EINES AMERIKANISCHEN CLAIMS DAS PRINZIP DER RÜCKWÄRSINDUKION DIE ABSICHERBARKEI EINES AMERIKANISCHEN CLAIMS UND DIE KONSRUKION EINES HEDGE ANWENDUNG AUF DAS COX-ROSS-RUBINSEIN-MODELL LIERAURVERZEICHNIS

3 0. Einleitung Die amerikanischen Optionen werden neben den europäischen und den exotischen Optionen (Barriere-Optionen, Lookback-Optionen, Asiatische- Optionen) am häufigsten gehandelt. Die amerikanischen und die europäischen Optionen sind im Gegensatz zu den anderen jedoch durch den Aktienkurs im jeweiligen Zeitpunkt festgelegt und nicht durch den Kursverlauf der Aktie. Im Unterschied zu den europäischen verbriefen die amerikanischen Call- (Put-) Optionen auf eine Aktie das Recht, die Aktie zu einem beliebigen Zeitpunkt t zum vorher fixierten Ausübungspreis K zu kaufen (verkaufen) und nicht ausschließlich zum Zeitpunkt. Im folgenden sei ein Mehrperiodenmodell betrachtet. 1. Amerikanische Claims 1.1. Definition eines amerikanischen Claims: Ein amerikanischer Claim ist gegeben durch einen reellwertigen adaptierten stochastischen Prozeß (Z t ) 0=t= :=Z, wobei Z t die Auszahlung angibt, die der Inhaber bei Ausübung zur Zeit t erhält. Die Entscheidung zur Ausübung der Option zum Zeitpunkt t ist vom Käufer frei wählbar und hängt von den Informationen bis zur Zeit t erhältlich ab. (A t ) 0=t= sei eine zugehörige Filtration. Daher betrachten wir Strategien zur Wahl des Ausübungszeitpunktes als Stopzeiten τ bzgl. (A t ) 0=t=, wobei τ eine Zufallsvariable τ: Ω {0,1,...,} ist. Man kann jeder Stoppzeit τ den Claim C(Z, τ) = ( Z 0 1 {τ=0}, Z 1 1 {τ=1},..., Z 1 {τ=} ) zuordnen. Bei Ausübung der Option erhält man die Gesamtauszahlung Z t = Σ Z τ 1 {τ=t}. t=0 Die diskontierte Gesamtauszahlung ist entsprechend Z τ /B τ = Σ Z τ /B τ 1 {τ=t}. t= Beispiel: Der zugehörige Prozeß Z einer amerikanischen Call-Option mit Aktienkursen S 0, S 1,..., S zum Ausübungspreis K ist gegeben durch Z t = (S t - K) +, t=0,...,. 3

4 Eine mögliche Ausübungsstrategie wäre: τ:= min({0 t S t a } {}) mit a K, d. h. man nutzt das Optionsrecht, sobald a zum ersten Mal überschritten wird. Falls dies nicht bis zum Zeitpunkt - 1 eintritt, übt man sie zum Zeitpunkt aus oder läßt sie verfallen. Der zugehörige Prozeß Z einer amerikanischen Put-Option mit Aktienkursen S 0, S 1,..., S zum Ausübungspreis K ist gegeben durch Z t = (K - S t ) +, t=0,...,. 2. Der faire Preis eines amerikanischen Claims Z sei ein absicherbarer amerikanischer Claim. Mit dem Kauf einer amerikanischen Option erhält der Käufer die Möglichkeit, die Option zu einem beliebigen Zeitpunkt auszuüben, d. h. er hat z.b. bei einer Call-Option die Chance, beim maximalen Preis der Aktie zu stoppen. Deshalb definieren wir den fairen Preis eines amerikanischen Claims als Supremum über die fairen Preise aller Claims, die für diese Auswahl zur Verfügung stehen: s(z) = sup s(c(z, τ )). τ Allgemein gilt für den fairen Preis für k = 0, 1,..., -1: s(z, k) = sup s(c(z, τ)). τ k Unter Benutzung eines äquivalenten Martingalmaßes Q erhalten wir folgendes Ergebnis: 2.1. Satz: Der faire Preis eines absicherbaren amerikanischen Claims bzgl. eines Martingalmaßes Q ist zur Zeit 0 gegeben durch sup E Q (Z τ /B τ A 0 ), τ und allgemein zum Zeitpunkt k = 0, 1,..., -1 durch sup B k *E Q (Z τ /B τ A k ). τ Diese Preisfestsetzung kann mit dem No-Arbitrageprinzip erklärt werden: Fall 1: Wäre s(z) < sup s(c(z, τ)), dann gäbe es ein τ mit s(z) < s(c(z, τ)). Man hätte den Claim damit unterhalb des fairen Preises, zum Preis s(z), 4

5 erworben. Dies ist eine Arbitragestrategie. Fall 2: Wäre s(z) > sup s(c(z, τ)), hätte der Käufer jeden dieser Claims oberhalb des fairen Preises erworben. Dies ist ebenfalls eine Arbitragestrategie. Den fairen Preis erhält man also durch Lösen der Optimierungsaufgabe sup E Q (Z τ /B τ A 0 ). τ Da wir A 0 = {, Ω} annehmen, müssen wir nur noch sup E Q (Z τ /B τ ) τ bestimmen. Um diese Aufgabe zu lösen, verwenden wir die heorie des optimalen Stoppens heorem: Sei S:={τ τ Stopzeit}. Dann lautet das Problem des optimalen Stoppens: Maximiere EZ τ über τ S; bestimme also v:= sup EZ τ und τ* S mit τ S EZ τ* = sup EZ τ. τ S Wir setzen: S r t := {τ S r τ t} und v r t := sup EZ τ τ Srt 2.3. Bemerkung: Zu einem amerikanischem Claim kann ein zugehöriger europäischer Claim betrachtet werden, der nur zur Zeit ausgeübt werden kann: C(Z, ) = ( 0,, 0, Z ) zur Stopzeit τ =. Also gilt s(z) = sup s(c(z, τ)) s(c(z, )), d.h. der faire Preis eines amerikanischen Claims ist immer größer oder gleich dem eines europäischen Claims Satz: Sei Q ein äquivalentes Martingalmaß. Dann gilt für jede Kapitalanlage und für jeden Ausübungspreis K 0: sup E Q (1/B τ * ( S τ - K) + ) = E Q (1/B * (S - K) + ) τ S Beweis: Man zeigt, daß (1/B t *(S t - K) + ) für t= 0,, ein Submartingal bzgl. Q ist. Dann gilt für alle τ S : E Q (1/B τ *( S τ - K) + ) E Q (1/B *(S - K) + ). Da x (x - K) + eine konvexe Abbildung ist, folgt mit der Jensenschen Ungleichung: 5

6 E Q (1/B t+1 *( S t+1 - K) + A t ) 1/B t+1 *(E Q (S t+1 A t ) - K) + = (E Q (S t+1 /B t+1 A t ) - K /B t+1 ) + = (S t /B t - K /B t+1 ) + = 1/B t *(S t - K /B 1 ) + 1/B t * (S t - K) +, da (x - K /B 1 ) + (x - K) + für 1/B 1 1, K Folgerung: Falls 1 /B 1 < 1, stimmen also die fairen Preise sup E Q (1/B τ *( S τ - K) + ) des τ S amerikanischen Calls und E Q (1/B *(S - K) + ) des europäischen Calls überein. Erstaunlicherweise spielt das Verhalten des Preisprozesses dabei keine Rolle Bemerkung: Aufgrund der Preisgleichheit bietet eine amerikanische Call-Option theoretisch keinen Vorteil gegenüber einer europäischen Call-Option. In der Praxis sieht dies natürlich anders aus. (Man betrachte z.b. Dividenden.) 2.7. Bemerkung: Im Gegensatz zur Preisgleichheit des amerikanischen und europäischen Calls unterscheiden sich die fairen Preise der amerikanischen und europäischen Put-Optionen. 3. Das Prinzip der Rückwärtsinduktion Wir betrachten ein allgemeines Stopproblem mit der Zeitparametermenge = {0, 1,,}. Befinden wir uns schon im Zeitpunkt, ohne vorher gestoppt zu haben, müssen wir die Auszahlung Z akzeptieren. Zur Zeit -1 können wir entweder stoppen und erhalten somit den Betrag Z -1,oder wir warten noch bis zum Zeitpunkt und bekommen die zur Zeit -1 noch unbekannte Auszahlung Z. Geeignet ist folgendes Vorgehen: Stoppe in -1, falls Z -1 E(Z A -1 ), beobachte weiter, falls Z -1 < E(Z A -1 ). Allgemein gilt zum Zeitpunkt t: Stoppe in t, falls Z t größer oder gleich dem bedingten Erwartungswert dessen ist, was sich bei optimaler Fortsetzung ergibt. Andernfalls mache eine weitere Beobachtung. 6

7 3.1. Definition: Betrachte ein Stopproblem mit ={0, 1,,}. Dann setze: U := Z U -1 := max {Z -1, E(U A -1 )} U t := max {Z t, E(U t+1 A t )} für alle t = -2,, 0 Weiter sei für t = 0,,: τ t := inf { k t Z k = U k } = inf { k t Z k E(U k+1 A k )} 3.2. Satz: Mit Definition 3.1. gilt für t = 0,,: E( Zτ t A t ) = U t E(Z τ A t ) für alle τ S t, also EZτ t = EU t EZ τ für alle τ S t. Insbesondere folgt: v t = EU t, τ t ist optimal in S t,und τ* = τ 0 ist optimal. Beweis: Offensichtlich ist τ t S t für alle t. Wir führen den weiteren Beweis durch Rückwärtsinduktion über t = 0,, durch: Für t = ist die Aussage klar, denn U = Z, τ =, S = {τ }. Die Behauptung sei richtig für ein t {1,,}. Sei A A t-1. Sei τ S t-1, weiter τ = max {τ, t} S t. Zusammen mit der Induktionsvoraussetzung folgt aus der Definition von U t : Z τ dp = Z t-1 dp + Z τ dp A A {τ =t-1} A {τ t} = Z t-1 dp + Z τ dp A {τ =t-1} A {τ t} = Z t-1 dp + E(E(Z τ A t ) A t-1 ) dp A {τ =t-1} A {τ t} I.V. Z t-1 dp + E(U t A t-1 ) dp A {τ =t-1} A {τ t} U t-1 dp A Also E(Z τ A t-1 ) U t-1. 7

8 Die entsprechende Rechnung für τ t-1 : Zτ t-1 dp = Z t-1 dp + Z τ t-1 dp A A {Zt-1 E(Ut At-1)} A {Zt-1 < E(Ut At-1)} = Z t-1 dp + Zτ t dp A {Zt-1 E(Ut At-1)} A { Zt-1 < E(Ut At-1)} = Z t-1 dp + E (Zτ t A t-1 ) dp A { Zt-1 E(Ut At-1)} A { Zt-1 < E(Ut At-1)} I.V. Z t-1 dp A { Zt-1 E(Ut At-1)} + E(U t A t-1 ) dp A { Zt-1 < E(Ut At-1)} = U t-1 dp A Also E(Zτ t A t-1 ) = U t Satz: Seien Z:= (Z t ) 0 t und U:= (U t ) 0 t definiert wie bisher. Dann gilt: U ist minimales dominierendes Supermartingal, d.h. (i) U Z (ii) U ist Supermartingal (iii) Ist Y:= (Y t ) 0 t ein weiteres Supermartingal mit Y Z, so ist Y U. Beweis: (i) und (ii) folgen sofort aus der Definition von U ( U t-1 := max {Z t-1, E(U t A t-1 )}, t = 0, ) (iii) wird bewiesen durch Rückwärtsinduktion: Wir nehmen an, daß Y ein beliebiges Supermartingal mit Y Z für alle t ist. Dann gilt Y Z = U. Für ein festes t sei Y t U t. Da Y Supermartingal, gilt: Y t-1 E Q (Y t A t-1 ). Dann Y t-1 E Q (U t A t-1 ). Andererseits dominiert Y Z. Nehme Y t-1 Z t-1 an. Dann Y t-1 max {Z t-1, E Q (U t-1 A t-1 )} =U t-1. 8

9 4. Die Absicherbarkeit eines amerikanischen Claims und die Konstruktion eines Hedge 4.1. Definition: Sei Q ein äquivalentes Martingalmaß. Dann heißt Z absicherbar, falls eine selbstfinanzierende Handeslstrategie H existiert, so daß für den Wertprozeß V:= (V t ) 0 t gilt: V Z. Dann heißt H Hedge zu V. (Der Verkäufer eines amerikanischen Claims kann nach Bildung des Portfolios H zur Zeit 0 zum Preis V 0 jeden möglichen Anspruch des Käufers ohne Zufuhr weiterer Mittel erfüllen.) Für einen amerikanischen Claim Z zum Anfangsportfoliopreis V 0 = H 0 S 0 = s(z) = sup E Q (Z τ /B τ A 0 ) können wir einen selbstfinanzierenden Hedge konstruieren. Um dieses zu zeigen, betrachten wir das Stopproblem mit Auszahlungsprozeß (Z t /B t ) t = 0,, und das dazugehörige minimale dominierende Supermartingal U. Mit der Doobschen Zerlegung schreiben wir U = M + C, wobei M:= (M t ) 0 t ein Martingal ist und C:= (C t ) 0 t monoton fallend mit C 0 = 0 ist Satz: Der Claim C = (0,,B M ) sei absicherbar. H sei zugehöriger Hedge. Dann ist H auch Hedge für den amerkanischen Claim, und es gilt H 0 S 0 = s(z). Beweis: Da H selbstfinanzierend ist und (V t /B t ) t = 0,, ein Martingal bzgl. Q ist, folgt V /B = M U = Z /B. Mit der Minimalität von U folgt: V t /B t U t Z t /B t, t = 0,,-1, also V Z. Für den Anfangspreis des Portfolios erhalten wir mit der Martingaleigenschaft H 0 S 0 = V 0 /B 0 = E Q V /B = E Q M = M 0 = U 0 = s(z). Nun definieren wir den fairen Preis eines amerikanischen Claims Z durch s* = inf { H 0 S 0 H ist selbstfinanzierender Hedge für Z}. Dann gilt unter der Voraussetzung der Absicherbarkeit des Claims C = (0,,0, B M ): s* s(z). Andererseits erhalten wir für jeden selbstfinanzierenden Hedge H: V t /B t Z t /B t, t =0,,, also V t /B t U t, t = 0,,. Damit folgt H 0 S 0 = V 0 /B 0 U 0 = s(z) und s* s(z). 9

10 Wir konstruieren also einen Hedge für einen amerikanischen Claim, indem wir den Hedge für einen durch die Doobsche Zerlegung eindeutig bestimmten europäischen Claim berechnen. 5. Die Anwendung auf das Cox-Ross-Rubinstein-Modell S t = S 0 Y 1 Y 2 Y t sei der Aktienpreis zur Zeit t, wobei 0 t und Y 1,,Y t bzgl. Q stochastisch unabhängig und identisch verteilt seien. Es gelte q:= Q(Y t = u) = (1 + r - d) /(u - d), Q(Y t = d) = 1 - q Z:= (Z t ) 0 t sei ein amerikanischer Claim mit diskontierten Auszahlungen Z t /B t := h t (S t ) für t = 0,,, wobei h eine meßbare Funktion sei. (Betrachtet man z.b. eine Put-Option, so ist h t (S t ) = 1/B t *( K - S t ) +. Abb.: Binomialbaum für = 3 S 0 u 2 S 0 u 3 S 0 u S 0 u 2 d S 0 S 0 ud S 0 d S 0 ud 2 S 0 d 2 S 0 d 3 Man bestimmt den fairen Preis eines amerikanischen Claims am effizientesten rekursiv, d. h. man folgt dem Binomialbaum von rechts nach links. Wir berechnen also den fairen Preis zur Zeit 0 (den Wert ω 0 (S 0 )), indem wir die ω t -t (die fairen Preise zu den Zeitpunkten t = 0,,) rekursiv bestimmen. Wir beschränken uns hier auf den Fall =3: t Entsprechend der Definition von U t lassen sich die ω -t folgendermaßen berechnen: ω 2 1 (S 0 u 2 ) = q* h 3 (S 0 u 3 ) + (1- q)* h 3 (S 0 u 2 d) ω 2 1 (S 0 ud) = q* h 3 (S 0 u 2 d) + (1- q)* h 3 (S 0 ud 2 ) ω 2 1 (S 0 d 2 ) = q* h 3 (S 0 ud 2 ) + (1- q)* h 3 (S 0 d 3 ) ω 1 2 (S 0 u) = q*max{h 2 (S 0 u 2 ), ω 2 1 (S 0 u 2 )} + (1- q)* max{h 2 (S 0 ud), ω 2 1 (S 0 ud)} ω 1 2 (S 0 d) = q* max{h 2 (S 0 ud), ω 2 1 (S 0 ud)} + (1- q)*max{h 2 (S 0 d 2 ), ω 2 1 (S 0 d 2 )} 10

11 ω 0 3 (S 0 ) = q* max{h 1 (S 0 u), ω 1 2 (S 0 u)} + (1- q)*max{h 1 (S 0 d), ω 1 2 (S 0 d)} Der Wert ω 0 3 (S 0 ) ist folglich der faire Preis eines amerikanischen Claims zur Zeit 0 im binomialen Modell. 11

12 6. Literaturverzeichnis Irle, Albrecht: Finanzmathematik. Die Bewertung von Derivaten. Stuttgart: eubner Elliot, Robert James: Mathematics of financial markets. New York: Springer

Bewertung von amerikanischen Optionen im CRR Modell. Seminararbeit von Nadja Amedsin

Bewertung von amerikanischen Optionen im CRR Modell. Seminararbeit von Nadja Amedsin Bewertung von amerikanischen Optionen im CRR Modell Seminararbeit von Nadja Amedsin 22.05.10 i Inhaltsverzeichnis 1 Einführung 1 2 Amerikanischer Claim 1 2.1 Beispiele................................ 2

Mehr

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/ Finanzmathematik - Wintersemester 2007/08 http://code.google.com/p/mitgetexed/ Stand: 4. November 2007 Inhaltsverzeichnis 1 Motivation und erste Begriffe 2 2 Endliche Finanzmärkte 4 3 Das Cox-Ross-Rubinstein-Modell

Mehr

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären.

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. Einleitung Das Ein-Perioden-Modell ist das einfachste Modell, um die Idee der Preisgebung von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. naive Idee der Optionspreisbestimmung: Erwartungswertprinzip

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag 8. Übungsblatt zur Vorlesung Finanzmathematik I Aufgabe Hedging Amerikanischer Optionen Wir sind in einem arbitragefreien

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Vertical-Spreads Iron Condor Erfolgsaussichten

Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 1 Eigenschaften Erwartung Preis Long Calls Long Puts Kombination mit Aktien Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 2 www.mumorex.ch 08.03.2015

Mehr

Derivate und Bewertung

Derivate und Bewertung . Dr. Daniel Sommer Marie-Curie-Str. 0 6049 Frankfurt am Main Klausur Derivate und Bewertung.......... Wintersemester 006/07 Klausur Derivate und Bewertung Wintersemester 006/07 Aufgabe 1: Statische Optionsstrategien

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Bewertung von Barriere Optionen im CRR-Modell

Bewertung von Barriere Optionen im CRR-Modell Bewertung von Barriere Optionen im CRR-Modell Seminararbeit von Susanna Wankmueller. April 00 Barriere Optionen sind eine Sonderform von Optionen und gehören zu den exotischen Optionen. Sie dienen dazu,

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Kapitalerhöhung - Verbuchung

Kapitalerhöhung - Verbuchung Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Aufgaben Brealey/Myers [2003], Kapitel 21

Aufgaben Brealey/Myers [2003], Kapitel 21 Quiz: 1, 2, 4, 6, 7, 10 Practice Questions: 1, 3, 5, 6, 7, 10, 12, 13 Folie 0 Lösung Quiz 7: a. Das Optionsdelta ergibt sich wie folgt: Spanne der möglichen Optionspreise Spanne der möglichen Aktienkurs

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

Projekt Finanzmathematik: Derivative und strukturierte Finanzprodukte

Projekt Finanzmathematik: Derivative und strukturierte Finanzprodukte : Derivative und strukturierte Finanzprodukte Institut für Finanzmathematik Johannes Kepler Universität Linz 10. Jänner 2008 Wesentliche Fragen Was sind Derivate? Was sind strukturierte Finanzprodukte

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Wichtige Begriffe in der Finanzmathematik

Wichtige Begriffe in der Finanzmathematik Wichtige Begriffe in der Finanzmathematik Forward: Kontrakt, ein Finanzgut zu einem fest vereinbarten Zeitpunkt bzw. innerhalb eines Zeitraums zu einem vereinbarten Erfüllungspreis zu kaufen bzw. verkaufen.

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

FDAX mit Zertifikaten gehandelt

FDAX mit Zertifikaten gehandelt FDAX mit Zertifikaten gehandelt Gehandelt wird ausschließlich mit Knock out Zertifikaten der Deutschen Bank. Den Grund dafür lesen Sie bitte in meinen Lehrbriefen nach. Als Broker wird Cortal Consors mit

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 1 3.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Also kann nur A ist roter Südler und B ist grüner Nordler gelten.

Also kann nur A ist roter Südler und B ist grüner Nordler gelten. Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf

Mehr

Name:... Matrikel-Nr.:... 3 Aufgabe Handyklingeln in der Vorlesung (9 Punkte) Angenommen, ein Student führt ein Handy mit sich, das mit einer Wahrscheinlichkeit von p während einer Vorlesung zumindest

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

Optionen am Beispiel erklärt

Optionen am Beispiel erklärt Optionen am Beispiel erklärt Long Call Short Call Long Put Short Put von Jens Kürschner Grundlagen 2 Definition einer Option Eine Option bezeichnet in der Wirtschaft ein Recht, eine bestimmte Sache zu

Mehr

VALUATION Übung 5 Terminverträge und Optionen. Adrian Michel Universität Bern

VALUATION Übung 5 Terminverträge und Optionen. Adrian Michel Universität Bern VALUATION Übung 5 Terminverträge und Optionen Adrian Michel Universität Bern Aufgabe Tom & Jerry Aufgabe > Terminpreis Tom F Tom ( + R) = 955'000 ( + 0.06) = 99'87. 84 T = S CHF > Monatliche Miete Jerry

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Das Black-Scholes Marktmodell

Das Black-Scholes Marktmodell Das Black-Scholes Marktmodell Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 8. April 2011 1 / 14 Gliederung 1 Einleitung Fortgeschrittene Finanzmathematik einfach erklärt

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2015/16 Prof. Dr. M. Hinze Dr. P. Kiani Analysis I für Studierende der Ingenieurwissenschaften Lösungshinweise zu Blatt 2 Aufgabe 1: (12 Punkte) a) Beweisen

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Investition und Finanzierung

Investition und Finanzierung Tutorium Investition und Finanzierung Sommersemester 2014 Investition und Finanzierung Tutorium Folie 1 Inhaltliche Gliederung des 3. Tutorium Investition und Finanzierung Tutorium Folie 2 Aufgabe 1: Zwischenform

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Aktien, Optionen (und Credit Default Swaps)

Aktien, Optionen (und Credit Default Swaps) Aktien, Optionen (und s) Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 8. Februar 2009 1 / 7 Gliederung 1 Was ist Finanzmathematik Denkweise im Umgang mit Finanzprodukten

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Quantilsschätzung als Werkzeug zur VaR-Berechnung

Quantilsschätzung als Werkzeug zur VaR-Berechnung Quantilsschätzung als Werkzeug zur VaR-Berechnung Ralf Lister, Aktuar, [email protected] Zusammenfassung: Zwei Fälle werden betrachtet und die jeweiligen VaR-Werte errechnet. Im ersten Fall wird

Mehr

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der

Mehr

Kapitalerhöhung - Verbuchung

Kapitalerhöhung - Verbuchung Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.

Mehr

Ruinwahrscheinlichkeiten im Glücksspiel

Ruinwahrscheinlichkeiten im Glücksspiel Ruinwahrscheinlichkeiten im Glücksspiel Wilhelm Stannat Fachbereich Mathematik TU Darmstadt February 24, 2007 Stochastik = Wahrscheinlichkeitstheorie + Statistik Wahrscheinlichkeitstheorie = Mathematische

Mehr

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten Das große x -4 Alles über das Wer kann beantragen? Generell kann jeder beantragen! Eltern (Mütter UND Väter), die schon während ihrer Elternzeit wieder in Teilzeit arbeiten möchten. Eltern, die während

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

Internationale Finanzierung 7. Optionen

Internationale Finanzierung 7. Optionen Übersicht Kapitel 7: 7.1. Einführung 7.2. Der Wert einer Option 7.3. Regeln für Optionspreise auf einem arbitragefreien Markt 7.3.1. Regeln für Calls 7.3.2. Regeln für Puts 7.3.3. Die Put Call Parität

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Derivatebewertung im Binomialmodell

Derivatebewertung im Binomialmodell Derivatebewertung im Binomialmodell Roland Stamm 27. Juni 2013 Roland Stamm 1 / 24 Agenda 1 Einleitung 2 Binomialmodell mit einer Periode 3 Binomialmodell mit mehreren Perioden 4 Kritische Würdigung und

Mehr

Finanzmanagement 5. Optionen

Finanzmanagement 5. Optionen Übersicht Kapitel 5: 5.1. Einführung 5.2. Der Wert einer Option 5.3. Regeln für Optionspreise auf einem arbitragefreien Markt 5.3.1. Regeln für Calls 5.3.2. Regeln für Puts 5.3.3. Die Put Call Parität

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Aufgaben zur Vorlesung Finanzmanagement

Aufgaben zur Vorlesung Finanzmanagement Aufgaben zur Vorlesung Finanzmanagement B. rke FH Gelsenkirchen, Abteilung Bocholt February 4, 006 Aufgabenblatt: "Bewertung von Optionen" 1 Lösungshinweise 1 uropean Put Option Zeichnen Sie den einer

Mehr

Übung zu Forwards, Futures & Optionen

Übung zu Forwards, Futures & Optionen Übung zu Forwards, Futures & Optionen Vertiefungsstudium Finanzwirtschaft Dr. Eric Nowak SS 2001 Finanzwirtschaft Wahrenburg 15.05.01 1 Aufgabe 1: Forward auf Zerobond Wesentliche Eckpunkte des Forwardgeschäfts:

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel von Christian Schmitz Übersicht Zufallszahlen am Computer Optionspreis als Erwartungswert Aktienkurse simulieren Black-Scholes Formel Theorie

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 6: Induktives Vorgehen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel Seite 1 von 24 Zufallszahlen am Computer 3 Gleichverteilte Zufallszahlen 3 Weitere Verteilungen 3 Quadratische Verteilung 4 Normalverteilung

Mehr

Orderarten im Wertpapierhandel

Orderarten im Wertpapierhandel Orderarten im Wertpapierhandel Varianten bei einer Wertpapierkauforder 1. Billigst Sie möchten Ihre Order so schnell wie möglich durchführen. Damit kaufen Sie das Wertpapier zum nächstmöglichen Kurs. Kurs

Mehr

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b AGROPLUS Buchhaltung Daten-Server und Sicherheitskopie Version vom 21.10.2013b 3a) Der Daten-Server Modus und der Tresor Der Daten-Server ist eine Betriebsart welche dem Nutzer eine grosse Flexibilität

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Derivate und Bewertung

Derivate und Bewertung . Dr. Daniel Sommer Marie-Curie-Str. 30 60439 Franfurt am Main Klausur Derivate und Bewertung.......... Wintersemester 2008/09 Klausur Derivate und Bewertung Wintersemester 2008/09 Aufgabe 1: Zinsurven,

Mehr

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat.

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat. Die k/2 - Formel von Renate Vistorin Zentrales Thema dieses Vortrages ist die k/2 - Formel für meromorphe Modulformen als eine Konsequenz des Residuensatzes. Als Folgerungen werden danach einige Eigenschaften

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Fachdidaktik der Informatik 18.12.08 Jörg Depner, Kathrin Gaißer

Fachdidaktik der Informatik 18.12.08 Jörg Depner, Kathrin Gaißer Fachdidaktik der Informatik 18.12.08 Jörg Depner, Kathrin Gaißer Klassendiagramme Ein Klassendiagramm dient in der objektorientierten Softwareentwicklung zur Darstellung von Klassen und den Beziehungen,

Mehr

a' c' Aufgabe: Spiegelung an den Dreiecksseiten und Anti-Steinersche Punkte Darij Grinberg

a' c' Aufgabe: Spiegelung an den Dreiecksseiten und Anti-Steinersche Punkte Darij Grinberg ufgabe: Spiegelung an den Dreiecksseiten und nti-steinersche Punkte Darij Grinberg Eine durch den Höhenschnittpunkt H eines Dreiecks B gehende Gerade g werde an den Dreiecksseiten B; und B gespiegelt;

Mehr

Guide DynDNS und Portforwarding

Guide DynDNS und Portforwarding Guide DynDNS und Portforwarding Allgemein Um Geräte im lokalen Netzwerk von überall aus über das Internet erreichen zu können, kommt man um die Themen Dynamik DNS (kurz DynDNS) und Portweiterleitung(auch

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes. Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel

Mehr

4. Übungsblatt Matrikelnr.: 6423043

4. Übungsblatt Matrikelnr.: 6423043 Lineare Algebra I 1. Name: Bleeck, Christian 4. Übungsblatt Matrikelnr.: 6423043 Abgabe: 15.11.06 12 Uhr (Kasten D1 320) Übungsgruppe: 03 Patrick Schützdeller 2. Name: Niemann, Philipp Matrikelnr.: 6388613

Mehr

Anwendungsbeispiele Buchhaltung

Anwendungsbeispiele Buchhaltung Rechnungen erstellen mit Webling Webling ist ein Produkt der Firma: Inhaltsverzeichnis 1 Rechnungen erstellen mit Webling 1.1 Rechnung erstellen und ausdrucken 1.2 Rechnung mit Einzahlungsschein erstellen

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen. Informales Beispiel. Informales Beispiel.

Motivation. Formale Grundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen. Informales Beispiel. Informales Beispiel. Kontextfreie Kontextfreie Motivation Formale rundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen Bisher hatten wir Automaten, die Wörter akzeptieren Frank Heitmann [email protected]

Mehr

8. Berechnung der kalkulatorischen Zinsen

8. Berechnung der kalkulatorischen Zinsen 8. Berechnung der kalkulatorischen Zinsen 8.1. Allgemeines In der laufenden Rechnung werden im Konto 322.00 Zinsen nur die ermittelten Fremdkapitalzinsen erfasst. Sobald aber eine Betriebsabrechnung erstellt

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Korrigenda Handbuch der Bewertung

Korrigenda Handbuch der Bewertung Korrigenda Handbuch der Bewertung Kapitel 3 Abschnitt 3.5 Seite(n) 104-109 Titel Der Terminvertrag: Ein Beispiel für den Einsatz von Future Values Änderungen In den Beispielen 21 und 22 ist der Halbjahressatz

Mehr

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5 Einfache Derivate Stefan Raminger 4. Dezember 2007 Inhaltsverzeichnis 1 Begriffsbestimmungen 1 2 Arten von Derivaten 3 2.1 Forward..................................... 3 2.2 Future......................................

Mehr

Aufgabenset 1 (abzugeben 16.03.2012 an [email protected])

Aufgabenset 1 (abzugeben 16.03.2012 an LK@wacc.de) Aufgabenset 1 (abzugeben 16.03.2012 an [email protected]) Aufgabe 1 Betrachten Sie die Cashflows der Abbildung 1 (Auf- und Abwärtsbewegungen finden mit gleicher Wahrscheinlichkeit statt). 1 Nehmen Sie an, dass

Mehr

Linearen Gleichungssysteme Anwendungsaufgaben

Linearen Gleichungssysteme Anwendungsaufgaben Linearen Gleichungssysteme Anwendungsaufgaben Lb S. 166 Nr.9 Im Jugendherbergsverzeichnis ist angegeben, dass in der Jugendherberge in Eulenburg 145 Jugendliche in 35 Zimmern übernachten können. Es gibt

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

3. LINEARE GLEICHUNGSSYSTEME

3. LINEARE GLEICHUNGSSYSTEME 176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an

Mehr

Physik & Musik. Stimmgabeln. 1 Auftrag

Physik & Musik. Stimmgabeln. 1 Auftrag Physik & Musik 5 Stimmgabeln 1 Auftrag Physik & Musik Stimmgabeln Seite 1 Stimmgabeln Bearbeitungszeit: 30 Minuten Sozialform: Einzel- oder Partnerarbeit Voraussetzung: Posten 1: "Wie funktioniert ein

Mehr

Day-Trading. Ich zeige Ihnen hier an einem Beispiel wie das aussieht.

Day-Trading. Ich zeige Ihnen hier an einem Beispiel wie das aussieht. Day-Trading Das Day-Trading, der Handel innerhalb eines Tages, wird von den meisten Tradern angestrebt. Das stelle ich auch immer wieder bei meinen Schülern in den Seminaren fest. Sie kleben förmlich vor

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Was meinen die Leute eigentlich mit: Grexit?

Was meinen die Leute eigentlich mit: Grexit? Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?

Mehr

Welchen Nutzen haben Risikoanalysen für Privatanleger?

Welchen Nutzen haben Risikoanalysen für Privatanleger? Welchen Nutzen haben Risikoanalysen für Privatanleger? Beispiel: Sie sind im Sommer 2007 Erbe deutscher Aktien mit einem Depotwert von z. B. 1 Mio. geworden. Diese Aktien lassen Sie passiv im Depot liegen,

Mehr

Lösungshinweise zum Aufgabenteil aus Kapitel 6

Lösungshinweise zum Aufgabenteil aus Kapitel 6 Lösungshinweise zum Aufgabenteil aus Kapitel 6 Aufgabe 6.A Zu 1. Ein Export nach Europa ist dann von Vorteil, wenn der US$- -Wechselkurs größer als Eins ist, d. h. wenn man für einen Euro mehr als einen

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr