Muskeln. Herzmuskel. Glatte Muskulatur. Skelettmuskulatur. Elektrische Synapsen. Elektrische Synapsen



Ähnliche Dokumente
Wie steuert unser Gehirn Bewegungen?

Muskeln. Herzmuskel. Glatte Muskulatur. Skelettmuskulatur. Elektrische Synapsen. Elektrische Synapsen

MUSKEL und MOTORIK. PD Dr. B. Gaese Inst. Zellbiologie und Neurowissenschaft Geb. A, Raum 110

Die motorische Endplatte und die Steuerung der Muskelkontraktion

Stammzellen der Skelettmuskulatur. Aufbau der Skelettmuskulatur. Zellmembran der Skelettmuskulatur. Zytoplasma der Skelettmuskulatur

Organisatorisches. Klausur: grosser Hörsaal der Zoologie 12:50 Uhr

Anatomie/Physiologie (Dr. Shakibaei) Muskelgewebe:

Inhalt: Aktiver Bewegungsapparat, Muskulatur, Bewegungskoordination

Adaptation der Muskulatur an Arbeit und Training beim Pferd. Korinna Huber Tierärztliche Hochschule Hannover

Energieaufwand [J/Kg/m] Fliegen. Laufen. Mensch. Schwimmen. Körpergewicht [kg] Ameise. Pferd

Gliederung zur Vorlesung Muskel Die motorische Einheit ist der Effektor der Motorik

Allgemeine Psychologie: Motorik. Sommersemester Thomas Schmidt

Muskelgewebe. Anatomie & Physiologie

Muskelgewebe. Glatte Muskulatur Eingeweide; Spindelförmige Zellen, Zellkern liegt zentral

Die Physiologie des Muskels. Inhalt

Die Muskulatur des Menschen

Wie funktionieren unsere Muskeln?

Synapsen und synaptische Integration: Wie rechnet das Gehirn?

Motorik - Kontraktionsmechanismus. Zusammenfassung 1

Muskelgewebe: Arten. quergestreifte Muskulatur. Herzmuskulatur. glatte Muskulatur

Exzitatorische (erregende) Synapsen

6 Bewegungsapparat Aufgaben zum Biobuch

C. MUSKELGEWEBE : 4. Glattes Muskelgewebe (Harnblase, Ratte), Semi-Feinschnitt, Toluidinblau : 16. Glattes Muskelgewebe (Harnblase, Mensch), HE :

Glatte Muskulatur. Dr. G. Mehrke

Anatomische und physiologische Grundlagen menschlicher Bewegung

DIE GEWEBELEHRE/HISTOLOGIE

R. Brandt. Inhalt: Aktiver Bewegungsapparat, Muskulatur, Bewegungskoordination

Die Muskulatur. Die Anatomie und Physiologie der Skelettmuskulatur

Das sensomotorische System

Sensomotorik. Handlungen und Bewegungen Muskelaufbau und Muskelfunktion Propriozeption und Reflexe Motorische Kontrolle im ZNS Augenbewegungen

Lückentexte. Muskelzelle (allgemeines) Die Muskelzelle besitzt im hohen Maße die Fähigkeit zum Zusammenziehen (Kontraktion)

Grundlagen der Muskeldehnung

Sportmotorik. 1. Sportmotorik Definitionen. Sportmotorik. Beinhaltet alle organismischen Teilsysteme und

BK07_Vorlesung Physiologie. 05. November 2012

Kontraktion der Muskeln:

Form und Funktion der Tiere. Mechanismen der Sensorik und Motorik

Somatomotorische Systeme (I) (Lernziele: )

OLYMPIAZENTRUM SÜDSTADT. IMSB-Austria 1

Mechanik: Rechnungen / Modellierung mit finiten Elementen. Hauptergebnis: Verteilung von Kompression auf Kompression und Dehnung!

Leseprobe. Anatomische, physiologische und biomechanische Grundlagen

Physiologie: Der Aufbau und die Funktion der Skelettmuskulatur

Muskelgewebe. Katrin Feller Mättelistr Kehrsatz 1. Allgemeines Skelettmuskulatur... 1

Ringvorlesung - Teil Neurobiologie Übungsfragen und Repetitorium

Wie funktioniert Muskelaufbau? Eine Reise in die Welt des Muskels.

Muskel und Motorik. Wintersemester 2014 Prof. Dr. Silvio Rizzoli Tel: ;

Nennen Sie morphologische und physiologische Einflussfaktoren der Kraftfähigkeiten.(3P)

Muskelphysiologie. Die Muskulatur des Menschen macht etwa 50% seiner Körpermasse aus.

Physiologie - Muskulatur

Koordinative Fähigkeiten. im Schwimmen

Synaptische Übertragung und Neurotransmitter

Übertragung zwischen einzelnen Nervenzellen: Synapsen

Abschlussarbeit Biologiezusatzkurs ( )

Nervensysteme und neuronale Koordination

Zentrales Nervensystem

BKÖ07_Vorlesung Physiologie. 10. November 2008

Grundlagen der Bewegungswissenschaft. Zentrales Nervensystem und Bewegungskontrolle. Joachim Hermsdörfer Lehrstuhl für Bewegungswissenschaft.

Der Aufbau von Muskeln und Muskelfasern

Das Neuron (= Die Nervenzelle)

Messtechnik und Modellierung in der Kardiologie

Ann-Kathrin Schneider Jg. 13 Abschlussarbeit des Biologieprojektkurses über Muskeltraining Gymnasium Wülfrath

Städtisches Gymnasium Wülfrath. Abschlussarbeit. Biologie Pilotkurs. Schuljahr 2009/2010. Thema:


Die Neurobiologischen Bedingungen Menschlichen Handelns. Peter Walla

Hilfsproteine - Molekulare Motoren

Kapitel 05.02: Die Nervenzelle

Der Stoffwechsel. Wir zeigen dir wie er funktioniert.

5.5 Regulation der Kontraktionskraft

Wo liegt das Rückenmark und wie ist es gebaut? - Was sind Spinalnerven? - Was sind Reflexe? - Wie ist ein Reflexbogen gebaut?

MUSKEL + REFLEXE. Hinsichtlich der Funktion unterscheidet man zunächst drei Muskeltypen:

Biopsychologie als Neurowissenschaft Evolutionäre Grundlagen Genetische Grundlagen Mikroanatomie des NS

Neurobiologie. Prof. Dr. Bernd Grünewald, Institut für Bienenkunde, FB Biowissenschaften

Neuromuskuläre Physiologie

MUSKELN. 1. Arten der Muskulatur nach Bau und Funktion quergestreifte Muskulatur 1.2. glatte Muskulatur 1.3. Herzmuskulatur

neurologische Grundlagen Version 1.3

neurologische Grundlagen Version 1.3

"Leistung und Ernährung im Sport"

Neuromuskuläre Physiologie. 3. Stunde: Muskelkontraction Muskelmechanik Muskelenergetik

Muskelgewebe. Aufbau und Funktion eines Skelettmuskels

Muskelregelung. Den 11. December 2015

Die Muskulatur des Menschen

der quergestreiften und glatten Muskulatur

Glia- sowie Nervenzellen (= Neuronen) sind die Bausteine des Nervensystems. Beide Zellarten unterscheiden sich vorwiegend in ihren Aufgaben.

Referat der Biologie

Ergebnisprotokoll. 10. Muskel und Reflexe

VL Gehirn... Struktur. Ratte. Kaninchen. Katze

Allgemeine Psychologie: Neurophysiologie. Sommersemester Thomas Schmidt

Erregungsübertragung an Synapsen. 1. Einleitung. 2. Schnelle synaptische Erregung. Biopsychologie WiSe Erregungsübertragung an Synapsen

Funktionelle Aspekte der Schmerztherapie des Bewegungssystems

Neurobiologische Grundlagen einfacher Formen des Lernens

aus: Huppelsberg, Physiologie (ISBN ), 2009 Georg Thieme Verlag KG

Wie viele Neuronen hat der Mensch? a b c

VL. 3 Prüfungsfragen:

Das Wichtigste: 3 Grundlagen der Erregungs- und Neurophysiologie. - Erregungsausbreitung -

Physiologie: Muskel-Kraft-Längen-Zusammenhang (statisch)

kontraktile Komponente Sarkomere Titin Aktin-Myosin Faszie parallelelastische Komponente

Grundlagen schaffen / Sportbiologie , Bern Rindlisbacher Fabian

VL Wahrnehmung und Aufmerksamkeit: visuelle Wahrnehmung II

Anatomische, physiologische und biomechanische Grundlagen

Vorlesung Einführung in die Biopsychologie. Kapitel 4: Nervenleitung und synaptische Übertragung

Transkript:

Muskeln Elektrische Synapsen Die Fähigkeit zur aktiven Bewegung haben Tiere dank ihrer Muskeln. Diese bestehen aus kontraktilen Proteinen, die wie im Falle der Skelettmuskulatur eine hochgeordnete Struktur aufweisen. Herzmuskel Glatte Muskulatur Elektrische Synapsen Skelettmuskulatur

Typen von Muskeln * Quergestreifte Muskulatur Skelettmuskulatur ( Willkürliche Muskulatur, vielkernige Muskelfaser) Herzmuskulatur ( unwillkürliche Muskulatur, einkernige Muskelfaser durch elektrische Synapsen, gap junctions, verbunden) Querstreifung kommt von der regelmäßigen Anordnung der kontraktilen Proteine und von der Einteilung in Sarkomere. * Nicht quergestreifte Muskulatur Glatte Muskulatur ( unwillkürliche Muskulatur der Eingeweide incl. Uterus, einkernige Muskelfasern durch elektrische Synapsen miteinander verbunden)

Kontraktile Proteine. * Actinfilamente monomeres G-Actinmolekül, Durchmesser 5,5 nm, bilden Doppelhelix, F-Actin (Länge etwa 1mm, Dicke etwa 8 nm), an einem Ende an der Z-Scheibe angeheftet. In der Mitte der Actinhelix befindet sich alle 40 nm auf dem Actinfilament, Tropomyosin und Troponinkomplex * Actin Myosinfilamente monomeres Myosin, Länge 150 nm, Breite 2 nm, mit Schwanz. Hals und Kopf (Kopf: Länge 20 nm, Dicke 4 nm), LMM (light meromyosin): Schwanz, HMM (heavy meromyosin): Hals und Kopf, Myosinkopf mit ATPase-Aktivität Myosin

1 2 4 3

Sarkomerlänge Viskoelastisches Modell des Sarkomers Spannung (% Maximum) Tension (% of maximum)

Elektromechanische Kopplung

Muskelfibrille mit Filamenten Mitochondrium glattes ER (SR) Z-Streifen tubuläres System (T-Tubulus) Terminalzysterne des SR (ER) M-Streifen glattes ER (SR) Sarkolemm tubuläres System (T-Tubulus) Basalmembran Bindegewebsfasern

Elektromechanische Kopplung: * Transmitter, freigesetzt an der neuromuskulären Synapse, bindet an entsprechende Rezeptormoleküle auf der postsynaptischen Muskelmembran. * Bildung eines EPSP (oder exzitatorisches EPP, Endplattenpotenzial), und Auslösung eines Muskel-Aktionspotenzials, welches sich vom Ort der neuromuskulären Synapse über die Muskelmembran bis in das T-System hinein ausbreitet. * Dort spannungsabhängige Aktivierung von Molekülen (Dihydropyridin-Rezeptoren), die in Kontakt zu den spannungsabhängigen Calcium-Kanälen (Ryanodin-Rezeptoren) des sarkoplasmatischen Retikulums (SR) stehen. * Freisetzung von Calcium-Ionen aus dem SR, welche nun am Tropomyosin-Troponin-Komplex auf dem Actinmolekül die Freigabe der Bindungsstelle für den Myosinkopf bewirken. * Acto-Myosinbindung und Beginn der Querbrückenzyklen

Sarkomerlänge Viskoelastisches Modell des Sarkomers Spannung (% Maximum) Tension (% of maximum)

Muskelmechanik

Muskelmechanik

Mechanisches Verhalten eines Muskels * serienelastische Elemente: Sehnen * parallel-elastische Elemente: Bindegewebshüllen, SR, Cytoplasma Ein Teil der von den kontraktilen Proteinen erzeugten Kraft muß in die Dehnung der nichtkontraktilen Elemente des Muskels (Sehnen, Bindegewebe) gesteckt werden und steht daher nicht zum Heben einer Last zur Verfügung! Zwei prinzipielle Kontraktionsarten: ISOTONISCH: solange die Kraft nicht ausreicht, die Last zu heben: Vergrößerung der Spannung, danach Verkürzung des Muskels und Beibehaltung der Spannung. ISOMETRISCH: Eine Verkürzung wird verhindert und dadurch zunehmende Spannung.

Verhalten eines Muskels nach wiederholter Reizung unvollkommener Tetanus glatter Tetanus Spannung Zuckung

Muskelkraft * Hängt von der Menge der parallel liegenden Sarkomere ab, d. h. von der Querschnittsfläche des Muskels (Muskeln, die große Kräfte ausüben müssen, sind meist kurz und dick!) * Säugermuskel: pro cm 2 Durchmesser etwa 40 N (4 kp) * Wirbellose: pro cm 2 Durchmesser etwa 30 N (3 kp) Muskelgeschwindigkeit * Hängt von der Anzahl der hintereinander geschalteten Sarkomere ab (langer Muskel besitzt höhere Kontraktionsgeschwindigkeit als ein kurzer) Für zwei Muskeln mit gleicher Masse und Querschnittsfläche gilt, daß der mit den längeren Sarkomeren die größere Kraftentwicklung aber kleinere Verkürzungsgeschwindigkeit besitzt, als der mit kürzeren Sarkomeren (kleinere Kraftentwicklung, aber höhere Verkürzungsgeschwindigkeit). Muskelwachstum (bei sportlichem Training): Anzahl der Myofibrillen pro Muskelfaser vergrößert sich.

Muskelarbeit: Umwandlung chemischer Energie in mechanische Energie Wirkungsgrad: 30 bis 35%, das heisst 1/3 der Energie steht für Arbeit zur Verfügung, 2/3 erscheinen als Wärme. Oxidation von Kohlenhydraten (Glucose. Glykogen) und Aufbau von ATP * Muskel hat eigenen Vorrat an energiereichen Phosphatverbindungen (Kreatinphosphat) * Ein Teil der Prozesse kann anaerob ablaufen (Muskel geht Sauerstoffschuld ) ein Dadurch kann ein Muskel jederzeit ein begrenztes Maß an Arbeit leisten!

Stoffwechselwege im Muskel Leber Glykogen während Kontraktion Muskelgykogen bei Ruhe Glukose im Blut Glukose im Muskel ohne O 2 Glykolyse ATP Lactat ins Blut ohne O 2 Pyruvat mit O 2 Kontraktion Fettsäuren Aminosäuren oxidative Phosphorylierung Krebszyklus oder Tricarbonsäurezyklus ATP bei Ruhe während Kontraktion Atmungskette Kreatinphosphat CO 2 und H 2 O ins Blut

Innervierung eines Muskels bei Wirbeltieren und Wirbellosen * Zahl der Motoneurone (motorische Einheiten) * Was bedeutet motorische Einheit? Alle Muskelfasern, welche von einem Motoneuron innerviert werden, gehören zu einer motorischen Einheit.

Was bedeutet motorische Einheit? Alle Muskelfasern, welche von einem Motoneuron innerviert werden, gehören zu einer motorischen Einheit. Wirbeltiere Wirbellose Motoneurone (mehrere 100 bis tausend) slow fast inhibitorisch Muskelfaser slow Muskelfaser

Innervierung von Wirbeltiermuskeln Ein Wirbeltiermuskel besitzt sehr viele (bis zu mehreren tausenden motorische Einheiten).

Innervierung von Muskeln Wirbeltiere (Vertebraten) * pro Muskelfaser nur ein Terminal (uniterminal, Endplatte, Muskelaktionspotenzial) (Ausnahme: spezielle langsame Muskelfasern der Haltemuskulatur) * pro Muskelfaser nur ein Motoneuron bei adulten Tieren (beim Embryo/Neugeborenen ist jede Muskelfaser von mehreren Motoneuronen innerviert, neuronaler Wettbewerb, das aktivste Motoneuron gewinnt und dann gilt: The winner takes all...) * pro Muskel viele (bis zu Tausend) motorische Einheiten * Neuromuskulärer Transmitter: Acetylcholin (nikotinische und muskarnische ACh-R) Wirbellose Tiere (Invertebraten) * pro Muskelfaser mehrere bis viele Terminale (multiterminal, keine Aktionspotenziale) * jede Muskelfaser kann von mehr als einem Motoneuron innerviert sein (polyneural) * wenige (spezialisierte) motorische Einheiten: fast (schnelle) Motoneurone, slow (langsame) Motoneurone, intermediate (intermediäre) Motoneurone, inhibitorische (Hemm-) Neurone (gilt für die quergestreiften Skelettmuskeln der Arthropoden, Mollusken besitzen quergestreifte und glatte Körpermuskulatur und viel mehr motorische Einheiten) * Neuromuskuläre Transmitter: erregend Glutamat, inhibitorisch GABA bei Arthropoden und Mollusken zusätzliche Neuromodulatoren

Typen von Muskelfasern bei Wirbeltieren

Rote Muskeln * reich an Myoglobin, z.b. Rumpfmuskulatur, Wadenmuskulatur (M. soleus) * langsame Muskeln, niedrige Myosin-ATPase-Aktivität * für Energie sparende, nicht ermüdende Leistungen (Dauer-, Halteleistungen) Weisse Muskeln * arm an Myoglobin, z.b. Gliedmaßenmuskulatur * schnelle Muskeln, hohe Myosin-ATPase-Aktivität * schnell ermüdend, nicht für kontinuierliche Muskelarbeit geeignet, da sie Energie vorwiegend anaerob gewinnen und dabei Lactat (Milchsäure) anhäufen.

Reflex * Schnelle, stereotype, unwillkürliche Reaktion, die durch einen Reiz ausgelöst wird (Kniesehnenreflex, Lidschlagreflex, Schluckreflex, Schutzreflexe). * Viele Reflexe sind phasenabhängig, d.h. funktionieren nur innerhalb eines bestimmten Arbeitsbereichs. * Reflexe können unterdrückt werden, und das kann gelernt werden (Fakir, lebende Puppen). * monosynaptische und polysynaptische Reflexe

Haltereflex (Kontrolle der Muskellänge) sensorische Axone Ia γ Innervierung Muskelspindel

Schutzreflex (Spannungsreflex, Kontrolle der Muskelspannung) Golgi Sehnenspindel

γ Steuerung der Muskellänge über die Aktivierung des γ Motoneurons der Muskelspindel

Beispiel für einen Reflex bei einem Insekt

Schema der motorischen Kontrolle Kontrollzentren im Gehirn (motorischer Cortex, Basal- Ganglien, Cerebellum) Zentrale Rhythmusgeneratoren im Rückenmark Absteigende Bahnen zum Rückenmark, Pyramidenbahn, Extrapyramidale Bahn sensorische Rückkopplung (sensory feedback) Motoneurone Muskeln Bewegung Sinneszellen

Die neuronale Kontrolle von Bewegungen * zielgerichtete Bewegungen erfordern Vorstellungen vom eigenen Körper und Raum ( motorische Intelligenz ) * funktionelle Struktur neuronaler Bewegungskontrolle im gesamten Tierreich trotz unterschiedlicher Bewegungen gleichartig strukturiert * Konzept des Zentralen Mustergenerators (CPG, central pattern generator): Netzwerk von Neuronen, welche intrinsisch (ohne Anstoss von aussen) rhythmisch alternierende Aktivität erzeugen können. - Im Netzwerk kommt reziproke Hemmung vor - es gibt sogenannte Schrittmacherneurone * Zentrale Mustergeneratoren werden durch Neuromodulatoren (die aus anderen Teilen des ZNS kommen) oder durch Eingänge von Sinnesorganen angestossen oder moduliert.

A Rhythmische Motorische Aktivität A B B 1s C C Stemmphase

Rhythmische Bewegungsmuster * Bewegungen wie Laufen, Rennen, Fliegen, Schwimmen, Kaubewegungen, Atmung etc. werden durch neuronale Netzwerke im ZNS erzeugt und durch sensorische Rückkopplung den Umwelterfordernissen angepasst. * Der grundlegende alternierende Rhythmus wird dabei von einem Netzwerk von Neuronen im ZNS erzeugt (zentraler Mustergenerator, zentrales Programm, Oscillator) * Typischerweise werden nur der Beginn und das Ende der Bewegungsfolge bewusst kontrolliert, während der Ablauf mehr oder weniger automatisiert ist. ein kontinuierlicher Erregungseingang wird in einen rhythmischen Ausgang übersetzt (Brown Half Center Model)

Alternierende Rhythmen sind oft das Ergebnis von Zentralen Rhythmusgeneratoren (CPG = Central Pattern Generator) im ZNS:

Das lokomotorische Netzwerk im Rückenmark des Neunauges Motorische Aktivität im intakten Neunauge Motorische Aktivität im isolierten Rückenmark after Grillner and coworkers

Nach Stevenson und Kutsch

Entwicklung der motorischen Muster bei der Maus Nach Clarac, Pearlstein, Pflieger, Vinay 2003

Wie steuert unser Gehirn Bewegungen?

Verzeichnis der Windungen (Gyri) und Täler (Sulci) Zytoarchitektonische Kartierung nach Korbinian Brodman (1909)

Karten im Gehirn: Topographische Organisation Funktionen der linken Hemisphäre Nach Karl Kleist, 1920-1930 Funktionen der Großhirnrinde, linke Hemisphäre Nach Karl Kleist, 1920-1930

Phrenologie des 19. und 20. Jahrhunderts

Motorischer Kortex Somatosensorischer Kortex

Motorischer Kortex

Motorische Funktionssysteme

Wie steuert unser Gehirn Bewegungen? * Willkür- und Zielbewegungen erfordern corticale Kontrolle primärer motorischer Cortex, supplementäres motorisches Areal, prämotorischer Cortex - Auswahl und Zahl der beteiligten Muskeln - ausgeübte Muskelkraft und zeitliche Modulation - Bewegungsverlauf (Zielrichtung, Geschwindigkeit der Bewegung, Gelenkstellung) * absteigende Bahnen von Corex zum Rückenmark - rubrospinaler Trakt (beginnt im N. ruber des Mittelhirns, der Eingänge vom Cortex und Kleinhirn erhält) - Pyramidenbahn (Zellkörper im primären motorischen Cortex, machen Verbindungen mit Interneuronen im RM welche Arm- und Beinbewegungen steuern) für feine Fingeraufgaben (greifen, anfassen, abtasten) * Basalganglien und Kleinhirn involviert in der motorischen Programmgestaltung, an der Erstellung der Zeitstruktur, an der Feinkontrolle - Basalganglien wirken vorwiegend dämpfend (und lassen nur die vom Cortex beabsichtigten Bewegungen ohne grösseren Hemmunge zu, damit Akzentuierung der gewollten Bewegungen (wirken stabilisierend auf gewollte Bewegungsabläufe) - Kleinhirn wirkt vorwiegend erregend (motorisches Lernen, Feinkorrektur, zeitliche Strukturierung, beteiligt an kognitiven Lernprozessen) (Lernhypothese: macht zeitlich präzise strukturierte Handlungsprogramme)

Neue Ideen zum motorischen Cortex: * Weitgehend überlappende Felder (Topographie nicht absolut) * Repräsentation von komplexen, im Verhalten bedeutungsvollen Haltungen (z.b. Hand oder Armstellung) * Bei Reizung einzelner Neurone: Hand führt komplexe Bewegungen aus, die alle zu einem Ziel am Körper geführt werden (z.b. Mund) * Reizung von Neuronen an verschiedenen Orten: Hand endet am gleichen Zielpunkt, aber mit unterschiedlicher Geschwindigkeit, andere Trajektorie usw. * Topographische Repräsentation der Lokalisationen der Hand im Raum um den Körper Nach: Graziano, Taylor, Moore and Cooke, Neuron 36: 349-362 (October 2002)