Systematische und zufällige Messabweichungen bei Experimenten



Ähnliche Dokumente
2. Grundbegriffe. Literatur. Skript D. Huhnke S emg GEM. emg GEM

Messunsicherheit 1 beim Messen physikalischer Größen sinnvolle Ziffern

Unterrichtssequenz Solarzelle

Kultusministerium. Name, Vorname: Klasse: Schule: Seite 1 von 6

1 Messfehler. 1.1 Systematischer Fehler. 1.2 Statistische Fehler

Vermessungskunde für Bauingenieure und Geodäten

Überprüfung der Genauigkeit eines Fahrradtachos

Sonne wärmt A Papier. 1 Metall. 4 Holz

Schülerexperiment: Messen elektrischer Größen und Erstellen von Kennlinien

Illustrierende Aufgaben zum LehrplanPLUS. Realschule, Physik, Jahrgangsstufen 8 und 9. Wasserkocher

Technische Oberschule Stuttgart

Methoden der Werkstoffprüfung Kapitel I Grundlagen. WS 2009/2010 Kapitel 1.0

Praktikum Klasse 9. Einführung in das Praktikum:

GW 7 Physikalische Grundlagen

Doppeljahrgangstufe 9/10 Gestaltung Klasse 10 ab Schuljahr 2018/19

B E I S P I E L A R B E I T / Aufgaben. Kultusministerium

Prüfungen 1999/2000. Vom Lehrer wird Ihnen ein Experiment mit einem Modell für eine Wippe vorgeführt.

Bestimmung der Wärmekapazitäten mit dem Erwärmungskalorimeter

Laborpraktikum 3 Arbeitspunkt und Leistungsanpassung

Schriftliche Abschlussprüfung Physik

Einführung Fehlerrechnung

Entropie und Temperatur. Entropie von Anfang an

Inhalt (mit Angabe der Behandlungstiefe)

Schriftliche Abschlussprüfung Physik Realschulabschluss. Allgemeine Arbeitshinweise

ZUM UMGANG MIT MESSUNSICHERHEITEN IM PHYSIKUNTERRICHT. 25. Oktober Didaktik der Physik Julia Glomski und Burkhard Priemer

Schriftliche Abschlußprüfung Physik

Einführung in die Theorie der Messfehler

Einführung. Fehlerarten

C NTG 8.1 Stoffe und Reaktionen. Überblick über die Energieformen, Energieerhaltungssatz

INHALTSVERZEICHNIS. 7 Temperatur und Zustandsänderungen 48 V1 Einfaches Flüssigkeitsthermometer 48 V2 Bimetallthermometer 50 Warm und kalt 52

Umgang mit Diagrammen Was kann ich?

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Abitur 2005 (Beispiel) Physik (Grundkurs) Einlesezeit: 30 Minuten Bearbeitungszeit: 210 Minuten

Übersicht über das Fachcurriculum. Fach: Physik Klasse: 7 (8)

Bildungsplan Gymnasium Physik Kompetenzen und (verbindliche) Inhalte Klasse 8

Inhaltsverzeichnis. 1 Einführung Versuchsbeschreibung und Motivation Physikalische Grundlagen... 3

Standort Köthen Seminargruppe:... T - Kurs (Variante A) Datum:

B E I S P I E L A R B E I T / Aufgaben. Kultusministerium. Name, Vorname: Klasse: Schule: Seite 1 von 6

Schriftliche Abschlussprüfung Physik Allgemeine Arbeitshinweise

Klassenarbeit - Mechanik

Schriftliche Abschlussprüfung Physik

Schuleigner Arbeitsplan (SAP) Physik Gymnasium Osterholz-Scharmbeck Stand: 2015

F2 Volumenmessung Datum:

Bewegungen im Alltag A 51

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen)

Schulcurriculum für das Fach Physik

Periodendauer eines Fadenpendels 9/10

Schülerexperiment: Dehnungs-Kraft-Diagramme und Hooke scher Bereich

Der neue Lehrplan für Realschulen Das Grundwissen im Fach Physik I und II/III

1 Messungen mit Drehspulinstrumenten

Arbeitsweisen der Physik

Schulcurriculum Fach Physik Kl Physik 1 S

Abschlussprüfung an Fachoberschulen im Schuljahr 2002/2003

Schülerexperiment: Bestimmung der Beschleunigung von Körpern (bei Smartphone-Einsatz)

Schülerexperiment: Bestimmung der Geschwindigkeit eines Körpers

Inhaltsverzeichnis. 1. Grundlagen und Durchführung. 2. Auswertung

Optik. Schatten: Siehe: Spiegelung: Spiegel

Einführungsseminar S1 Elemente der Fehlerrechnung. Physikalisches Praktikum der Fakultät für Physik und Astronomie Ruhr-Universität Bochum

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich

Messtechnische Grundlagen und Fehlerbetrachtung. (inkl. Fehlerrechnung)

Einführung in die Fehlerrechnung

Messtechnik. Rainer Parthier

Schriftliche Abschlussprüfung Physik Realschulabschluss. Allgemeine Arbeitshinweise

Lehrplan. Physik. Handelsschule. Ministerium für Bildung, Kultur und Wissenschaft

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Physik kompetenzorientiert: Eine Einführung

Protokoll Grundpraktikum I: T6 Thermoelement und newtonsches Abkühlungsgesetz

Schriftliche Abschlussprüfung Physik

Inhalt. 1. Erläuterungen zum Versuch 1.1. Aufgabenstellung und physikalischer Hintergrund 1.2. Messmethode und Schaltbild 1.3. Versuchdurchführung

Medizintechnik verstehen

Schriftliche Abschlussprüfung Physik Realschulabschluss. Allgemeine Arbeitshinweise

Versuchsprotokoll A1 Photoeffekt. Johann Förster

LernJob Naturwissenschaften - Physik Funktion einer Magnetfeldsensors

Übersicht Physik Sek I

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

Prüfungsähnliche Klausur Leistungskurs Physik

G3- Klassen, 14. Juni 2011

Stromstärken und Spannungen in einer elektrischen Schaltung

Brechung des Lichts Arbeitsblatt

Protokoll Grundpraktikum: F0: Auswertung und Präsentation von Messdaten

Schülerexperiment: Bestimmung der Beschleunigung von Körpern (bei Metronom-Einsatz)

Zentralabitur 2008 Physik Schülermaterial Aufgabe II ea Bearbeitungszeit: 300 min

Albert-Schweitzer-Schule Alsfeld - Schuleigenes Curriculum für das Fach Physik. Jahrgangsstufe 7 (Zwei Schulstunden)

E-Labor im WS / SS. Versuch HS Homogenes Strömungsfeld / Passive Zweipole

Kompetenzen und Aufgabenbeispiele Natur und Technik Check S2 / Check S3

wav.de Stand: 01/2017 Messen und Lehren

Abschlussprüfung an Fachoberschulen im Schuljahr 2001/2002

Propädeutische Physik und Chemie (2. Klasse)

Spezifischer elektrischer Widerstand und TK R -Wert von Leiter- und Widerstandswerkstoffen

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Ph A 16/52 T_Online-Ergänzung

Fehlerrechnung. Bei physikalisch-technischen Messungen können systematische und zufällige Fehler auftreten.

CURRICULUM 8 NOV. 2011

Schelztor-Gymnasium Esslingen Physik-Praktikum Klasse 10 Versuch Nr. E 4 Seite - 1 -

Lösungen zu Übungsblatt 2

Löten. Werkzeuge zum Löten. = Möglichkeit, um mit wenig Aufwand zwei Metalle zu verbinden.

Transkript:

Systematische und zufällige Messabweichungen bei Experimenten Die Naturwissenschaft Physik ist eine messende Wissenschaft, d. h. die physikalischen Gesetze werden durch Messungen gefunden bzw. bestätigt und sie erlauben quantitative Voraussagen. Zugleich bildet die Messung physikalische Größen die Grundlage vieler anderer Naturwissenschaften, wie Biologie, Chemie oder Geographie. Es ist jedoch zu beachten, dass es grundsätzlich nicht möglich ist, exakt richtig zu messen. Deshalb sollten auch die Schülerinnen und Schüler zu einer kritischen Haltung gegenüber ihren Messungen geführt werden: - Ist der vom Messgerät angezeigte Wert der richtige Wert? - Wie genau kann ich mit diesem Messgerät und dieser Versuchsanordnung messen? - Reicht die Genauigkeit meiner Messwerte aus und wie kann ich diese erhöhen? Die Abweichung eines aus Messungen gewonnenen Wertes vom wahren Wert der Messgröße wird Messabweichung (nach DIN 1319-1:1995) oder Messfehler (alte Bezeichnung) genannt. Ursachen für Messabweichungen Messgeräteabweichungen als Folge der Unvollkommenheit der Konstruktion, Fertigung, Justierung (z. B. durch Werkstoffe, Fertigungstoleranzen) durch das Messverfahren bedingte Einflüsse infolge Einwirkung der Messeinrichtung auf die Messgröße (z. B. durch Eigenverbrauch des Messgerätes) Umwelteinflüsse als Folge von Änderungen der Einwirkungen aus der Umgebung (z. B. Temperatur, äußere elektrische oder magnetische Felder, Lage, Erschütterungen, Luftzug) Instabilitäten des Wertes der Messgröße oder des Trägers der Messgröße (z. B. statistische Vorgänge, Spannungsschwankungen) Beobachtereinflüsse infolge unterschiedlicher Eigenschaften und Fähigkeiten des Menschen (z. B. Aufmerksamkeit, Übung, Sehschärfe, Schätzvermögen, Parallaxe) Zu Vermeiden sind grobe Fehler bei der Messung, wie Verfälschungen durch Irrtümer des Beobachters, Verfälschungen durch Wahl ungeeigneter Messmittel. Arten von Messabweichungen Systematische Messabweichungen Alle Abweichungen, die einseitig gerichtet sind und sich wenn auch schwierig ermitteln ließen, sind systematische Abweichungen. Systematische Messabweichungen haben Betrag und Vorzeichen. Bekannte systematische Abweichungen sind durch Berichtigung auszuschließen. Unbekannte systematische Messabweichungen können allenfalls anhand ausreichender Erfahrung in einer Komponente u s der Messunsicherheit zusammengefasst werden. Zufällige Messabweichungen Nicht beherrschbare, nicht einseitig gerichtete Abweichungen sind zufällige Abweichungen. Bei Wiederholungen selbst unter genau gleichen Bedingungen werden die Messwerte voneinander abweichen; sie streuen. 1

Zufällige Messabweichungen schwanken nach Betrag und Vorzeichen. 2

Beispiele für Messabweichungen Experiment Messung der Temperatur einer Flüssigkeit zufällige Messabweichungen - Anzeigegenauigkeit des Thermometers systematische Messabweichungen - Wärmekapazität des Thermometers (Mischtemperatur wird zu klein gemessen) - fehlende Konvektion bei größeren Gefäßen und punktueller Erwärmung Bestimmung der Temperatur eines Festkörpers (der in Flamme erwärmt und dann in Flüssigkeit getaucht wurde) durch Bestimmung der Mischtemperatur Bestimmung des elektrischen Widerstandes eines Bauelements Bestimmung der Kraft einer Strom durchflossenen Spule auf einen Eisenkörper - Anzeigegenauigkeit des Thermometers, des Messzylinders und der Waage - Anzeigegenauigkeit der Spannungs- und Strommessgeräte - Anzeigegenauigkeit des Strommessgerätes und des Federkraftmessers - Wärmekapazität des Messzylinders (Mischtemperatur wird zu klein gemessen) - Wärmeabgabe an Umgebung (Mischtemperatur wird zu klein gemessen) - Verdampfen eines Teils der Flüssigkeit (abgegebene Wärme wird zu klein ermittelt) - strom- oder spannungsrichtige Schaltung (Strom oder Spannung wird zu klein angezeigt) - Abstand Spule Eisenkörper (Kraft wird bei größeren Strömen zu groß ermittelt) + _ A 3

Experiment Bestimmung der Endgeschwindigkeit einer Kugel auf einer geneigten Ebene in Abhängigkeit von der Starthöhe zufällige Messabweichungen - Zeitmessung durch Handstoppung - Anzeigegenauigkeit Lineal und Uhr systematische Messabweichungen - Reibung auf waagerechter Ebene (Geschwindigkeit wird zu klein ermittelt) s Ermittlung des Hebelgesetzes Bestimmung der Höhe eines Sternes - Anzeigegenauigkeit Lineal und Waage - Anzeigegenauigkeit des Winkelmessers - Reibung am Drehlager, die Gleichgewicht vortäuscht (zweite Kraft bzw. zweiter Weg zu klein) - Brechung des Lichtes in der Atmosphäre (Winkel wird zu groß gemessen) Ermittlung der reflektierten Strahlungsanteils in Abhängigkeit vom Einfallswinkel - Anzeigegenauigkeit Winkelmesser - Empfindlichkeit der Fotodiode - Streuung durch Materialoberfläche - Kennlinie der Fotodiode nicht linear (zu kleine Werte im Bereich großer Einfallswinkel) 4

Entwicklung von Kompetenzen bzgl. des Messens physikalischer Größen nach den Fachlehrplan Physik der Sekundarschule Sjg. Umgang mit Messgeräten Umgang mit Messabweichungen GS mit Messgeräten (Lineal, Bandmaß, Waage, Messbecher, Messzylinder, Thermometer) sachgerecht umgehen 6 - Lineal als Messgerät richtig verwenden - Stoppuhr richtig verwenden - Thermometer geeignet auswählen und richtig verwenden Abweichungen von Messwerten als unvermeidlich akzeptieren 7 Ursachen für Messabweichungen erkennen (bei Experimenten der Mechanik) 8 Ursachen für systematische Messabweichungen erkennen ( bei Experimenten der Wärmelehre) elektrische Geräte unter Anleitung verwenden 9 Ursachen für systematische und zufällige Messabweichungen erkennen (bei Experimenten der Mechanik) Messgeräte sicher einsetzen die Messung physikalischer Größen bei zufälligen Prozessen beschreiben (bei Experimenten der Kernphysik) 10 die Messung des Schallpegels erläutern Messabweichungen nach Ursachen ordnen (bei Experimenten der Optik) geeignete elektrische und nichtelektrische Messgeräte selbstständig auswählen und sicher einsetzen Einfluss von Messabweichungen auf das Ergebnis beschreiben und Möglichkeiten zur Verringerung von Messabweichungen aufzeigen 5

Aufgaben zur Entwicklung von Fähigkeiten der Schülerinnen und Schüler im Umgang mit Messabweichungen Stufe 1 Lehrplan Sjg. 7: Die Schülerinnen und Schüler können Ursachen für Messabweichungen erkennen. Verbindliches Schülerexperiment: - Zusammenhang zwischen Verformung und einwirkender Kraft Aufgabe Ralf und Tina sollen untersuchen, wie stark sich ein Körper unter der Wirkung verschiedener Kräfte verformt. Sie führen dazu das abgebildete Experiment durch. a) Erläutere, was du beim abgebildeten Experiment unter Verformung verstehst. b) Beschreibe die Durchführung des Experiments. Erläutere dabei, welche Aufgabe das kleine Brett hat. Nenne die Größen, die Ralf und Tinas messen müssen. c) Ralf und Tina haben den Versuch mit verschiedenen Luftballons durchgeführt und dabei folgende Ergebnisse erhalten: grüner Ballon gelber Ballon roter Ballon blauer Ballon Kraft F in N 2 2 2 2 Verformung s in cm 3,5 4,2 5,7 1,9 Erläutere mögliche Ursachen dafür, dass die Messergebnisse so unterschiedlichen ausgefallen sind. 6

Stufe 2 Lehrplan Sjg. 8: Die Schülerinnen und Schüler können Ursachen für systematische Messabweichungen erkennen. Verbindliches Schülerexperiment: - Zusammenhang zwischen der Temperatur und der Zeit der Erwärmung bis zur Aggregatszustandänderung Aufgabe Beim Backen wird Kuchen mitunter mit einer Schokoladenglasur überzogen. Dazu muss die Schokolade in einem Wasserbad geschmolzen werden. Jana und Tim wollen in einem Experiment untersuchen, wie lange es dauert bis die Schokolade geschmolzen ist. Dazu haben sie die abgebildete Versuchsanordnung benutzt. Sie haben das Wasser solange erwärmt, bis die gesamte Schokolade geschmolzen war. Dabei haben nach jeweils einer Minute die Wassertemperatur gemessen. Sie haben dann das Experiment noch zweimal wiederholt. t in Minuten 0 1 2 3 4 5 6 7 8 9 10 Exp. 1 22 24 26 28 30 32 34 36 38 ϑ in C Exp. 2 23 25 27 29 31 33 35 Exp. 3 22 25 28 31 34 37 40 a) Beschreibe mögliche Ursachen für diese unterschiedlichen Ergebnisse. b) Ermittle aus den Messwerten die Schmelztemperatur von Schokolade und vergleiche dein Ergebnis mit der Vorschrift: Schokolade muss unabhängig von der Sorte bei einer Temperatur von 32 C schmelzen. c) Entwickle einen Vorschlag zur Verbesserung der Messgenauigkeit bei diesem Experiment. 7

Stufe 3 Lehrplan Sjg. 9: Die Schülerinnen und Schüler können Ursachen für systematische und zufällige Messabweichungen erkennen. Verbindliches Schülerexperiment: - Untersuchung von Reibungskräften Aufgabe Bei Fahrzeugen nimmt der Luftwiderstand mit zunehmender Geschwindigkeit sehr stark zu. Es soll untersucht werden, ob sich auch der Rollwiderstand mit der Geschwindigkeit verändert. Dazu wird folgendes Experiment durchgeführt: Ein Wagen wird aus der Ruhe durch Masse m in Bewegung gesetzt. Dabei legt er beschleunigt die Strecke s zurück. Aus der gemessenen Zeit kann die Reibungskraft F ermittelt werden. s m in g 5 10 15 20 25 30 35 40 F in N 0,41 0,40 0,39 0,4 0,41 0,40 0,38 0,42 a) Beschreibe, wie sich die Bewegung des Wagens ändert, wenn die Masse m vergrößert wird. m b) Zeichne das F(m) - Diagramm. Hängt die Rollreibung von der Geschwindigkeit ab? Begründe. c) Ergänze für das beschriebe Experiment die folgende Tabelle: zufällige Messabweichungen systematische Messabweichungen 8