Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer Einführungsphase Klettbuch

Ähnliche Dokumente
Lerninhalte EF Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Hilfsmittel und Methoden. Problemlösen. Argumentieren.

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer Einführungsphase Klettbuch

Schulinterner Lehrplan Mathematik Stufe EF

Thema: Die Ableitung, ein Schlüsselkonzept (Änderungsrate, Ableitung, Tangente) Zentrale Kompetenzen: Modellieren, Kommunizieren

Curriculum Mathematik Einführungsphase an der Gesamtschule Marienheide (abgestimmt auf das Lehrwerk Lambacher Schweizer Einführungsphase)

Stoffverteilungsplan Mathematik Einführungsphase (gemäß Kernlehrplan gültig ab EF 2014/15)

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans

Kernlehrplan Mathematik: Einführungsphase

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer Einführungsphase Klettbuch

Thema: Die Ableitung, ein Schlüsselkonzept (Änderungsrate, Ableitung, Tangente) Zentrale Kompetenzen: Modellieren, Kommunizieren

Stoffverteilungsplan Mathematik EF auf der Grundlage des Kernlehrplans Gymnasium An der Stenner Klettbuch

Schulinternes Curriculum Mathematik Gymnasium an der Gartenstraße Stufe EF. Unterrichtsvorhaben Unterthemen Bemerkungen

Lösen ausgewählte Routineverfahren auch hilfsmittelfrei zur Potenzfunktionen mit ganzzahligen

2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks

Schulinternes Curriculum Mathematik auf der Grundlage des Kernlehrplans Städtisches Gymnasium Porta Westfalica

Stoffverteilungsplan im Rahmen des schulinternen Lehrplans für die Jahrgangsstufe EF bezogen auf das Lehrwerk Fokus Mathematik

Die Umsetzung der Lehrplaninhalte in Fokus Mathematik Einführungsphase auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen

Stoffverteilung Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer EF

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Version 2014/2015

Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1)

Mathematik Schulinterner Lehrplan Einführungsphase (EF)

Stoffverteilungsplan Mathematik Einführungsphase auf der Grundlage des Kernlehrplans Lambacher Schweizer Einführungsphase Klettbuch

Stoffverteilungsplan Mathematik auf Grundlage des Kernlehrplans Einführungsphase (Klasse 10)

Schulinternes Curriculum Mathematik Einführungsphase

Schulinternes Curriculum. Mathematik. Einführungsphase. Gymnasium Letmathe

Stoffverteilungsplan Elemente der Mathematik (EdM) Einführungsphase NRW ( )

Schulinterner Lehrplan gymnasiale Oberstufe Einführungsphase Mathematik

Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1)

Schulinterner Lehrplan für die gymnasiale Oberstufe. Mathematik. Teil 2 Einführungsphase und Vertiefungskurs (S. 7 19)

Einführungsphase Funktionen und Analysis (A)

Schulinterner Lehrplan der Gesamtschule Paderborn-Elsen. Mathematik SII Einführungsphase

Schulinterner LEHRPLAN MATHEMATIK für die Einführungsphase

Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1)

Mathematik. Gymnasium Rodenkirchen Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe

Gymnasium Rodenkirchen Schulinterner Lehrplan zum Kernlehrplan für die Einführungsphase der gymnasialen Oberstufe. Mathematik

Heinrich-Heine-Gymnasium Herausforderungen annehmen Haltungen entwickeln Gemeinschaft stärken

Schulinternes Curriculum für die Einführungsphase. M a t h e m a t i k. Gymnasium am Neandertal - Erkrath

3.1.1 Übersichtsraster Unterrichtsvorhaben Einführungsphase

Schulinternes Curriculum Sek. II für das Fach Mathematik

Einführungsphase Funktionen und Analysis (A) Thema: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E-A1)

Städtische Gesamtschule Solingen Schulinterner Lehrplan für die EF (ab Schuljahr 2014/15) Einführungsphase

Übersichtsraster Unterrichtsvorhaben Einführungsphase - 84 Stunden

Schulinternes Curriculum Mathematik SII Einführungsphase. Übersicht über die Unterrichtsvorhaben

Schulinternes Curriculum Mathematik 9 auf der Grundlage des Kernlehrplans 2007

schulinterner Kernlehrplan Mathematik Einführungsphase:

Aus dem Planungsstand des Beispiels für einen schulinternen Lehrplan

Schulinternes Curriculum Mathematik SII

Schulcurriculum Mathematik, Klasse 09-10

Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik

Schulinterner Lehrplan des Pestalozzi- Gymnasiums Unna zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik

Thema: Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen, Transformation)

Qualifikationsphase (Q1) GRUNDKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II :

Stoffverteilungsplan Mathematik Qualifikationsphase auf der Grundlage des Kernlehrplans

Thema 1: Beschreibung der Eigenschaften von Funktionen und deren Nutzung im Kontext (E I) 15 Unt.std.

FACHCURRICULUM KL. 9. Raum und Form Figuren zentrisch strecken Üben und Festigen. Strahlensätze. Rechtwinklige Dreiecke.

Schulinternes Curriculum für das Fach Mathematik am Erich Kästner- Gymnasium, Köln Sekundarstufe II

Inhaltsbezogene Kompetenzen Prozessbezogenen Kompetenzen Methodische Vorgaben/Erläuterungen/ Ergänzungen

Einführungsphase Funktionen und Analysis (A)

Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend.

Einführungsphase. Kapitel I: Funktionen. Arithmetik/ Algebra

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium

Altes Gymnasium Oldenburg ab Schuljahr 2009/ 10. Jahrgang: 10 Lehrwerk: Elemente der Mathematik Hilfsmittel: ClassPad300, Das große Tafelwerk

Schulcurriculum Mathematik

1. Flächen und Rauminhalte

Lambacher Schweizer Hessen Stoffverteilungsplan für Klasse 8 G8

Stoffverteilungsplan Mathematik 8 auf der Grundlage des G8 Kernlehrplans Lambacher Schweizer 8 Klettbuch

Abbildung der Lehrplaninhalte im Lambacher Schweizer Thüringen Klasse 9 Lambacher Schweizer 9 Klettbuch

Thema: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion) Zentrale Kompetenzen:

2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks

Kernlehrplan Mathematik in Klasse 9 am Städtischen Gymnasium Gütersloh (für das 8-jährige Gymnasium)

Leitidee Raum und Form: - Seitenlängen und Winkelweiten am rechtwinkligen Dreieck berechnen

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 7

Schulinternes Curriculum der Fachschaft Mathematik der Liebfrauenschule Köln Einführungsphase

Qualifikationsphase (Q1) LEISTUNGSKURS Unterrichtsvorhaben Q1-I: Unterrichtsvorhaben Q1-II:

Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Lambacher Schweizer 9

Berufliche Schulen des Landes Hessen Lehrplan Fachoberschule Allgemein bildender Lernbereich Mathematik

Stoffverteilungsplan Mathematik 8 auf der Grundlage des G8 Kernlehrplans Lehrwerk: Lambacher Schweizer 8

Stoffverteilungsplan Mathematik Qualifikationsphase Grundkurs

Stoffverteilungsplan Mathematik Klasse 8 auf der Grundlage des Kerncurriculums Lambacher Schweizer 8 ISBN

Mathematik - Klasse 9

Mariengymnasium Jever Schuleigenes Fachcurriculum / Arbeitsplan Mathematik Jahrgang 10 Stand: , Seite 1 von 7

Stoffverteilungsplan Mathematik 8 auf der Grundlage des G8 Kernlehrplans Stadtgymnasium Köln-Porz Lambacher Schweizer 8 Klettbuch

Themenpool teilzentrale Reifeprüfung Mathematik Europagymnasium Auhof, Aubrunnerweg 4, 4040 Linz; Schulkennzahl:

Stoffverteilungsplan Mathematik Qualifikationsphase (GK und LK) auf der Grundlage des Kernlehrplans

Schulinternes Curriculum. Mathematik Sekundarstufe II

Stoffverteilungsplan Mathematik 9 und 10 auf der Grundlage des Kernlehrplans

GES Espenstraße Schulinterner Lehrplan Mathematik Stand Vorbemerkung

Schulinterner Lehrplan Franz-Stock-Gymnasium, Jahrgangsstufe 9. Erwartete prozessbezogene Kompetenzen am Ende der 9. Klasse:

KGS Schneverdingen Gymnasialzweig Mathematik Klasse 10 Stoffverteilungsplan (Stand: Juli 2012)

Stoffverteilungsplan Mathematik im Jahrgang 8 Lambacher Schweizer 8

Schulinterner Lehrplan des Gymnasiums Buxtehude Süd Klasse 8

Gymnasium Kreuzau. Schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik

Schulinterner Lehrplan EF zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik

Funktionen Lineare Zuordnungen mit eigenen Worten in Wertetabellen, Graphen und in Termen darstellen und zwischen diesen Darstellungen wechseln.

Stoffverteilungsplan Mathematik Klasse 8 Lambacher Schweizer 8 ISBN

Stoffverteilungsplan Mathematik Klasse 9 Lambacher Schweizer 9 ISBN

Fachcurriculum Mathematik (G8) JKG Weil der Stadt Standards 10. Mathematik. Stoffverteilungsplan 9/10 auf Grundlage der Bildungsstandards 2004

MATHEMATIK NEUE WEGE BADEN-WÜRTTEMBERG

Transkript:

Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht werden kann. Zusätzlich bietet der größere Aufgabenkontexte, die es den Schülerinnen und Schülern ermöglichen, sich intensiv mit einem Thema zu beschäftigen und einzelne prozessbezogene Fähigkeiten zu entwickeln. Entsprechend dieser Forderung sind im neuen die inhalts- und die prozessbezogenen Kompetenzen innerhalb aller Kapitel eng miteinander verwoben. So werden in den Aufgaben immer wieder Fähigkeiten der vier prozessbezogenen Kompetenzbereiche und,, und Werkzeugnutzung aufgegriffen und geübt. Auch wenn die prozessbezogenen Kompetenzen sich in allen Kapiteln wiederfinden, werden in der folgenden Tabelle beispielhaft für diejenigen Kompetenzbereiche und Kompetenzen aufgeführt, auf die in dem jeweiligen Kapitel ein Schwerpunkt gelegt wurde. und Analysis Kapitel I Grundlegende Eigenschaften von Potenz- und Sinusfunktionen 1 Werkzeuge auswählen, die den Lösungsweg unterstützen die Plausibilität von Ergebnissen überprüfen einfache Transformationen (Streckung, Verschiebung) auf (quadratische ) anwenden und die zugehörigen Parameter deuten Eigenschaften von Potenzfunktionen mit ganzzahligen Exponenten sowie von quadratischen und kubischen Wurzelfunktionen beschreiben am Graphen oder Term einer Funktion ablesbare Eigenschaften als Argumente beim innermathematischer Probleme verwenden Polynomgleichungen, die sich durch einfaches Ausklammern oder Substituieren auf lineare oder quadratische Gleichungen zurückführen lassen, ohne Hilfsmittel lösen einfache Transformationen (Streckung, Verschiebung) auf (Sinusfunktion, quadratische, Potenzfunktionen) anwenden und die zugehörigen Parameter deuten 2 Lineare und quadratische 3 Potenzfunktionen 4 Ganzrationale 5 Symmetrie von Funktionsgraphen 6 Nullstellen ganzrationaler 7 Verschieben und Strecken von Graphen Polynomdivision und Linearfaktorzerlegung Vermutungen aufstellen und beispielgebunden unterstützen vorgegeben Argumentationen und mathematische Beweise erklären Beobachtungen, bekannte Lösungswege und Verfahren beschreiben, mathematische Fachbegriffe in theoretischen Zusammenhängen erläutern eigene Überlegungen formulieren und eigene Lösungswege beschreiben und Darstellungen begründet Stellung nehmen, ausgearbeitete Lösungen hinsichtlich ihrer Verständlichkeit und fachsprachlichen Qualität beurteilen, auf der Grundlage fachbezogener Diskussionen Entscheidungen herbeiführen Digitale zum und zum Darstellen von (graphisch und als Wertetabelle), zielgerichteten Variieren der Parameter von, von Gleichungen 1

und Analysis Grundverständnis des Ableitungsbegriffs Differentialrechnung ganzrationaler durchschnittliche Änderungsraten berechnen und im Kontext interpretieren lokale Änderungsraten berechnen und im Kontext interpretieren, auf der Grundlage eines propädeutischen Grenzwertbegriffs an Beispielen den Übergang von der durchschnittlichen zur lokalen Änderungsrate qualitativ erläutern, die Tangente als Grenzlage einer Folge von Sekanten deuten, die Ableitung an einer Stelle als lokale Änderungsrate/Tangentensteigung deuten die Ableitung an einer Stelle als lokale Änderungsrate/Tangentensteigung deuten Kapitel II Abhängigkeiten und Änderungen - Ableitung 1 Mittlere Änderungsrate - Differenzenquotient 2 Momentane Änderungsrate - 3 Die Ableitung an einer bestimmten Stelle berechnen Mathematisieren Sachsituationen in mathematische Modelle übersetzen, innerhalb des math. Modells erarbeiten die Plausibilität von Ergebnissen überprüfen beziehen, die Angemessenheit aufgestellter Modelle für die Fragestellung reflektieren Beurteilen Muster und Beziehungen erkennen heuristische Strategien und Prinzipien nutzen, geeignete Begriffe, Zusammenhänge und Verfahren zur Problemlösung auswählen die Plausibilität von Ergebnissen überprüfen Vermutungen aufstellen Ergebnisse, Begriffe und Regeln auf Verallgemeinerbarkeit überprüfen Änderungsraten funktional beschreiben und interpretieren (Ableitungsfunktion), graphisch ableiten die Ableitungsregel für Potenzfunktionen mit natürlichem Exponenten nutzen, die Summen- und Faktorregel auf ganzrationale anwenden 4 Die Ableitungsfunktion 5 Ableitungsregeln 6 Tangente Beobachtungen, bekannte Lösungswege und Verfahren beschreiben, die Fachsprache und fachspezifische Notation in angemessenem Umfang verwenden, flexibel zwischen mathematischen Darstellungsformen wechseln und Darstellungen begründet Stellung nehmen die Kosinusfunktion als Ableitung der Sinusfunktion nennen 7 Ableitung der Sinusfunktion Digitale zum und Berechnen und zum Darstellen von (graphisch und als Wertetabelle), zielgerichteten Variieren von Parametern, grafischen Messen von Steigungen, Berechnen der Ableitung einer Funktion an einer Stelle 2

und Analysis Grundlegende Eigenschaften von Potenzfunktionen Differentialrechnung ganzrationaler Eigenschaften eines Funktionsgraphen beschreiben Eigenschaften von Funktionsgraphen (Monotonie) mithilfe des Graphen der Ableitungsfunktion begründen Eigenschaften von Funktionsgraphen (Extrempunkte) mithilfe des Graphen der Ableitungsfunktion begründen, lokale und globale Extrema im Definitionsbereich unterscheiden, das notwendige Kriterium und das Vorzeichenwechselkriterium zur Bestimmung von Extrempunkten verwenden Am Graphen oder Term einer Funktion ablesbare Eigenschaften als Argumente beim von außermathematischen Problemen verwenden Kapitel III Eigenschaften von 1 Charakteristische Punkte eines Funktionsgraphen 2 Monotonie 3 Hoch- und Tiefpunkte Inkl. Extremstellen mithilfe der zweiten Ableitung bestimmen 4 Mathematische Fachbegriffe in Sachzusammenhängen Strukturieren Sachsituationen mit Blick auf eine konkrete Fragestellung erfassen Mathematisieren Sachsituationen in mathematische Modelle übersetzen, innerhalb des math. Modells erarbeiten beziehen Muster und Beziehungen erkennen Werkzeuge auswählen, die den Lösungsweg unterstützen, einschränkende Bedingungen berücksichtigen Ergebnisse auf dem Hintergrund der Fragestellung überprüfen, die Plausibilität von Ergebnissen überprüfen, verschiedene Lösungswege vergleichen Vermutungen aufstellen und mithilfe von Fachbegriffen präzisieren math. Regeln und Sätze für Begründungen nutzen Beobachtungen, bekannte Lösungswege und Verfahren beschreiben, math. Begriffe in Sachzusammenhängen erläutern die Fachsprache und fachspezifische Notation in angemessenem Umfang verwenden, Arbeitsschritte nachvollziehbar dokumentieren Digitale zum und zum Darstellen von (graphisch und als Wertetabelle) 3

Stochastik Mehrstufige Zufallsexperimente Bedingte Wahrscheinlichkeiten Alltagssituationen als Zufallsexperimente deuten, Zufallsexperimente simulieren, Wahrscheinlichkeitsverteilungen aufstellen und Erwartungswertbetrachtungen durchführen Sachverhalte mithilfe von Baumdiagrammen modellieren, Mehrstufige Zufallsexperimente beschreiben und mithilfe der Pfadregeln Wahrscheinlichkeiten ermitteln Urnenmodelle zur Beschreibung von Zufallsprozessen verwenden, Sachverhalte mithilfe von Baumdiagrammen und Vieroder Mehrfeldertafeln modellieren, bedingte Wahrscheinlichkeiten bestimmen, Problemstellungen im Kontext bedingter Wahrscheinlichkeiten bearbeiten Teilvorgänge mehrstufiger Zufallsexperimente auf stochastische Unabhängigkeit prüfen, Problemstellungen im Kontext bedingter Wahrscheinlichkeiten bearbeiten Problemstellungen im Kontext bedingter Wahrscheinlichkeiten bearbeiten Kapitel IV Wahrscheinlichkeit 1 Wahrscheinlichkeitsverteilung - Erwartungswert 2 Mehrstufige Zufallsexperimente, Pfadregel 3 Vierfeldertafel, bedingte Wahrscheinlichkeiten 4 Stochastische Unabhängigkeit Bedingte Wahrscheinlichkeiten und Lernen aus Erfahrung - die Bayes sche Regel Strukturieren zunehmend komplexe Sachsituationen mit Blick auf eine konkrete Fragestellung erfassen und strukturieren, Annahmen treffen und begründet Vereinfachungen einer realen Situation vornehmen, Mathematisieren zunehmend komplexe Sachsituationen in mathematische Modelle übersetzen, innerhalb des math. Modells erarbeiten, einem mathematischen Modell verschiedene passende Sachsituationen zuordnen, beziehen Fragen zu einer gegebenen Problemsituation finden und stellen, die Situation analysieren und strukturieren, Werkzeuge auswählen, die den Lösungsweg unterstützen Ergebnisse auf dem Hintergrund der Fragestellung und auf Plausibilität überprüfen, verschiedene Lösungswege vergleichen Vermutungen aufstellen und mithilfe von Fachbegriffen präzisieren math. Regeln und Sätze für Begründungen nutzen Informationen aus mathematikhaltigen Texten und Darstellungen erfassen, strukturieren und formalisieren Digitale zum Generieren von Zufallszahlen; Ermitteln von Kennzahlen von Wahrscheinlichkeitsverteilungen (Erwartungswert) und zum Erstellen von Histogrammen von Wahrscheinlichkeitsverteilungen 4

Analytische Geometrie und Lineare Algebra Koordinatisierungen des Raumes Vektoren und Vektoroperationen Geeignete kartesische Koordinatisierungen für die Bearbeitung eines geometrischen Sachverhaltes in der Ebene und im Raum wählen, geometrische Objekte in einem räumlichen kartesischen Koordinatensystem darstellen Vektoren (in Koordinatendarstellung) als Verschiebungen deuten und Punkte im Raum durch Ortsvektoren kennzeichnen Vektoren addieren, mit einem Skalar multiplizieren und Vektoren auf Kollinearität untersuchen Längen von Vektoren und Abstände zwischen Punkten mithilfe des Satzes des Pythagoras berechnen, gerichtete Größen (Geschwindigkeit und Kraft) durch Vektoren darstellen Eigenschaften von besonderen Dreiecken und Vierecken mithilfe von Vektoren nachweisen, Geeignete kartesische Koordinatisierungen für die Bearbeitung eines geometrischen Sachverhaltes in der Ebene und im Raum wählen, geometrische Objekte in einem räumlichen kartesischen Koordinatensystem darstellen gerichtete Größen (Geschwindigkeit und Beschleunigung) durch Vektoren darstellen Kapitel V Vektoren 1 Punkte im Raum 2 Vektoren 3 Rechnen mit Vektoren 4 Betrag eines Vektors - Länge einer Strecke 5 Figuren und Körper untersuchen Mit dem Auto in die Kurve - Vektoren in Aktion Mathematisieren Sachsituationen in mathematische Modelle übersetzen, innerhalb des math. Modells erarbeiten beziehen unterstützen, Beurteilen Muster und Beziehungen erkennen Werkzeuge auswählen, die den Lösungsweg geeignete Begriffe, Zusammenhänge und Verfahren zur Problemlösung auswählen Vermutungen aufstellen, beispielgebunden unterstützen und mithilfe von Fachbegriffen präzisieren, Zusammenhänge zwischen Ober- und Unterbegriffen herstellen, math. Regeln und Sätze für Begründungen nutzen sowie Argumente zu Argumentationsketten verknüpfen, verschiedene Argumentationsstrategien nutzen, lückenhafte und fehlerhafte Argumentationsketten erkennen und ergänzen bzw. korrigieren, math. Begriffe in Sachzusammenhängen erläutern, eigene Überlegungen formulieren und eigene Lösungswege beschreiben, Fachsprache und fachspezifische Notation verwenden, und Darstellungen begründet Stellung nehmen Digitale zum Darstellen von Objekten im Raum; grafischen Darstellen von Ortsvektoren und Vektorsummen, Durchführen von Operationen mit Vektoren 5

und Analysis Grundlegende Eigenschaften von Exponentialfunktionen Einfache Transformationen (Streckung, Verschiebung) auf Exponentialfunktionen anwenden und die zugehörigen Parameter deuten Wachstumsprozesse mithilfe linearer und Exponentialfunktionen beschreiben; am Graphen oder Term einer Funktion ablesbare Eigenschaften als Argumente beim von innerund außermathematischen Problemen verwenden Kapitel VI Potenzen in Termen und 1 Potenzen mit rationalen Exponenten 2 Exponentialfunktionen 3 Exponentialgleichungen und Logarithmus 4 Lineare und exponentielle Wachstumsmodelle Logarithmusgesetze Strukturieren zunehmend komplexe Sachsituationen mit Blick auf eine konkrete Fragestellung erfassen und strukturieren, Annahmen treffen und begründet Vereinfachungen einer realen Situation vornehmen, Mathematisieren zunehmend komplexe Sachsituationen in mathematische Modelle übersetzen innerhalb des math. Modells erarbeiten, einem mathematischen Modell verschiedene passende Sachsituationen zuordnen, beziehen, die Angemessenheit aufgestellter Modelle für die Fragestellung reflektieren, aufgestellte Modelle mit Blick auf die Fragestellung verbessern Werkzeuge auswählen, die den Lösungsweg unterstützen Ergebnisse auf dem Hintergrund der Fragestellung und auf Plausibilität überprüfen, verschiedene Lösungswege vergleichen Vermutungen aufstellen und mithilfe von Fachbegriffen präzisieren vorgegebene Argumentationen und Beweise erklären, begründet Stellung nehmen Digitale zum Darstellen von (grafisch und als Wertetabelle), zielgerichteten Variieren der Parameter von, und zum von Gleichungen 6

Sachthema: Mathematik zum Anfassen: Bewegungen mit GPS untersuchen Anhang: GTR-Hinweise für CASIO fx-cg 20 und TInspire CX In den Kapiteln sind grundlegende Aufgaben, die ohne Hilfsmittel gelöst werden sollen (hilfsmittelfreier Teil) gekennzeichnet, ebenso Aufgaben, für die der GTR benötigt wird. Bei allen anderen Aufgaben sollen die Schülerinnen und Schüler selbst entscheiden, ob sie einen Werkzeugeinsatz für hilfreich halten. Im Anhang sind die in diesem Band verwendeten des GTR für die beiden gängigsten Modelle erläutert. 7