F-Praktikum Neutrinomassen

Größe: px
Ab Seite anzeigen:

Download "F-Praktikum Neutrinomassen"

Transkript

1 F-Praktikum Neutrinomassen Florian Gierenz Betreuer: Prof. Dr. H.-G. Sander 30. Januar 2012

2 1 Einführung und Motivation Neutrinos gehören im Standardmodell der Teilchenphysik zu den Leptonen. Sie besitzen einen Spin von s = 1 /2 und tragen weder eine elektrische Ladung noch eine Farbladung: Sie wechselwirken ausschließlich schwach, was den experimentellen Zugang zu direkten Nachweisen schwierig macht. Es existieren drei Neutrinos, entsprechend den drei Lepton- Generationen, sowie natürlich deren Antiteilchen. Die Neutrinomassen lassen sich, ebenso wie die restlichen Fermionenmassen, nicht aus dem Standardmodell ableiten und müssen daher experimentell bestimmt werden. Von besonderem Interesse ist die Neutrinomasse m ν nicht nur für die Teilchenphysik, sondern auch für die Astrophysik. In der Teilchenphysik erhofft man sich durch Bestimmung von m ν nicht nur Hinweise auf Physik jenseits des Standardmodells (SUSY, GUTs), sondern auch ein besseres Verständnis von Fermionenmassen im Allgemeinen, da m ν wohl die mit großem Abstand kleinste Masse unter den Fermionen ist. In der Astrophysik könnte die genauere Kenntnis von m ν dabei helfen, kosmische Ereignisse wie Sternentwicklung sowie die Nukleosynthese leichter Elemente unmittelbar nach dem Urknall und die Bildung großer Strukturen im Universum (Filamente, Galaxiencluster...) besser zu verstehen. Offen ist außerdem, ob sogenannte relic neutrinos aus der Frühzeit des Universums (das Analogon zur kosmischen Hintergrundstrahlung) einen Beitrag zur (Heißen) Dunklen Materie und damit zur Energiedichte des Universums liefern könnten. 2 Verschiedene Methoden zur Bestimmung der Neutrinomasse Zur Bestimmung von m ν gibt es sowohl direkte wie indirekte Ansätze. Indirekte Methoden sind beispielsweise Beobachtungen von Neutrinooszillationen. Diese sind nur dann möglich, wenn die Massen der verschiedenen Neutrinos m i sich unterscheiden, sodass man aus der tatsächlichen Beobachtung solcher Neutrinooszillationen auf eine endliche Massendifferenz genauer: es werden die Quadrate der Massendifferenzen m 2 = m 2 i m2 j gemessen und damit natürlich auf eine Neutrinomasse m ν 0 schließen kann. Diese Beobachtungen führte man sowohl bei solaren Neutrinos ( m 2 ν 10 3 ev 2 ) als auch bei atmosphärischen Neutrinos ( m 2 ν 3, ev 2 ) durch. Direkte Methoden beinhalten u.a.: Flugzeitanalysen von bei Supernovae emittierten Neutrinos (Korrelation Neutrinoenergie - Ankunftsszeit erlaubt Rückschlüsse auf die Masse m ν 23 ev Suche nach doppeltem β-zerfall, d. h. doppelter β-zerfall mit zwei Neutrinos oder neutrinoloser doppelter β-zerfall Vermessung der Kinematik schwacher Zerfälle, z.b. β-zerfall für Elektron-Neutrinos Zerfall τ in Pionen und τ-neutrino m τ < 18, 2 MeV Zerfall Pionen zu Myon + ν µ m µ < 190 kev 2

3 Die bislang genauesten Ergebnisse lieferte die Vermessung von β-spektren, weshalb diese Methode, die unter anderem auch in Mainz eingesetzt wurde, im Folgenden genauer betrachtet werden soll. 3 Das Mainzer Neutrinomassen-Experiment 3.1 β-zerfall Beim β-zerfall handelt es sich um einen über die schwache Wechselwirkung vermittelten Prozess. Man unterscheidet zwischen β - und β + -Zerfall. Beim β -Zerfall zerfällt ein Neutron unter Aussendung eines Elektrons und eines Elektron-Antineutrinos in ein Proton, der β + -Zerfall bezeichnet die Umwandlung eines Protons in ein Neutron, wobei ein Positron und ein Elektron-Neutrino emittiert werden. Der Vollständigkeit halber sei hier noch der Elektroneneinfang genannt, der mitunter als Konkurrenzprozess zum β + - Zerfall auftritt. Hierbei fängt der Kern ein Elektron aus der Atomhülle ein, sodass ein Proton zu einem Neutron wird und ein Elektron-Neutrino emittiert wird. Betrachtet man das Spektrum des β-zerfalls also die Zählrate der nachgewiesenen Elektronen in Abhängigkeit von deren Energie so stellt man zunächst fest, dass es sich um ein kontinuierliches Spektrum handelt, was überhaupt erst zur Postulierung des Neutrinos führte. Ohne Neutrino würde es sich beim β-zerfall nämlich um einen 2-Körper-Zerfall handeln, sodass man aus Gründen der Energie- und Impulserhaltung ein diskretes Spektrum erwarten würde. Mathematisch hat erhält man für das Spektrum die Form dn de p(e + m ec 2 )(E 0 E) (E 0 E) 2 m 2 νc 4 (1) E 0 ist hierbei die maximale Energie der Elektronen (auch: Endpunktsenergie), die sich aus der Zerfallsenergie ergibt, p und E bezeichnen Impuls und Energie des Elektrons. Das bedeutet also, das die Form des Spektrums vom Quadrat der Neutrinomasse m 2 ν abhängt. Es liegt also nahe, eben diese Masse aus dem β-spektrum zu ermitteln. Abbildung 1 zeigt eine graphische Darstellung des Spektrums. In Abbildung 1 ist auf der x-achse der Abstand von E 0 in Einheiten der Neutrinoruhemasse angegeben. Im oberen Teil ist die Zählrate für eine verschwindendes und ein nichtverschwindendes m ν aufgetragen. Die absolute Differenz der beiden Kurven ist im mittleren Teil, die relative Differenz in der unteren Graphik, aufgetragen. Deutlich erkennbar ist, dass ein m ν > 0eV eine charakteristische Stufe in der Differenz der Spektren verursacht. Dies macht man sich nun zunutze, indem man ein β-spektrum aufnimmt und eine Funktion sucht, die die gemessene Form am besten beschreibt. Fitparameter ist dabei neben m 2 ν die ebenfalls nicht exakt bekannte Zerfallsenergie E Experimenteller Aufbau Das Herzstück des Mainzer Experiments bildet das sogenannte MAC-E-Spektrometer, das auf dem Prinzip der magnetischen adiabatischen Kollimation in Kombination mit 3

4 Abbildung 1: Form des Spektrums einem elektrostatischen Gegenfeldspektrometer beruht und eigens für Neutrinoexperimente entwickelt wurde. Neben einer hohen Raumwinkelakzeptanz (bis zu 2π) bietet dieser Spektrometertyp auch eine hohe Energieauflösung (0,04% 0,06%) Prinzip des MAC-E-Spektrometers Abbildung 2 zeigt den schematischen Aufbau des Spektrometers. Zwei supraleitende Spulen S1 und S2 erzeugen ein Magnetfeld B, das seinen größten Wert B max unmittelbar bei den Spulen und seinen kleinsten Wert B min in der Mitte des Spektrometers hat. Elektronen, die an der Quelle (hier: Tritium) emittiert werden, folgen den Magnetfeldlinien auf Zyklotronbahnen, wodurch ein magnetisches Bahnmoment #» µ hervorgerufen wird. Auf dem Weg durch das Spektrometer ändert sich nun auch die Magnetfeldstärke B. Ist diese Änderung adiabatisch, d.h. findet sie hinreichend langsam statt, so ist das Produkt γ µ = p2 2m e B = E (2) B eine Erhaltungsgröße. p und E sind hierbei die transversalen Anteile von Impuls bzw. kinetischer Energie. In nichtrelativistischer Näherung gilt somit µ = E B = const. (3) Bezeichnet man nun den transversalen Anteil der kinetischen Energie zu Beginn bzw. in der Mitte des Spektrometers mit E i bzw. E f, so erhält man und schließlich µ = E i B max = const.bzw.µ = E f B min = const. 4

5 Abbildung 2: MAC-E-Spektrometer schematisch E f = E i Bmin 1 E i B max 4000 wobei das Verhältnis B min B max dem der Mainzer Versuchsanordnung entspricht. Da statische Magnetfelder aber keine Arbeit verrichten bedeutet das, dass der transversale Anteil der kinetischen Energie in longitudinale Bewegung überführt wird Die Energieauflösung ist dann E = E f = E 0 Bmin B max 4, 8 ev (5) mit E 0 18, 6keV ) im Falle des in Mainz verwendeten Tritium. Das elektrostatische Feld, das mithilfe von 27 Ringelektroden erzeugt wird und parallel zu den B-Feldlinien gerichtet ist, erfüllt zwei Funktionen: Zum einen bremst es die Longitudinal-Bewegung der Elektronen und gewährleistet so die adiabatische Änderung des Magnetfeldes. Zum anderen wird es als integrierender Energie-Hochpass-Filter benutzt, da nur solche Elektronen das Spektrometer passieren können, deren Energie größer ist als das elektrische Potential, das ihnen entgegengerichtet ist. Nachdem die Elektronen die Mitte des Spektrometers passiert haben, werden sie wieder beschleunigt Die Quelle Wie schon erwähnt, wurde in Mainz eine Tritiumquelle benutzt. Dazu wurde gasförmiges Tritium auf ein auf wenige Kelvin heruntergekühltes Graphitsubstrat gesprüht. Man erhält einen kondensierten Film aus molekularem Tritium (Dicke: etwa 440 Angstrom), der zwar leicht zu handhaben ist, dafür aber auch einige Beiträge zum systematischen Fehler produziert. So lädt sich der Film z.b. durch die ständige Emission von Elektronen selbst auf, es treten Streueffekte im Kondensat auf usw. (4) 5

6 Die Verwendung von Tritium bietet eine Reihe von Vorteilen. Die relativ kurze Halbwertszeit (ca. 12,3 Jahre) erlaubt es, Quellen mit ausreichender Aktivität bei gleichzeitig geringer Flächenbelegung herzustellen. Zudem besitzen Tritium und sein Tochterkern, 3 He +, sehr einfache Elektronenschalen, was eine leichtere und präzisere Berechnung des zu erwartenden Spektrums erlaubt. Die niedrige maximale Zerfallsenergie schließlich trägt, wie aus Gleichung 5 folgt, zu einer besseren Auflösung bei Gesamtaufbau Abbildung 3 zeigt den Gesamtaufbau aus den bespochenen Komponenten. Hinzu kommen hier allerdings noch zwei zusätzliche Magnetspulen, die in einem Winkel von 20 zueinender stehen und die Elektronen auf eine leicht gekrümmte Bahn lenken. Eventuell vorhandene Verunreinigungen durch abgedampfte Tritiummoleküle können so eliminiert werden, da diese neutral sind und daher nicht den Magnetfeldlinien folgen, sondern stattdessen auf die stark gekühlte Wand treffen ( LHe-cooled trap in der Vergrößerung), wo sie fetsfrieren und so nicht ins Spektrometer gelangen. Abbildung 3: Gesamtaufbau Die Komponente automatic valve (s. ebenfalls Vergrößerung) dient lediglich zur besseren Kontrolle des Experiments und hat mit dem Messprinzip an sich nichts zu tun. 3.3 Ergebnisse Das Mainzer Experiment lieferte mit m ν 2, 2 ev (95% C.L.) die bisher niedrigste Schwelle für die Neutrinomasse und ist, zusammen mit dem Troitsker Experiment, welches die gleiche Methode (allerdings mit gasförmiger Quelle) benutzt, das bisher sensitivste Instrument zur direkten Bestimmung der Elektronneutrinomasse. Wichtig ist dabei allerdings, dass die erzielten Ergebnisse auch mit m ν = 0 verträglich sind. 6

7 4 KATRIN Das Projekt KATRIN (KArlsruhe TRItium Neutrinoexperiment) ist eine Kollaboration vieler internationaler Forschungsgruppen, darunter Mainz, Troitsk und Karlsruhe. Ziel des in diesem Jahr anlaufenden Experimentes ist die genauere Bestimmung der Neutrinomasse mithilfe der Methode, die auch schon in Mainz und Troitsk erfolgreich eingesetzt wurde. Man erhofft sich eine Verbesserung der Sensitivität um etwa eine Größenordnung, also bis 0,2 ev, womit auch der kosmologisch relevante Bereich abgedeckt wäre. Zugleich will man den Untergrund um bis zu vier Größenordnungen senken. Dies soll durch einige wesentliche Verbesserungen erreicht werden, von denen die wichtigsten im Folgenden genannte werden sollen: Es wird eine fensterlose, gasförmige Quelle zum Einsatz kommen, wodurch man systematische Fehler (Streueffekte, Selbstaufladung etc.) minimieren möchte. Ein kleines Prespektrometer (ebenfalls auf dem MAC-E-Prinzip beruhend) soll schon vor dem Hauptspektrometer niederenergetische Elektronen abfangen. Durch ein deutlich größeres Hauptspektrometer (22m Länge, 10m Durchmesser) soll eine bessere Energieauflösung erreicht werden. Der Spektrometertank dient selbst als Elektrode zur Erzeugung des elektrischen Feldes, um ein extremes Ultrahochvakuum zu ermöglichen. Abschirmelektroden an der Tankwand verhindern Untergrund durch von außen eindringende Strahlung 5 Quellen katrin/index.html Üntersuchung systematischer Effekte und erste Tritiummessungen mit dem verbesserten Mainzer Neutrinomassenexperiment", Beate Bornschein, Mainz 2000 "Durchführung von Langzeitmessungen mit dem Mainzer Neutrinomassenexperiment und Ermittlung einer neuen Obergrenze für die Masse des Elektronantineutrinos", Lutz Bornschein, Mainz 2002 "Messungen und Gesamtanalyse zur Neutrinomasse am Mainzer Tritium-β-Experiment", Christine Kraus, Mainz kathrin/mainspec_arrival.html 7

Messung der Masse des Elektronneutrinos

Messung der Masse des Elektronneutrinos Seminarvortrag Messung der Masse des Elektronneutrinos Philip Schneider 29.11.2013 1 Entdeckungsgeschichte 2 Gliederung Neutrinophysik Mainzer Neutrinoexperiment Nachfolgeexperiment KATRIN 3 Neutrinos

Mehr

Das Karlsruher Tritium Neutrinoexperiment

Das Karlsruher Tritium Neutrinoexperiment Das Karlsruher Tritium Neutrinoexperiment Hauptseminar SoSe08 Schlüsselexperimente der Elementarteilchenphysik Vortrag am 11.07.08 von Benjamin Leiber 1 Übersicht 1. Die Neutrinos 2. ν-massebestimmung

Mehr

Masse des Elektronneutrinos

Masse des Elektronneutrinos Masse des Elektronneutrinos Felix Braig Seminar Präzisionsexperimente der Teilchenphysik 6. Juni 2014 Universität Heidelberg I Präzisionsexperimente für Teilchenphysik I Felix Braig Quelle: hnp://www.spektrum.de/alias/teilchenphysik/katrin-

Mehr

Neutrinos: Kosmische Leichtgewichte auf der Waagschale von KATRIN

Neutrinos: Kosmische Leichtgewichte auf der Waagschale von KATRIN Neutrinos: Kosmische Leichtgewichte auf der Waagschale von KATRIN Neutrinos, ihre Masse & das Universum KATRIN eine Waage für Neutrinos am Forschungszentrum Karlsruhe 1 Man denk am Besten gar nicht darüber

Mehr

Neutrinomasse. Holger Pieta. Seminar 2006

Neutrinomasse. Holger Pieta. Seminar 2006 Holger Pieta Seminar 2006 1 - Warum Masse? - Wie messen? - Experimente - Mainz - Troitsk - Katrin 2 Warum Masse? Standardmodell ursprünglich: Masselos => nur linkshändig z.b.: Übergangswahrscheinlichkeit

Mehr

1.3 Historischer Kurzüberblick

1.3 Historischer Kurzüberblick 1.3 Historischer Kurzüberblick (zur Motivation des Standard-Modells; unvollständig) Frühphase: 1897,,Entdeckung des Elektrons (J.J. Thomson) 1905 Photon als Teilchen (Einstein) 1911 Entdeckung des Atomkerns

Mehr

Das solare Neutrinoproblem

Das solare Neutrinoproblem Das solare Neutrinoproblem Helene Kraft, Benjamin Gutknecht, Bartosz Slomski, Esther Dönsdorf, Maria Reinhardt, Kristoffer Menzel, David Caliebe 3. Juni, 2005 1 Der Weg zum Postulat des Neutrinos 1930,

Mehr

Neutrinos und andere Geisterteilchen. M. Lindner

Neutrinos und andere Geisterteilchen. M. Lindner Neutrinos und andere Geisterteilchen M. Lindner Elementare Bausteine der Materie Bausteine der (normalen) Materie: - Elektron e - - Up-Quark u und Down-Quark d Soweit bekannt punktförmig: < 0.001fm Wechselwirkungen

Mehr

Institut für Strahlenphysik Dr. Daniel Bemmerer Mitglied der Leibniz-Gemeinschaft. Altes und Neues zum Standardmodell

Institut für Strahlenphysik Dr. Daniel Bemmerer  Mitglied der Leibniz-Gemeinschaft. Altes und Neues zum Standardmodell Institut für Strahlenphysik Dr. Daniel Bemmerer www.fzd.de Mitglied der Leibniz-Gemeinschaft Altes und Neues zum Standardmodell Von den Quarks zum Universum QuickTime and a TIFF (Uncompressed) decompressor

Mehr

1) Teilchenbeschleunigung am LHC und im Kosmos

1) Teilchenbeschleunigung am LHC und im Kosmos 1 Übungsblatt 06112013 1) Teilchenbeschleunigung am LHC und im Kosmos Kosmische Beschleuniger wie aktive galaktische Kerne, sog AGN s (active galactic nuclei), beschleunigen Teilchen auf Energien von bis

Mehr

Einheit 13 Subatomare Physik 2

Einheit 13 Subatomare Physik 2 Einheit 13 Subatomare Physik 2 26.01.2012 Markus Schweinberger Sebastian Miksch Markus Rockenbauer Subatomare Physik 2 Fundamentale Wechselwirkungen Das Standardmodell Elementarteilchen Erhaltungssätze

Mehr

Neutrinoeigenschaften

Neutrinoeigenschaften Neutrinoeigenschaften Seminarvortrag zur Astro- und Teilchenphysik WS 07/ 08 Sandy Peterhänsel Betreuer: Prof. Dr. G. Anton / Prof. Dr. K. Rith 14.01.2008 Outline Historie und allgemeine Eigenschaften

Mehr

Neutrino - Oszillationen

Neutrino - Oszillationen Neutrino - Oszillationen Geschichte der Neutrinos Theoretische Motivation (Neutrino-Oszillation im Vakuum/Materie) Experimente Solares Neutrino-Problem Super-Kamiokande Interpretation der Messungen, Ergebnisse

Mehr

DIE THERMISCHE GESCHICHTE DES UNIVERSUMS & FREEZE-OUT. 14. Dezember Kim Susan Petersen. Proseminar Theoretische Physik & Astroteilchenphysik

DIE THERMISCHE GESCHICHTE DES UNIVERSUMS & FREEZE-OUT. 14. Dezember Kim Susan Petersen. Proseminar Theoretische Physik & Astroteilchenphysik DIE THERMISCHE GESCHICHTE DES UNIVERSUMS & FREEZE-OUT 14. Dezember 2010 Kim Susan Petersen Proseminar Theoretische Physik & Astroteilchenphysik INHALT 1. Das Standardmodell 2. Die Form des Universums 3.

Mehr

Neutrino-Kosmologie. Alexander Fulst.

Neutrino-Kosmologie. Alexander Fulst. alexanderfulst@wwu.de Inhaltsverzeichnis 1 Einleitung 1 2 Motivation 1 3 Eigenschaften von Neutrinos 2 3.1 Entdeckung.................................. 2 3.2 Neutrinos im Standardmodell........................

Mehr

6. Elementarteilchen

6. Elementarteilchen 6. Elementarteilchen Ein Ziel der Physik war und ist, die Vielfalt der Natur auf möglichst einfache, evtl. auch wenige Gesetze zurückzuführen. Die Idee hinter der Atomvorstellung des Demokrit war, unteilbare

Mehr

direkte Bestimmung von Neutrinomassen

direkte Bestimmung von Neutrinomassen Physik-Department Technische Universität München Astroteilchenphysik in der Theorie und im Experiment 22.01.2008 Interesse an Neutrinomassen Standardmodell Neutrinos haben feste Helizität H H = 1 für ν

Mehr

Das GERDA-Experiment am Gran Sasso Untergrundlabor

Das GERDA-Experiment am Gran Sasso Untergrundlabor Das GERDA-Experiment am Gran Sasso Untergrundlabor Nuklearer Prozess Dr. Béla Majorovits 13. Okt. 2007 1 Woraus bestehen wir? Die Materie um uns herum und die uns vertraut ist, besteht aus drei Elementarteilchen:

Mehr

Zusammenfassung Primordiale Nukleosynthese. Fabian Joswig

Zusammenfassung Primordiale Nukleosynthese. Fabian Joswig Zusammenfassung Primordiale Nukleosynthese Fabian Joswig 22. Februar 2015 1 Einleitung Die Materie im heutigen Universum besteht zum größten Teil aus leichten Elementen, nämlich zu ca. 75 Prozent aus Wasserstoff

Mehr

Die Bausteine der Natur

Die Bausteine der Natur Die Bausteine der Natur Teilchenwelt - Masterclass 2011 Matthias Schröder, Jan Thomsen Fragen der Teilchenphysik Woraus bestehen wir und unsere Welt? Was sind die fundamentalen Kräfte in unserem Universum?

Mehr

Neutrinophysik. Prof. Dr. Caren Hagner Universität Hamburg

Neutrinophysik. Prof. Dr. Caren Hagner Universität Hamburg Neutrinophysik Prof. Dr. Caren Hagner Universität Hamburg Überblick über Elementarteilchen Neutrinos: Eigenschaften Das Rätsel der solaren Neutrinos Neutrino Oszillationen Neutrinostrahlen Aufbau der Materie:

Mehr

Kosmische Neutrinos. Sommersemester Universität Siegen Claus Grupen. Kosmische Neutrinos p. 1/52

Kosmische Neutrinos. Sommersemester Universität Siegen Claus Grupen. Kosmische Neutrinos p. 1/52 Kosmische Neutrinos Sommersemester 2015 Universität Siegen Claus Grupen Kosmische Neutrinos p. 1/52 Neutrino Astronomie Solare Neutrinos (MeV-Bereich) Atmospherische Neutrinos (GeV-Bereich) Neutrino Oszillationen

Mehr

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010 Übungen Physik VI (Kerne und Teilchen) Sommersemester 010 Übungsblatt Nr. 06 Bearbeitung bis 10.06.010 Aufgabe 1: Das β-spektrum und Fermis Goldene Regel Die Form des β-spektrum ist gegeben durch d N dt

Mehr

Elementarteilchenphysik

Elementarteilchenphysik Masterclass 2010 Elementarteilchenphysik Robert Harlander Bergische Universität Wuppertal 17. Februar 2010 Robert Harlander Masterclass Uni Wuppertal p. 1 Elementarteilchenphysik Zentrale Fragen: Was sind

Mehr

Standardmodell der Materie und Wechselwirkungen:

Standardmodell der Materie und Wechselwirkungen: Standardmodell der Materie und en: (Quelle: Wikipedia) 1.1. im Standardmodell: sind die kleinsten bekannten Bausteine der Materie. Die meisten Autoren bezeichnen die Teilchen des Standardmodells der Teilchenphysik

Mehr

Elementarteilchenphysik

Elementarteilchenphysik Masterclass 2011 Elementarteilchenphysik Robert Harlander Bergische Universität Wuppertal 9. März 2011 Robert Harlander Masterclass Uni Wuppertal p. 1 Elementarteilchenphysik Zentrale Fragen: Was sind

Mehr

Physik V. Kern- und Teilchenphysik. Dr. Daniel Bick. 12. Januar Daniel Bick Physik V WS 2015/ Januar / 25

Physik V. Kern- und Teilchenphysik. Dr. Daniel Bick. 12. Januar Daniel Bick Physik V WS 2015/ Januar / 25 Physik V Kern- und Teilchenphysik Dr. Daniel Bick 12. Januar 2016 Daniel Bick Physik V WS 2015/16 12. Januar 2016 1 / 25 Korrektur Verlauf des Stabilitätstals Z = A 2 1 1 + a CA 2/3 4a A Daniel Bick Physik

Mehr

Nachweis des Myon-Neutrinos

Nachweis des Myon-Neutrinos Nachweis des Myon-Neutrinos http://www.bnl.gov/physics/history/images/1980s/1988-nobel-470.jpg http://www.bnl.gov/bnlweb/history/nobel/images/schwartz-335px.jpg Inhalt Neutrinos Erfindung und Entdeckung

Mehr

5. Kernzerfälle und Kernspaltung

5. Kernzerfälle und Kernspaltung 5. Kernzerfälle und Kernspaltung 1. Zerfallsgesetz 2. α Zerfall 3. Kernspaltung 4. ß Zerfall 5. γ Zerfall 1 5.1 Das Zerfallsgesetz 2 Mittlere Lebensdauer und Linienbreite 3 Mehrere Zerfallskanäle 4 Zerfallsketten

Mehr

Geladene Teilchen im E- und B-Feld: Von der Lorentzkraft zum MAC-E Filter

Geladene Teilchen im E- und B-Feld: Von der Lorentzkraft zum MAC-E Filter Geladene Teilchen im E- und B-Feld: Von der Lorentzkraft zum MAC-E Filter Marcus Beck Institut für Kernphysik, Westfälische Wilhelms-Universität Münster marcusb@uni-muenster.de Überblick: Einführung Die

Mehr

Standardmodelltests: W- und Z-Bosonen

Standardmodelltests: W- und Z-Bosonen Hauptseminar: Höchstenergetische Teilchenbeschleuniger Standardmodelltests: W- und Z-Bosonen Claudio Heller Inhalt Einführung und Theorie Produktion der Eichbosonen bei Cern und Fermilab Massenbestimmung

Mehr

KOINZIDENZANALYSE DER 0νββ-ZERFÄLLE BEI COBRA

KOINZIDENZANALYSE DER 0νββ-ZERFÄLLE BEI COBRA Fakultät Mathematik und Naturwissenschaften Institut für Kern- und Teilchenphysik KOINZIDENZANALYSE DER 0νββ-ZERFÄLLE BEI COBRA Cadmium-Zinc-Telluride 0-neutrino double Beta Research Apparatus Marcel Heine

Mehr

Elementarteilchen. wie wir sie bei LHC sehen können

Elementarteilchen. wie wir sie bei LHC sehen können Elementarteilchen und wie wir sie bei LHC sehen können Manfred Jeitler Institut für Hochenergiephysik der Öt Österreichischen ihi h Akademie Akd der Wissenschaften hft 1 Das Wasserstoffatom e - Photonaustausch

Mehr

15 Kernphysik Physik für E-Techniker. 15 Kernphysik

15 Kernphysik Physik für E-Techniker. 15 Kernphysik 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.

Mehr

Nieder-Energie-Neutrino-Physik

Nieder-Energie-Neutrino-Physik Nieder-Energie-Neutrino-Physik Masseterme: m D ν L ν R + m D ν c Lν c R Im Standardmodell kein ν R und kein ν c L keine Neutrinomasse? m n =? Beweis dass m n durch Beobachtung von Neutrinooszillationen

Mehr

Versuch A07: Zählstatistik und β-spektrometer

Versuch A07: Zählstatistik und β-spektrometer Versuch A07: Zählstatistik und β-spektrometer 5. April 2018 I Theorie I.1 Das Zerfallsgesetz Instabile Atomkerne zerfallen spontan nach einem gewissen Zeitintervall dt, mit einer Wahrscheinlichkeit, die

Mehr

Physik der massiven Neutrinos. WS 2008/09 Fr. 12:30 14:00

Physik der massiven Neutrinos. WS 2008/09 Fr. 12:30 14:00 Physik der massiven Neutrinos WS 008/09 Fr. 1:30 14:00 Jim Ritman, Magnus Wolke Kontakte James Ritman Raum NB -167 Tel. 353 J.Ritman@ep1.rub.de Magnus Wolke Forschungzentrum Juelich 0461-61-480 Magnus.Wolke@fysast.uu.se

Mehr

Bestimmung der Neutrino-Masse: Heidelberg Moskau Experiment und KATRIN

Bestimmung der Neutrino-Masse: Heidelberg Moskau Experiment und KATRIN Bestimmung der Neutrino-Masse: Heidelberg Moskau Experiment und KATRIN Emil Pavlov Emil Pavlov 1 / 38 Inhaltsverzeichnis 1 2 Teilchenphysik Astrophysik β-zerfall 3 4 5 6 Emil Pavlov 2 / 38 Neutrinooszilationen

Mehr

Das Neutron. Eigenschaften des Neutrons m n = 1.001m p m i = m g ± 10 4 τ n = ± 0.8 s

Das Neutron. Eigenschaften des Neutrons m n = 1.001m p m i = m g ± 10 4 τ n = ± 0.8 s Vorlesung Fundamentale Experimente mit ultrakalten Neutronen (FundExpUCN) Die Entdeckung des Neutrons Fundamentale Eigenschaften des Neutrons Reaktorphysik und Erzeugung von Neutronen Spallationsneutronenquellen

Mehr

Neue Experimente der Teilchen- und Astroteilchenphysik

Neue Experimente der Teilchen- und Astroteilchenphysik Neue Experimente der Teilchen- und Astroteilchenphysik A-Vorlesung, 3std., Di. 14:00 16:30 (mit 15 min Pause) Dozenten: W. Dünnweber, M. Faessler Skript: Vorlesungswebseite Inhalt (vorläufig): 15. April:

Mehr

c) Elemente oberhalb Fe

c) Elemente oberhalb Fe c) Elemente oberhalb Fe Neutroneneinfang: (Z,A) + n (Z, A+1) + γ β-zerfall: (Z, A+1) (Z+1, A+1) + e + ν e s(low)-process: Rate ω n

Mehr

Handout zum Masterseminar I Detektorensysteme

Handout zum Masterseminar I Detektorensysteme Handout zum Masterseminar I Philipp Heil 1 15. Juli 2013 1 pheil@students.uni-mainz.de Inhaltsverzeichnis 2 Inhaltsverzeichnis 1 ATLAS Detektor 3 2 Arten von Teilchenvermessung 3 3 Transversal-Hermetischer

Mehr

Neutrinos in Kosmologie und Teilchenphysik

Neutrinos in Kosmologie und Teilchenphysik Neutrinos in Kosmologie und Teilchenphysik Thomas Schwetz-Mangold Bremer Olbers-Gesellschaft, 12. Nov. 2013 1 Ein Streifzug durch die Welt der Neutrinos Was ist ein Neutrino? Wie hat man Neutrinos entdeckt?

Mehr

P3 Kernphysik. 25. Mai 2009

P3 Kernphysik. 25. Mai 2009 P3 Kernphysik 25. Mai 2009 β-spektroskopie Gruppe 58 - Saskia Meißner, Arnold Seiler Inhaltsverzeichnis 1 Ziel des Versuchs 2 2 Theoretische Grundlagen 2 2.1 β-zerfall.........................................

Mehr

Moderne Methoden/Experimente der Teilchen- und Astroteilchenphysik

Moderne Methoden/Experimente der Teilchen- und Astroteilchenphysik Seminar WS 2001/2002 RWTH: Moderne Methoden/Experimente der Teilchen- und Astroteilchenphysik Flügge, Grünewald, Hebbeker, Lanske, Mnich, Schael, Struczinski, Wallraff Elementarteilchenphysik/Astroteilchenphysik

Mehr

Vorlesung 11: Roter Faden: 1. Neutrino Hintergrundstrahlung 2. Kernsynthese. Photonen (410/cm 3 ) (CMB) Neutrinos (350/cm 3 ) (nicht beobachtet)

Vorlesung 11: Roter Faden: 1. Neutrino Hintergrundstrahlung 2. Kernsynthese. Photonen (410/cm 3 ) (CMB) Neutrinos (350/cm 3 ) (nicht beobachtet) Vorlesung 11: Roter Faden: 1. Neutrino Hintergrundstrahlung 2. Kernsynthese Universum besteht aus: Hintergrundstrahlung: Photonen (410/cm 3 ) (CMB) Neutrinos (350/cm 3 ) (nicht beobachtet) Wasserstoff

Mehr

Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI)

Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI) Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI) Günter Quast, Roger Wolf, Pablo Goldenzweig 06. Juni 2017 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT University

Mehr

Radioaktivität. den 7 Oktober Dr. Emőke Bódis

Radioaktivität. den 7 Oktober Dr. Emőke Bódis Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.

Mehr

Dunkle Materie und Teilchenphysik

Dunkle Materie und Teilchenphysik Universität Hamburg Weihnachtliche Festveranstaltung Department Physik 17. Dezember 2008 Woher weiß man, dass es Dunkle Materie gibt? Sichtbare Materie in Galaxien (Sterne, Gas) kann nicht die beobachteten

Mehr

Doppelnatur des Neutrinos

Doppelnatur des Neutrinos Doppelnatur des Neutrinos Das Neutrino ist ein sehr seltsames Teilchen. Eigentlich gibt es dieses Elementarteilchen in drei Ausführungen: als Elektron-Neutrino, Myon- und Tau- Neutrino zusammen mit deren

Mehr

7 Teilchenphysik und Kosmologie

7 Teilchenphysik und Kosmologie 7.1 Entwicklung des Universums 7 Teilchenphysik und Kosmologie 7.1 Entwicklung des Universums 64 Die Spektrallinien sehr entfernter Galaxien sind gegenüber denen in unserer Galaxie rot-verschoben, d.h.

Mehr

Abgabetermin

Abgabetermin Aufgaben Serie 1 1 Abgabetermin 20.10.2016 1. Streuexperiment Illustrieren Sie die Streuexperimente von Rutherford. Welche Aussagen über Grösse und Struktur des Kerns lassen sich daraus ziehen? Welches

Mehr

Und es werde Licht. Die kosmische Hintergrundstrahlung

Und es werde Licht. Die kosmische Hintergrundstrahlung Und es werde Licht Die kosmische Hintergrundstrahlung Vermessung der Hintergrundstrahlung WMAP COBE Planck Planck Foto des Urknalls COBE Foto des Urknalls WMAP Foto des Urknalls Planck Was sehen wir? Zustand

Mehr

Ein Überblick über die Neutrinophysik

Ein Überblick über die Neutrinophysik Eigenschaften von Neutrinos Ein Überblick über die Neutrinophysik Ralf Schulze Ralf.Schulze@ikp.uni-koeln.de Eigenschaften von Neutrinos p.1 Die Erfindung des Neutrinos Problem: Spektrum des β-zerfalls

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Universität Leipzig, Fakultät für Physik und Geowissenschaften Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 02. Juli 2009 11 Elementarteilchen und die Entstehung des Universums Nach

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität ität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 1553K 15.5.3 Kettenreaktion 15. Kernphysik

Mehr

10 Schwache Wechselwirkung und Elektroschwache Vereinigung

10 Schwache Wechselwirkung und Elektroschwache Vereinigung 10 Schwache Wechselwirkung und Elektroschwache Vereinigung Seite 1 10.1 Grundlagen/Überblick Schwache Wechselwirkung ist eine der vier fundamentalen Wechselwirkungen Schwache Wechselwirkung koppelt an

Mehr

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV 4) Wechselwirkungen zwischen Strahlung und Materie (1) Wechselwirkungen zwischen Strahlung und Materie sind Grundvoraussetzung für jede Anwendung oder schädigende Wirkung radioaktiver Strahlung unerwünschte

Mehr

Unsichtbares sichtbar machen

Unsichtbares sichtbar machen Unsichtbares sichtbar machen Beschleuniger Detektoren Das Z Boson Blick in die Zukunft, Kirchhoff Institut für Physik, Universität Heidelberg Wozu Beschleuniger und Detektoren? Materie um uns herum ist

Mehr

Experimente der Teilchen- und Astroteilchenphysik

Experimente der Teilchen- und Astroteilchenphysik V 1.0 Seminar SS 2010 RWTH Experimente der Teilchen- und Astroteilchenphysik Erdmann, Hebbeker, Stahl, Wiebusch et al. III. Phys. Inst. A+B Elementarteilchenphysik und Astroteilchenphysik Seminarthemen

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

Teilchenphysik. Was wir heute wissen. Philipp Lindenau Dresden Herzlich willkommen!

Teilchenphysik. Was wir heute wissen. Philipp Lindenau Dresden Herzlich willkommen! Teilchenphysik Was wir heute wissen Philipp Lindenau Dresden 14.03.2016 Herzlich willkommen! Teil 1: Einführung Warum Teilchenphysik? Warum Teilchenphysik? Interesse und Neugier! Erkenntnisgewinn über

Mehr

11. Kernzerfälle und Kernspaltung

11. Kernzerfälle und Kernspaltung 11. Kernzerfälle und Kernspaltung 1. Zerfallsgesetz 2. α Zerfall 3. Kernspaltung 4. ß Zerfall 5. γ - Zerfall 1 11.1 Das Zerfallsgesetz 2 Zerfallsketten 3 4 11.2 α-zerfall Abspaltung eines 4 He Kerns 5

Mehr

Primordiale Nukleosynthese

Primordiale Nukleosynthese Hauptseminar: Dunkle Materie in Teilchen- und Astrophysik Primordiale Nukleosynthese Karin Haiser 14.06.2005 Inhalt Einführung Ablauf der Primordialen Nukleosynthese Definition wichtiger Größen Anfangsbedingungen

Mehr

Experimentelle Grundlagen γ + N N + π

Experimentelle Grundlagen γ + N N + π Experimentelle Grundlagen γ + N N + π Thomas Schwindt 28. November 2007 1 Relativistische Kinematik Grundlagen Lorentz-Transformation Erzeugung und Zerfall von Teilchen 2 Das Experiment Kinematik Aufbau

Mehr

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München.

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München. Röntgenstrahlen 1 Wilhelm Konrad Röntgen Foto: Deutsches Museum München. Röntgenröhre von 1896 2 1 ev = 1 Elektronenvolt = Energie die ein Elektron nach Durchlaufen der Potentialdifferenz 1V hat (1.6 10-19

Mehr

3.3 Zählstatistik und Beta-Spektrometer

3.3 Zählstatistik und Beta-Spektrometer Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 3 - Atomphysik 3.3 Zählstatistik und Beta-Spektrometer 1 Theorie 1.1 Das Zerfallgesetz Instabile Atomkerne zerfallen spontan nach einem gewissen Zeitintervall

Mehr

DAS SOLARE NEUTRINO-PROBLEM... und wie man damit umgeht. Peter Steinbach Institut für Kern- und Teilchenphysik TU Dresden

DAS SOLARE NEUTRINO-PROBLEM... und wie man damit umgeht. Peter Steinbach Institut für Kern- und Teilchenphysik TU Dresden DAS SOLARE NEUTRINO-PROBLEM...... und wie man damit umgeht Peter Steinbach Institut für Kern- und Teilchenphysik TU Dresden Wem kommt das bekannt vor? 2 oder etwas weniger komplex... Fraunhofer Spektrallinien

Mehr

analyse Von lhc-daten: Z-pfad ANLEITUNG ZUR AUSWERTUNG VoN TEILCHENSPUREN

analyse Von lhc-daten: Z-pfad ANLEITUNG ZUR AUSWERTUNG VoN TEILCHENSPUREN ANLEITUNG analyse Von lhc-daten: Z-pfad ANLEITUNG ZUR AUSWERTUNG VoN TEILCHENSPUREN der HinterGrund Im Teilchenbeschleuniger LHC am internationalen forschungszentrum CERN bei Genf kollidieren Protonen

Mehr

Solare Neutrinos. Axel Winter RWTH-Aachen betreut von Prof. Flügge

Solare Neutrinos. Axel Winter RWTH-Aachen betreut von Prof. Flügge Solare Neutrinos Axel Winter RWTH-Aachen betreut von Prof. Flügge Übersicht Solare Neutrinos: Erzeugung und Problematik Darstellung der experimentellen Detektionsmöglichkeiten Neutrinooszillation Zusammenfassung

Mehr

Vorlesung 20: Roter Faden: Auswahlregeln. Folien auf dem Web:

Vorlesung 20: Roter Faden: Auswahlregeln. Folien auf dem Web: Vorlesung 20: Roter Faden: Auswahlregeln Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/ Siehe auch: http://www.uni-stuttgart.de/ipf/lehre/online-skript/ Wim de Boer, Karlsruhe Atome

Mehr

Stundenprotokoll vom : Compton Effekt

Stundenprotokoll vom : Compton Effekt Stundenprotokoll vom 9.12.2011: Compton Effekt Zunächst beschäftigten wir uns mit den einzelnen Graphen des Photoeffekts (grün), des Compton-Effekts (gelb) und mit der Paarbildung (blau). Anschließend

Mehr

Neutrinooszillationen

Neutrinooszillationen Neutrinooszillationen 10. Dezember 2002 Seminarvortrag von Alexander Floßdorf Betreuung: Prof. Thomas Hebbeker Problematik -solares Neutrinoproblem (es können nur etwa die Hälfte der erwarteten Elektronneutrinos

Mehr

Der Urknall und die Kosmische Hintergrundstrahlung

Der Urknall und die Kosmische Hintergrundstrahlung und die Kosmische Hintergrundstrahlung Seminar Astroteilchenphysik in der Theorie und Praxis Physik Department Technische Universität München 12.02.08 und die Kosmische Hintergrundstrahlung 1 Das Standardmodell

Mehr

Hauptseminar: Neuere Entwicklungen der Kosmologie

Hauptseminar: Neuere Entwicklungen der Kosmologie Hauptseminar: Neuere Entwicklungen der Kosmologie Das frühe Universum: Inflation und Strahlungsdominanz Thorsten Beck Universität Stuttgart Hauptseminar: Neuere Entwicklungen der Kosmologie p. 1/14 Die

Mehr

= Synthese der leichten Elemente in den ersten 3 min nach Urknall (T = 10 MeV 0.1MeV)

= Synthese der leichten Elemente in den ersten 3 min nach Urknall (T = 10 MeV 0.1MeV) 3. Primordiale Nukleosynthese = Synthese der leichten Elemente in den ersten 3 min nach Urknall (T = 10 MeV 0.1MeV) Kern Bindungsenergie Häufigkeit (MeV) (% der der sichtbaren Masse) 1 H(= p) 0 71 a) 2

Mehr

2) Kernstabilität und radioaktive Strahlung (2)

2) Kernstabilität und radioaktive Strahlung (2) 2) Kernstabilität und radioaktive Strahlung (2) Periodensystem der Elemente vs. Nuklidkarte ca. 115 unterschiedliche chemische Elemente Periodensystem der Elemente 7 2) Kernstabilität und radioaktive Strahlung

Mehr

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik Fortgeschrittene Experimentalphysik für Lehramtsstudierende Markus Schumacher 30.5.2013 Teil II: Kern- und Teilchenphysik Prof. Markus Schumacher Sommersemester 2013 Kapitel 4: Zerfälle instabiler Kerne

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Experimente der Teilchen- und Astroteilchenphysik

Experimente der Teilchen- und Astroteilchenphysik V 1.0 Seminar SS 2009 RWTH Experimente der Teilchen- und Astroteilchenphysik Boersma, Erdmann,, Hebbeker, Hoepfner, Klimkovich, Magass, Meyer, Merschmeyer, Pooth, Wiebusch Elementarteilchenphysik und Astroteilchenphysik

Mehr

Urknall rückwärts: Experimente an den Grenzen der Physik. Peter Schleper Universität Hamburg

Urknall rückwärts: Experimente an den Grenzen der Physik. Peter Schleper Universität Hamburg Urknall rückwärts: Experimente an den Grenzen der Physik Peter Schleper Universität Hamburg 4.11.2017 1 Teilchen + Kräfte Entwicklung des Universums Grenzen der Naturgesetze 2 Wasser H2O heizen: Rückwärts

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität Theoretische Grundlagen Physikalisches Praktikum Versuch 8: Radioaktivität Radioaktivität spontane Umwandlung instabiler tomkerne natürliche Radioaktivität: langlebige Urnuklide und deren Zerfallsprodukte

Mehr

Neutrinophysik-Experimente

Neutrinophysik-Experimente Physik am Samstagmorgen 2007/2008 Schülertreffen am Max-Planck-Institut für Kernphysik 26. April 2008 Neutrinophysik-Experimente Der Kampf im Untergrund gegen den Untergrund W. Hampel Max-Planck-Institut

Mehr

Die Winkelvergleichsmethode am Beispiel des OPERA-Spektrometers

Die Winkelvergleichsmethode am Beispiel des OPERA-Spektrometers Die Winkelvergleichsmethode am Beispiel des OPERA-Spektrometers Tagung der Deutschen Physikalischen Gesellschaft Dresden 2013, Benjamin Büttner Institut für Experimentalphysik Motivation: OPERA: Oscillation

Mehr

Tag der offenen Tür 16. Oktober 2007

Tag der offenen Tür 16. Oktober 2007 Experimentelle Teilchenphysik RWTH Aachen Tag der offenen Tür 16. Oktober 2007 Thomas Hebbeker Teilchenphysik = Elementarteilchenphysik +Astroteilchenphysik Institute und Ansprechpartner Forschungsprojekte

Mehr

Neutrinomassen. Seminarvortrag von Georg Altenhöfer Betreuerin: Dr. Kerstin Hoepfner

Neutrinomassen. Seminarvortrag von Georg Altenhöfer Betreuerin: Dr. Kerstin Hoepfner Neutrinomassen Seminarvortrag von Georg Altenhöfer 19.1.2004 Betreuerin: Dr. Kerstin Hoepfner Neutrinomassen 1 Inhaltsverzeichnis 1 Einführung 2 2 Direkte Massenbestimmung 2 2.1 Wie wiegt man ein Neutrino........................

Mehr

Hauptseminar Der Urknall und seine Teilchen im SS Die Temperaturentwicklung des Universums

Hauptseminar Der Urknall und seine Teilchen im SS Die Temperaturentwicklung des Universums Hauptseminar Der Urknall und seine Teilchen im SS 2005 Die Temperaturentwicklung des Universums Gliederung 1. Motivation 2. Säulen des Big-Bang-Modells 3. Herleitung der Temperaturentwicklung 4. Phasen

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne Inhalt 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion Der Atomkern

Mehr

Das Betaspektrum. PG 287III Protokoll. Michaela Heinrich Mirko Stubenrauch (P) Daniel Seidlitz Sven Schramm Ole Hitzemann Christian Martick

Das Betaspektrum. PG 287III Protokoll. Michaela Heinrich Mirko Stubenrauch (P) Daniel Seidlitz Sven Schramm Ole Hitzemann Christian Martick PG 287III Protokoll Das Betaspektrum Protokoll zum Versuch vom 05..2003 Projektgruppe: (Tutor Konstantin Lenzke) Michaela Heinrich Mirko Stubenrauch (P) Daniel Seidlitz Sven Schramm Ole Hitzemann Christian

Mehr

Elementarteilchenphysik

Elementarteilchenphysik Christoph Berger Elementarteilchenphysik Von den Grundlagen zu den modernen Experimenten Zweite, aktualisierte und überarbeitete Auflage Mit 217 Abbildungen, 51 Tabellen und 88 Übungen mit Lösungshinweisen

Mehr

A Z+1T + e + ν e. symbolisieren. Die Erhaltung der in III.4.1 b aufgelisteten Quantenzahlen ist trivial erfüllt.

A Z+1T + e + ν e. symbolisieren. Die Erhaltung der in III.4.1 b aufgelisteten Quantenzahlen ist trivial erfüllt. III.4.3 β-zerfall und verwandte Zerfälle Dieser bschnitt befasst sich mit einer zweiten häufig auftretenden rt von Zerfallsprozessen, in denen sich ein Neutron in ein Proton umwandelt oder umgekehrt, während

Mehr

Dunkle Materie und Dunkle Energie. Claus Grupen 2014

Dunkle Materie und Dunkle Energie. Claus Grupen 2014 Dunkle Materie und Dunkle Energie Claus Grupen 2014 Motivation für Dunkle Materie: Klassische Erwartung Radiale Dichteverteilung der Dunklen Materie? Was könnte die Dunkle Materie sein? Gaswolken? oder

Mehr

2 Das Standardmodell der Elementarteilchenphysik

2 Das Standardmodell der Elementarteilchenphysik 2 Das Standardmodell der Elementarteilchenphysik Die ganze Physik kann so auf einer Seite DIN A4 zusammengefaßt werden. Diese enthält: Die Tabelle 11.1 mit der Liste der Fermionen Die Tabelle 1.2 mit der

Mehr

Physik jenseits des Standardmodells

Physik jenseits des Standardmodells Physik jenseits des Standardmodells 1 Inhalt Wiederholung/Probleme des Standardmodells Grand Unified Theories Supersymmetrie Zusammenfassung 2 Inhalt Wiederholung/Probleme des Standardmodells Fermionen

Mehr

Untersuchung magnetischer Materialien und Inbetriebnahme der Magnetfeldüberwachung am KATRIN-Hauptspektrometer

Untersuchung magnetischer Materialien und Inbetriebnahme der Magnetfeldüberwachung am KATRIN-Hauptspektrometer Untersuchung magnetischer Materialien und Inbetriebnahme der Magnetfeldüberwachung am KATRIN-Hauptspektrometer Masterarbeit zur Erlangung des akademischen Grades Master of Science (M. Sc.) von Birgit Adams

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

Lösungsvorschlag Übung 5

Lösungsvorschlag Übung 5 Lösungsvorschlag Übung 5 Aufgabe : Zerfallsprozesse Um zu erörtern, welche Zerfallsprozesse für einen gegebenen Kern zu erwarten sind, lassen sich empirische Regeln zur Abschätzung der Stabilität heranziehen.

Mehr

Verteilung der Themen Einteilung der Vorträge. Proseminar Präsentationstechnik WS 2014/15

Verteilung der Themen Einteilung der Vorträge. Proseminar Präsentationstechnik WS 2014/15 Verteilung der Themen Einteilung der Vorträge Proseminar Präsentationstechnik WS 2014/15 Termin A Energie heute und morgen 1. Wie wird in Deutschland Energie verbraucht und produziert? Energieverbrauch

Mehr