Geladene Teilchen im E- und B-Feld: Von der Lorentzkraft zum MAC-E Filter

Größe: px
Ab Seite anzeigen:

Download "Geladene Teilchen im E- und B-Feld: Von der Lorentzkraft zum MAC-E Filter"

Transkript

1 Geladene Teilchen im E- und B-Feld: Von der Lorentzkraft zum MAC-E Filter Marcus Beck Institut für Kernphysik, Westfälische Wilhelms-Universität Münster Überblick: Einführung Die Lorentzkraft Der MAC-E Filter Inhomogenes Magnetfeld und Adiabasie Das Prinzip

2 Einführung Geladene Teilchen werden in der Physik vielfältig genutzt. Sie müssen irgndwie kontrolliert werden. Führung Strahlrohre, Fokussierungsmagnete Beschleunigung Teilchenbeschleuniger Speicherung Speicherringe, Penningfalle, Paulfalle Bestimmung ihrer Eigenschaften Sektormagnetfeld Spektrometer, Quadrupomassenfilter MAC-E Filter Hierzu wird in der Regel ihre elektromagnetische Wechselwirkung genutzt Lorentzkraft F = q (E + v x B) Im Folgenden einige Beispiele. 2

3 Einführung Beschleuniger und Speicherring: LHC Quelle: 3

4 Einführung Speicherung von geladenen Teilchen Penningfalle Paulfalle (ähnlich Penningfalle, aber mit Wechselfeldern) Quadrupolmassenfilter (eine lineare Paulfalle) 4

5 Verschiedene Spektrometer Einführung - Halbkreisspektrometer (ein Sektorfeld Spektrometer) - Isotopenseparator (z.b ISOLDE am CERN) Quelle: Pfeiffer Vakuum Webseite - MAC-E Filter Quelle: 5

6 Der MAC-E Filter 6

7 Die Lorentzkraft Kraft auf eine Ladung im elektrischen und magnetischen Feld: F = q (E + v x B) Viele Anwendungen in der Physik, z.b. Beschleunigung von geladenen Teilchen Führung von geladenen Teilchen Analyse von Teilcheneigenschaften Messung von Feldern Im Folgenden: Untersuchung von geladenen Teilchen in der Kernund Teilchenphysik, z.b Elektronen, Protonen, Ionen, usw. Bemerkung: Die Gleichungen im Folgenden sind nichtrelativistisch. 7

8 Die Lorentzkraft Bewegung eines geladenen Teilchens im E-Feld und B-Feld; Im E-Feld Im B-Feld Gleichmäßig beschleunigte Bewegung Gleichmäßig beschleunigte Bewegung senkrecht zur Bahn Änderung der Energie Kreisbewegung 8

9 Die Lorentzkraft Homogenes E-Feld Lorentzkraft F = q E in y-richtung konstant im homogenen E-Feld E = U / d Beschleunigung F = m a in y-richtung Geschwindigkeit v x = v 0 = konst., v y = a t Gleichmäßig beschleunigte Bewegung Parabelbewegung v y = a t = q E t / m, s y = a t 2 / 2 = q E t 2 / (2 m) tan = v y / v x = q E t / (m v) Ablenkung b = q U l s / (d m v 2 ) Energiefilter 9

10 Die Lorentzkraft Homogenes B-Feld Lorentzkraft F = q ( v x B) konstant im homogenen B-Feld Beschleunigung senkrecht zur Geschwindigkeit v = konst. Kreisbewegung Lorentzkraft wirkt als Zentripetalkraft m v 2 / r = q v B Radius der Kreisbahn (Zyklotronradius): r = m v / (q B) Impulsfilter mit v = r, Kreisgeschwindigkeit: Zyklotronbewegung mit = q B / m 10

11 Die Lorentzkraft Homogenes B-Feld Lorentzkraft F = q ( v x B) konstant im homogenen B-Feld Beschleunigung senkrecht zur Geschwindigkeit v = konst. Kreisbewegung Lorentzkraft wirkt als Zentripetalkraft m v 2 / r = q v B Radius der Kreisbahn (Zyklotronradius): r = m v / (q B) Impulsfilter mit v = r, Kreisgeschwindigkeit: Zyklotronbewegung mit = q B / m 11

12 Der MAC-E Filter Eine Anwendung: Das Sektorfeld Spektrometer Nachteil: Schlitze breite Schlitze Quelle: Pfeiffer Vakuum Webseite Große Auflösung schmale Hohe Intensität 12

13 Der MAC-E Filter Inhomogenes Magnetfeld und Adiabasie Adiabatische Invarianz des von der Teilchenbahn eingeschlossenen Flusses: Der von der Teilchenbahn eingeschlossene magnetische Fluß ist eine Konstante der Bewegung, sofern sich das Teilchen adiabatisch bewegt. Adiabatische Bewegung im B-Feld: - Die Änderung des Feldes ist klein während einer Zyklotronumdrehung - Das Bahnzentrum verbleibt auf der Feldlinie Quelle: J.D. Jackson, Klassische Elektrodynamik 13

14 Der MAC-E Filter Adiabatische Invarianz: Für die Zyklotronbewegung gilt konst. = B A = B r 2 cycl = Wachsendes B-Feld r cycl wird kleiner Fallendes B-Feld r cycl wird größer Mit r cycl = m v / (q B) = p / (q B) gilt aber auch = B r 2 cycl = p 2 / (q B) = konst. Also p 2 / B = konst. und damit E kin / B = konst. 14

15 Der MAC-E Filter Adiabatische Invarianz: E kin / B = konst. Das Spektrometer: 1.) Energiebestimmung über axiales E-Feld Integraler Energiefilter für E kin (Hochpass) 2.) Inhomogenes axiales B-Feld Umwandlung von E kin in E kin über E kin / B = konst. indem das Teilchen von B S nach B A fliegt E kin,s / B S = E kin,a / B A E kin,a = E kin,s B A / B S mit B S >> B A und mit Energieerhaltung E = E kin + E kin = konst. folgt: E kin,a = E kin - E kin,s B A / B S E kin 15

16 Der MAC-E Filter Magnetic Adiabatic Collimation with Electrostatic Filter A. Picard et al., Nucl. Instr. Meth. B 63 (1992) U 0 Adiabatische Führung der e - Elektrostatischer Energiefielter: nur e - mit E > q U werden transmittiert (Hochpass) = E / B = konst. E E im inhomogeneous B-field Energieauflösung start = E = E B A /B max scharfe integrale Transmissionsfunktion KATRIN: E = 0.93 ev 16

17 Der MAC-E Filter Der MAC-E Filter wird in verschiedenen Experimenten der Kern- und Teilchenphysik eingesetzt z.b. Mainz und Troitzk Neutrinomassenexperimente, aspect, WITCH und KATRIN: 17

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Feld Unterschiede: Beschreibung Ursache Kräfte auf elektrisches Feld Das elektrische Feld ist der besondere Zustand des

Mehr

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft Inhalt 10. Elektrodynamik 10.3 Das elektrische Potential 10.4 Elektrisches Feld und Potential ti 10.5 Magnetische Kraft und Felder 1051M 10.5.1 Magnetische Kraft 10.3 Das elektrische Potential ti Wir hatten

Mehr

Theory German (Germany)

Theory German (Germany) Q3-1 Large Hadron Collider (10 Punkte) Lies die allgemeinem Hinweise im separaten Umschlag bevor Du mit der Aufgabe beginnst. Thema dieser Aufgabe ist der Teilchenbeschleuniger LHC (Large Hadron Collider)

Mehr

Magnetismus. Vorlesung 5: Magnetismus I

Magnetismus. Vorlesung 5: Magnetismus I Magnetismus Erzeugung eines Magnetfelds möglich durch: Kreisende Elektronen: Permanentmagnet Bewegte Ladung: Strom: Elektromagnet (Zeitlich veränderliches elektrisches Feld) Vorlesung 5: Magnetismus I

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

Teilchenbahnen im Magnetfeld

Teilchenbahnen im Magnetfeld Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im B Feld Kopetschke 2011 1 Teilchenbahnen im Magnetfeld 1) Protonen im Kreisverkehr: Protonen bewegen sich von unten kommend in einem Magnetfeld, das in

Mehr

Bewegung im elektrischen und magnetischen Feld

Bewegung im elektrischen und magnetischen Feld Bewegung im elektrischen und magnetischen Feld M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis Bewegung geladener Teilchen elektrischen Feldern Bewegung geladener Teilchen in Magnetfeldern

Mehr

Aufgaben zu elektrischen und magnetischen Feldern (aus dem WWW) a) Feldstärke E b) magnetische Flussdichte B

Aufgaben zu elektrischen und magnetischen Feldern (aus dem WWW) a) Feldstärke E b) magnetische Flussdichte B Aufgabe 73 (Elektrizitätslehre, Lorentzkraft) Elektronen treten mit der Geschwindigkeit 2,0 10 5 m in ein homogenes elektrisches Feld ein s und durchlaufen es auf einer Strecke von s = 20 cm. Die Polung

Mehr

Übungen: Kraftwirkung in magnetischen Feldern

Übungen: Kraftwirkung in magnetischen Feldern Übungen: Kraftwirkung in magnetischen Feldern Aufgabe 1: Zwei metallische Leiter werden durch einen runden, beweglichen Kohlestift verbunden. Welche Beobachtung macht ein(e) Schüler(in), wenn der Stromkreis

Mehr

Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 2011 Teilchenbahnen im elektrischen Querfeld

Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 2011 Teilchenbahnen im elektrischen Querfeld Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 011 Teilchenbahnen im elektrischen Querfeld 1) Elektronen starten an der negativen Platte eines Kondensators (d = 5 mm, U = 300 V) und

Mehr

Spezifische Ladung des Elektrons

Spezifische Ladung des Elektrons Spezifische Ladung des Elektrons 1. Aufgaben 1. Die von einer Spule (a) und von einer Helmholtz-Spulenanordnung (b) erzeugte magnetische Flußdichte ist längs der Rotationssymmetrieachse zu messen und grafisch

Mehr

Schulinterner Lehrplan Qualifikationsphase Q1. Präambel

Schulinterner Lehrplan Qualifikationsphase Q1. Präambel Präambel Dieses Curriculum stellt keinen Maximallehrplan dar, sondern will als offenes Curriculum die Möglichkeit bieten, auf die didaktischen und pädagogischen Notwendigkeiten der Qualifikationsphase

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Seite 1 von 6 Abiturprüfung 2012 Physik, Grundkurs Aufgabenstellung: Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Ein homogenes Magnetfeld in einem

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 28. 05. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 28. 05. 2009

Mehr

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV. Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu

Mehr

Elektrizität und Magnetismus - Einführung

Elektrizität und Magnetismus - Einführung Elektrizität und Magnetismus - Einführung Elektrostatik - elektrische Ladung - Coulomb Kraft - elektrisches Feld - elektrostatisches Potential - Bewegte Ladung -Strom - Magnetismus - Magnetfelder - Induktionsgesetz

Mehr

Klausur 2 Kurs 12Ph3g Physik

Klausur 2 Kurs 12Ph3g Physik 2009-11-16 Klausur 2 Kurs 12Ph3g Physik Lösung (Rechnungen teilweise ohne Einheiten, Antworten mit Einheiten) Die auf Seite 3 stehenden Formeln dürfen benutzt werden. Alle anderen Formeln müssen hergeleitet

Mehr

Das magnetische Feld

Das magnetische Feld Das Magnetfeld wird durch Objekte erzeugt und wirkt gleichzeitig auf Objekte repräsentiert die Kraftwirkung aufgrund des physikalischen Phänomens Magnetismus ist gerichtet und wirkt vom Nordpol zum Südpol

Mehr

Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995

Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 1) Ein Elektron (e = 1,6.10-19 C ; m e = 9,1.10-31 kg) mit der Anfangsgeschwindigkeit v o = 2.10 6 m/s durchläuft

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

d = 1, 5cm ) liegt eine Spannung von

d = 1, 5cm ) liegt eine Spannung von Aufgabe E-Feld Blau 1: Elektronen werden in einem Plattenkondensator von der Geschwindigkeit m v 0 s 0 auf die Geschwindigkeit beschleunigt. An den Platten (Abstand U 120V an. Wie groß ist v? = 1 d = 1,

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

10. Spezielle Relativitätstheorie

10. Spezielle Relativitätstheorie 10. Spezielle Relativitätstheorie Die Masse eines Teilchens ist abhängig von seiner Geschwindigkeit. m = m = γ m γ = 1, 1 v c 0 = 1 1 β 1 m 0 v β = c v c c: Lichtgeschwindigkeit im Vakuum mo: Ruhemasse

Mehr

Grundwissen. Physik. Jahrgangsstufe 9

Grundwissen. Physik. Jahrgangsstufe 9 Grundwissen Physik Jahrgangsstufe 9 Grundwissen Physik Jahrgangsstufe 9 Seite 1 1. Elektrische Felder und Magnetfelder 1.1 Elektrisches Feld Elektrisches Kraftgesetz: Gleichnamige Ladungen stoßen sich

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

Elektrizität und Magnetismus

Elektrizität und Magnetismus Grundlagen- und Orientierungsprüfung Elektrotechnik und Informationstechnik Termin Sommersemester 2010 Elektrizität und Magnetismus Donnerstag, 05. 08. 2010, 8:30 10:30 Uhr Zur Beachtung: Zugelassene Hilfsmittel:

Mehr

Herzlich Willkommen bei DESY. Was ist das DESY und welche Forschung wird bei uns betrieben?

Herzlich Willkommen bei DESY. Was ist das DESY und welche Forschung wird bei uns betrieben? Herzlich Willkommen bei DESY. Was ist das DESY und welche Forschung wird bei uns betrieben? Michael Grefe DESY Presse- und Öffentlichkeitsarbeit (PR) Was ist das DESY? > Deutsches Elektronen-Synchrotron

Mehr

Erzeugung und Anwendung von brillanter Röntgenstrahlung

Erzeugung und Anwendung von brillanter Röntgenstrahlung Erzeugung und Anwendung von brillanter Röntgenstrahlung Johannes Fachinger 15.Januar 2007 Röntgenstrahlung Röntgenstrahlung ist elektromagnetische Strahlung in einem Wellenlängenbereich von ca. 10 8 m

Mehr

Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 005 Dr. Jan Friedrich Nr. 5 16.05.005 Email Jan.Friedrich@ph.tum.de Telefon 089/89-1586 Physik Department E18, Raum 3564

Mehr

Physik II für Bauingenieure. Vorlesung 03 (08. Mai 2007)

Physik II für Bauingenieure. Vorlesung 03 (08. Mai 2007) Physik II für Bauingenieure Vorlesung 03 (08. Mai 2007) http://homepage.rub.de/daniel.haegele Prof. D. Hägele Vorlesung Stoff umfangreich, Zeit knapp. Probleme beim Verständnis der Vorlesung Übungen. Schulgrundlagen

Mehr

Verhalten von Teilchen im E- und B-Feld

Verhalten von Teilchen im E- und B-Feld Teilchen in Feldern Verhalten von Teilchen im E und BFeld Verhalten von Teilchen im E und BFeld Übersicht 1 Einführung 1 2 Verhalten im EFeld 3 2.1 RuhendesgeladenesTeilchen.................................

Mehr

Bestimmung der spezifischen Ladung e/m

Bestimmung der spezifischen Ladung e/m -B08.1- Versuch B8: Bestimmung der spezifischen Ladung e/m 1. Literatur: Demtröder, Experimentalphysik 2: Elektrizität und Optik Pohl, Einführung in die Physik, Bd. 2 Dobrinski/Krakau/Vogel, Physik für

Mehr

1.Schulaufgabe aus der Physik Lösungshinweise

1.Schulaufgabe aus der Physik Lösungshinweise 1.Schulaufgabe aus der Physik Lösungshinweise Gruppe A Aufgabe 1 (Grundwissen) Größe Energie Stromstärke Widerstand Ladung Kraft Buchstabe E I R Q F Einheit Joule: J Ampere: A Ohm: Ω Coulomb: C Newton:

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Ideale und reale Spannungsquellen Kirchhoffsche Regeln Parallelschaltung und Reihenschaltungen von Widerständen Amperemeter

Mehr

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 3 G8_Physik_2011_Ph11_Loe Seite 1 von 7 Ph 11-1 Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 1) a) b) - - + + + c) In einem Homogenen elektrischen Feld nimmt das Potential in etwa linear. D.h. Es sinkt

Mehr

Magnetohydrodynamik. Ivan Kostyuk 11. Juni 2015

Magnetohydrodynamik. Ivan Kostyuk 11. Juni 2015 Magnetohydrodynamik Ivan Kostyuk 11. Juni 2015 Zusammenfassung Dies ist eine Zusammenfassung meines Vortrages zum Thema Magnetohydrodynamik, welchen ich am 22.05.2015 im Rahmen des Seminares Elektrodynamik

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker 12. Elektrodynamik 12.11 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

Den schnellsten Teilchen auf der Spur. DBG Schülerinnen und Schüler besuchen CERN in der Nähe von Genf. Ausgabe Mai 2012

Den schnellsten Teilchen auf der Spur. DBG Schülerinnen und Schüler besuchen CERN in der Nähe von Genf. Ausgabe Mai 2012 Den schnellsten Teilchen auf der Spur Ausgabe Mai 2012 DBG Schülerinnen und Schüler besuchen CERN in der Nähe von Genf Während des Besuches an der Partnerschule in Carouge führte die Bergisch Gladbacher

Mehr

Elektrische und ^magnetische Felder

Elektrische und ^magnetische Felder Marlene Marinescu Elektrische und ^magnetische Felder Eine praxisorientierte Einführung Zweite, vollständig neu bearbeitete Auflage * j Springer I nhaltsverzeichnis 1 Elektrostatische Felder 1 1.1 Wesen

Mehr

Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation. Versuch: Gasentladung

Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation. Versuch: Gasentladung Vorlesung 21: Roter Faden: Das Elektron als Welle Heisenbergsche Unsicherheitsrelation Versuch: Gasentladung Juli 7, 2006 Ausgewählte Kapitel der Physik, Prof. W. de Boer 1 Erste Experimente mit Elektronen

Mehr

Physik. Lernziele (Kl. 9) Lerninhalte (Kl. 9)

Physik. Lernziele (Kl. 9) Lerninhalte (Kl. 9) Physik Lernziele (Kl. 9) Lerninhalte (Kl. 9) 1. Elektrizitätslehre 1.1 Magnetische Felder Kenntnis über Dauermagnete und deren Felder - Dauermagnete, Magnetpole - Kräfte zwischen Dauermagneten - Magnetfeld,

Mehr

8.2 Aufbau der Atome. auch bei der Entdeckung der Kathodenstrahlen schienen die Ladungsträger aus den Atomen herauszukommen.

8.2 Aufbau der Atome. auch bei der Entdeckung der Kathodenstrahlen schienen die Ladungsträger aus den Atomen herauszukommen. Dieter Suter - 404 - Physik B3 8.2 Aufbau der Atome 8.2.1 Grundlagen Wenn man Atome als Bausteine der Materie i- dentifiziert hat stellt sich sofort die Frage, woraus denn die Atome bestehen. Dabei besteht

Mehr

Beispiele für elektrische Felder: Frei bewegliche Ladungen werden im elektrischen Feld entlang der Feldlinien beschleunigt (Anwendung: Oszilloskop)

Beispiele für elektrische Felder: Frei bewegliche Ladungen werden im elektrischen Feld entlang der Feldlinien beschleunigt (Anwendung: Oszilloskop) Grundwissen Physik 9. Jahrgangsstufe Gymnasium Eckental I. Elektrik 1. Magnetisches und elektrisches Feld a) Elektrisches Feld Feldbegriff: Im Raum um elektrisch geladene Körper wirkt auf Ladungen eine

Mehr

Physik III Übung 1 - Lösungshinweise

Physik III Übung 1 - Lösungshinweise Physik III Übung 1 - Lösungshinweise Stefan Reutter WiSe 212 Moritz Kütt Stand: 16.11.212 Franz Fujara Aufgabe 1 [P] ermanentmagnete (Diskussion) Benötigt man, um ein Magnetfeld zu erhalten, immer einen

Mehr

3.3. Prüfungsaufgaben zur Magnetostatik

3.3. Prüfungsaufgaben zur Magnetostatik 3.3. Prüfungsaufgaben zur Magnetostatik Aufgabe 1a: Magnetisches Feld a) Zeichne jeweils eine kleine Magnetnadel mit ord- und üdpol an den Orten A und b des rechts skizzierten Magnetfeldes ein. b) Wie

Mehr

Das Higgs-Boson wie wir danach suchen

Das Higgs-Boson wie wir danach suchen Das Higgs-Boson wie wir danach suchen Beschleuniger und Detektoren Anja Vest Wie erzeugt man das Higgs? Teilchenbeschleuniger Erzeugung massereicher Teilchen Masse ist eine Form von Energie! Masse und

Mehr

Wie arbeitet ein Teilchenphysiker? Das Standardmodell, Detektoren und Beschleuniger.

Wie arbeitet ein Teilchenphysiker? Das Standardmodell, Detektoren und Beschleuniger. Grafik 2 Vorstellung des Instituts für Kern- und Teilchenphysik Wie arbeitet ein Teilchenphysiker? Das Standardmodell, Detektoren und Beschleuniger. Dipl. Phys. Kathrin Leonhardt 1 Grafik 2 Auf den Spuren

Mehr

Feldbegriff und Feldlinienbilder. Elektrisches Feld. Magnetisches Feld. Kraft auf Ladungsträger im elektrischen Feld

Feldbegriff und Feldlinienbilder. Elektrisches Feld. Magnetisches Feld. Kraft auf Ladungsträger im elektrischen Feld Feldbegriff und Feldlinienbilder Elektrisches Feld Als Feld bezeichnet man den Bereich um einen Körper, in dem ohne Berührung eine Kraft wirkt beim elektrischen Feld wirkt die elektrische Kraft. Ein Feld

Mehr

Elektron-Proton Streuung

Elektron-Proton Streuung Elektron-Proton Streuung Seminar Präzessionsexperimente er Teilchenphysik Sommersemester 014 0.06.014 SIMON SCHMIDT ELEKTRON-PROTON STREUUNG 1 Übersicht Theorie I Kinematik Wirkungsquerschnitte Experiment

Mehr

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern.

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16. Kapazität Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16.1 Plattenkondensator Das einfachste Beispiel für einen Kondensator ist der

Mehr

Physik. Schuleigenes Kerncurriculum. Klasse Kepler-Gymnasium Freudenstadt. Schwingungen und Wellen. Elektrodynamik: Felder und Induktion

Physik. Schuleigenes Kerncurriculum. Klasse Kepler-Gymnasium Freudenstadt. Schwingungen und Wellen. Elektrodynamik: Felder und Induktion 1 Klasse 11+12 Elektrodynamik: Felder und Induktion Einführung in die Kursstufe Felder Analogien zwischen Gravitationsfeld, Magnetfeld und elektrischem Feld Eigenschaften, Visualisierung und Beschreibung

Mehr

Physik 8. Jahrgang Übersicht

Physik 8. Jahrgang Übersicht Physik. Jahrgang Übersicht Inhaltsfelder Mechanik - Physik und Sport (Geschwindigkeit, Weg-Zeit- Diagramm, Kraft, Kraftmessung) - Der Mensch auf dem Mond (Gewichtskraft, Reibung, Newtonsche Gesetze) -

Mehr

Sofern der Stromdurchflossene Leiter Senkrecht zu den Feldlinien steht gilt: B ist die magnetische Flussdichte, sie hat die Einheit Tesla

Sofern der Stromdurchflossene Leiter Senkrecht zu den Feldlinien steht gilt: B ist die magnetische Flussdichte, sie hat die Einheit Tesla Magnetfelder und orentz-kraft Magnetfelder & magnetische Flussdichte a. Jeder stromdurchflossene eiter erzeugt ein Magnetfeld, die Richtung dieses Magnetfeldes hängt von der Fließrichtung des Stromes ab.

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

Unsichtbares sichtbar machen

Unsichtbares sichtbar machen Unsichtbares sichtbar machen Beschleuniger Detektoren Das Z Boson Blick in die Zukunft, Kirchhoff Institut für Physik, Universität Heidelberg Wozu Beschleuniger und Detektoren? Materie um uns herum ist

Mehr

1 Felder bewegter Ladungen

1 Felder bewegter Ladungen Universität Leipzig, Fakultät für Physik und Geowissenschaften Vorlesung zur Experimentalphysik III Wintersemester 2008/2009 Prof. Dr. Josef A. Käs Vorlesungsmitschrift zur Vorlesung vom 16.10.2008 1 Felder

Mehr

Dennis S. Weiß & Christian Niederhöfer. Versuchsprotokoll. (Fortgeschrittenen-Praktikum) zu Versuch 18. Magnetische Quadrupole

Dennis S. Weiß & Christian Niederhöfer. Versuchsprotokoll. (Fortgeschrittenen-Praktikum) zu Versuch 18. Magnetische Quadrupole Montag, 26.4.1999 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Fortgeschrittenen-Praktikum) zu Versuch 18 Magnetische Quadrupole 1 Inhaltsverzeichnis 1 Problemstellung 3 2 Physikalische Grundlagen

Mehr

Magnetische Phänomene

Magnetische Phänomene Magnetische Phänomene Bekannte magnetische Phänomene: Permanentmagnete; Das Erdmagnetfeld (Magnetkompass!); Elektromagnetismus (Erzeugung magnetischer Kraftwirkungen durch Stromfluss) Alle magnetischen

Mehr

Versuch P4: Ladungen in elektrischen und magnetischen Feldern

Versuch P4: Ladungen in elektrischen und magnetischen Feldern Physikalisches Praktikum für Pharmazeuten Gruppennummer Name Vortestat Endtestat Name Versuch A. Vorbereitungsteil (VOR der Versuchsdurchführung lesen!) 1. Kurzbeschreibung In diesem Versuch werden die

Mehr

y =y z =z (1) t = x = Gamma-Faktor

y =y z =z (1) t = x = Gamma-Faktor Gamma-Faktor Warum kann man eine Rakete nicht auf Lichtgeschwindigkeit beschleunigen? Diese Frage führt unmittelbar zur Speziellen Relativitätstheorie und zu den Lorentz- Transformationen. Die Lorentz-Transformationen

Mehr

3. N. I Einführung in die Mechanik. II Grundbegriffe der Elektrizitätslehre

3. N. I Einführung in die Mechanik. II Grundbegriffe der Elektrizitätslehre 3. N I Einführung in die Mechanik Kennen die Begriffe Kraft und Arbeit Erläutern von Vektoren und Skalaren Lösen von maßstäblichen Konstruktionsaufgaben mit dem Kräfteparallelogramm Können Kräfte messen

Mehr

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld. Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,

Mehr

Zusammenfassung EPII. Elektromagnetismus

Zusammenfassung EPII. Elektromagnetismus Zusammenfassung EPII Elektromagnetismus Elektrodynamik: Überblick Dynamik (Newton): Elektromagnetische Kräfte zw. Ladungen: Definition EFeld: Kraft auf ruhende Testladung Q: BFeld: Kraft auf bewegte Testladung:

Mehr

Hochschule Düsseldorf University of Applied Sciences. 01. Dezember 2016 HSD. Physik. Impuls

Hochschule Düsseldorf University of Applied Sciences. 01. Dezember 2016 HSD. Physik. Impuls Physik Impuls Impuls Träge Masse in Bewegung Nach dem 1. Newton schen Gesetz fliegt ein kräftefreier Körper immer weiter gradeaus. Je größer die träge Masse desto größer setzt sie einer Beschleunigung

Mehr

Einleitung Das Rutherford sche Atommodell Das Bohr sche Atommodell. Atommodelle [HERR] Q34 LK Physik. 25. September 2015

Einleitung Das Rutherford sche Atommodell Das Bohr sche Atommodell. Atommodelle [HERR] Q34 LK Physik. 25. September 2015 Q34 LK Physik 25. September 2015 Geschichte Antike Vorstellung von Leukipp und Demokrit (5. Jahrh. v. Chr.); Begründung des Atomismus (atomos, griech. unteilbar). Anfang des 19. Jahrh. leitet Dalton aus

Mehr

Physik-Skript. Teil II. Melanchthon-Gymnasium Nürnberg

Physik-Skript. Teil II. Melanchthon-Gymnasium Nürnberg Physik-Skript Teil II Melanchthon-Gymnasium Nürnberg Volker Dickel 3. überarbeitete Auflage, 2014 2. überarbeitete Auflage, 2012 1. Auflage 2009 Inhaltsverzeichnis EINLEITUNG: ELEMENTARTEILCHEN UND WECHSELWIRKUNGEN...

Mehr

Abb.15: Experiment zum Rutherford-Modell

Abb.15: Experiment zum Rutherford-Modell 6.Kapitel Atommodelle 6.1 Lernziele Sie kennen die Entwicklung der Atommodelle bis zum linearen Potentialtopf. Sie kennen die Bohrschen Postulate und können sie auch anwenden. Sie wissen, wie man bestimmte

Mehr

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt?

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? elektrischer Strom Stromstärke elektrische Spannung Spannungsquelle Gerichtete Bewegung von Ladungsträgern in einem elektrischen

Mehr

GW 7 Physikalische Grundlagen

GW 7 Physikalische Grundlagen eite 1 von 6 GW 7 Physikalische Grundlagen RMG Ein physikalisches Experiment ist eine Frage an die atur. Es wird unter festgelegten Voraussetzungen durchgeführt und muss reproduzierbar sein. Die Ergebnisse

Mehr

10 Teilchen und Wellen. 10.1 Strahlung schwarzer Körper

10 Teilchen und Wellen. 10.1 Strahlung schwarzer Körper 10 Teilchen und Wellen Teilchen: m, V, p, r, E, lokalisierbar Wellen: l, f, p, E, unendlich ausgedehnt (harmonische Welle) Unterscheidung: Wellen interferieren 10.1 Strahlung schwarzer Körper JEDER Körper

Mehr

Klassische Elektrodynamik

Klassische Elektrodynamik Theoretische Physik Band 3 Walter Greiner Klassische Elektrodynamik Institut für Festkörperphysik Fachgebiet Theoretische Physik Technische Hochschule Darmstadt Hochschulstr. 6 1P iu Verlag Harri Deutsch

Mehr

Elektrostatik. Freie Ladungen im elektrischen Feld. Was passiert mit einem Elektron in einer Vakuumröhre? Elektron

Elektrostatik. Freie Ladungen im elektrischen Feld. Was passiert mit einem Elektron in einer Vakuumröhre? Elektron Elektrostatik 1. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Kräfte zwischen Ladungen, quantitativ 4. Elektrisches Feld 5. Der Satz von Gauß 6. Das elektrische Potenzial und Potenzialdifferenz

Mehr

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS B SCIENTIFIC PHYSICS Elektronenstrahlblenkröhre D 6 Bedienungsanleitung / LF 9 8 7 6 7 6 Leuchtschirm Untere blenkplatte Halter mit mmsteckerstift zum nschluss der Kondensatorplatte Elektronenkanone mmbuchsen

Mehr

Physik VI Plasmaphysik

Physik VI Plasmaphysik Physik VI Plasmaphysik Physik VI Plasmaphysik Inhaltsübersicht 1. Charakteristik des Plasmazustandes 2. Experimentelle Grundlagen der Plasmaphysik 3. Thermodynamische Gleichgewichtsplasmen 4. Plasmen im

Mehr

Aufgabe 1 - Schiefe Ebene - (10 Punkte)

Aufgabe 1 - Schiefe Ebene - (10 Punkte) - schriftlich Klasse: 4AW (Profil A) - (HuR) Prüfungsdauer: Erlaubte Hilfsmittel: Bemerkungen: 4h Taschenrechner TI-nspire CAS Der Rechner muss im Press-to-Test-Modus sein. Formelsammlung Beginnen Sie

Mehr

Ringbeschleuniger und Speicherringe

Ringbeschleuniger und Speicherringe Ringbeschleuniger und Speicherringe Prof. Dr. Oliver Kester Sabrina Geyer Dr. Peter Forck Motivation Ringbeschleuniger 2 Vorlesung mit Übungen: Das Team Prof. Dr. Oliver Kester Dr. Peter Forck Sabrina

Mehr

Physik Klausur

Physik Klausur Physik Klausur 1.1 1 6. November 00 Aufgaben Aufgabe 1 a) Eine Kugel mit der Ladung q 3 nc und der Masse m 1 g hängt an einem Faden der Länge l 1 m. Der Kondersator hat den Plattenabstand d 0 10 cm und

Mehr

Elektrische und magnetische Felder

Elektrische und magnetische Felder Marlene Marinescu Elektrische und magnetische Felder Eine praxisorientierte Einführung Mit 260 Abbildungen @Nj) Springer Inhaltsverzeichnis I Elektrostatische Felder 1 Wesen des elektrostatischen Feldes

Mehr

1. Statisches elektrisches Feld

1. Statisches elektrisches Feld . Statisches elektrisches Feld. Grundlagen der Elektrizitätslehre.. Elektrizität in Natur, Technik und Alltag Altertum: Bernstein reiben Staubteilchen und Wollfasern werden angezogen 794 Coulomb: Gesetz

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 5 Bearbeitung: Montag

Mehr

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker 11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter

Mehr

Problem 1: Die Parabelmethode von Joseph John Thomson

Problem 1: Die Parabelmethode von Joseph John Thomson Problem 1: Die Parabelmethode von Joseph John Thomson Bei einer Internetrecherche für eine Arbeit über Isotope haben Sie den folgenden Artikel von J. J. Thomson gefunden, der in den Proceedings of The

Mehr

5.1 Statische und zeitlich veränderliche

5.1 Statische und zeitlich veränderliche 5.1 Statische und zeitlich veränderliche Felder 5 Induktion 5.1 Statische und zeitlich veränderliche Felder Bisher haben wir elektrische und magnetische Felder betrachtet, die durch zeitlich konstante

Mehr

6.4.8 Induktion von Helmholtzspulen ******

6.4.8 Induktion von Helmholtzspulen ****** V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment

Mehr

Neu bei LEIFIphysik 2013/14

Neu bei LEIFIphysik 2013/14 Neu bei LEIFIphysik 2013/14 Dezember 2014 Radioaktivität - Fortführung: Musteraufgabe Radioaktives Cäsium in Wildschweinfleisch Elektromagnetische Wellen: Musteraufgabe Der Zeitzeichensender DCF77 Quantenobjekt

Mehr

Klassenarbeit Nr. 3 Physik Kinematik SJ

Klassenarbeit Nr. 3 Physik Kinematik SJ Klassenarbeit Nr. 3 Physik Kinematik SJ Version 1: Name: Hinweise: Bitte immer auf zwei Nachkommastellen runden. (t in Sekunden, v in Meter pro Sekunde, 0 8 ; 0 50 ). & Geschwindigkeits-Zeit- Funktionen

Mehr

Von Farbladungen und Quarkteilchen: die Starke Wechselwirkung. Harald Appelshäuser Institut für Kernphysik JWG Universität Frankfurt

Von Farbladungen und Quarkteilchen: die Starke Wechselwirkung. Harald Appelshäuser Institut für Kernphysik JWG Universität Frankfurt Von Farbladungen und Quarkteilchen: die Starke Wechselwirkung Harald Appelshäuser Institut für Kernphysik JWG Universität Frankfurt Die vier Kräfte Gravitation Starke Kraft Schwache Kraft Elektromagnetismus

Mehr

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2 LK Lorentzkraft Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfeld dünner Leiter und Spulen......... 2 2.2 Lorentzkraft........................

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Elektronen im elektrischen Querfeld. Die nebenstehende Skizze

Mehr

3 Magnetismus. 2 magnetische Pole: Nord (zeigt nach S) und Süd (zeigt nach N); Feldlinien laufen von N nach S

3 Magnetismus. 2 magnetische Pole: Nord (zeigt nach S) und Süd (zeigt nach N); Feldlinien laufen von N nach S 3 Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie 2 magnetische Pole: Nord (zeigt nach S) und Süd (zeigt nach N); Feldlinien laufen

Mehr

Aufgabenblatt zum Seminar 10 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 10 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 0 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmar.marti@uni-ulm.de) 4. 06. 009 Aufgaben. Wie in

Mehr

4. Radiochemie und Kerntechnik

4. Radiochemie und Kerntechnik 4. Radiochemie und Kerntechnik Bindungsenergiekurve - Für alle Atomkerne mit Nukleonenzahlen zwischen 30 und 150 beträgt die mittlere Bindungsenergie je Nukleon ca. 8,5 MeV die halbempirische Bethe-Weizsäcker-Formel

Mehr

Magnetische Monopole

Magnetische Monopole Magnetische Monopole Einführung: Aber in der Schule haben wir doch gelernt... Dirac s Idee symmetrischer Maxwell-Gleichungen Konsequenzen aus der Existenz magnetischer Monopole Quantisierung der elektrischen

Mehr

Werkzeuge der Kernphysik

Werkzeuge der Kernphysik Kapitel 1 Werkzeuge der Kernphysik 1.1 eilchenbeschleuniger Die meisten Experimente der Kern- und eilchenphysik laufen nach dem gleichen Schema ab: Ein Strahl von eilchen (Photonen, Elektronen, Protonen,

Mehr