Elektrizität und Magnetismus - Einführung

Größe: px
Ab Seite anzeigen:

Download "Elektrizität und Magnetismus - Einführung"

Transkript

1 Elektrizität und Magnetismus - Einführung Elektrostatik - elektrische Ladung - Coulomb Kraft - elektrisches Feld - elektrostatisches Potential - Bewegte Ladung -Strom - Magnetismus - Magnetfelder - Induktionsgesetz - Generator, Motor -

2 Elektrostatik - Elektrische Ladung Die elektrische Ladung: Elemente z.b. Wasserstoff Test: Atomstrahl im Magnetfeld Atomkerne, Protonen, Neutronen Ladung der Quarks

3 Elektrostatik - Elektrische Anziehung, Abstossung Bemerkung: Auch Isolatoren können sich anziehen!

4 Elektrostatik - Die Coulomb-Kraft (Charles Augustin Coulomb [ ]) Coulomb - Kraft: Fernwirkungsgesetz Wieso? Betrag vom Einheitsvektor Richtung! Proportionalitäts- Konstante: Influenzkonstante

5 Elektrostatik - Das Kraftgesetz von Coulomb Kraftgesetz von Coulomb (Charles Augustin de Coulomb ) Bemerkung: Es gibt Anziehung und Abstossung!

6 Elektrostatik - Das Superpositionsprinzip Kraft auf Probeladung im elektrischen Feld einer sphärisch symmetrischen Ladungsverteilung Für mehrere Ladungen gilt das Superpositionsprinzip, die Felder der einzelnen Ladungen überlagern sich.

7 Elektrostatik - Das elektrische Feld Das elektrische Feld: Ladungen sind die Quellen des Feldes! Das elektrische Feld einer Punktladung: Die Kraft auf ein geladenes Teilchen in elektrischen und magnetischen Feldern ist: Bewegungsgleichung (in vektorieller Form):

8 Elektrostatik - Bestimmung der elektrische Ladung (Robert Milikan ) Milikan Versuch: Dichte vom Öl Dichte der Luft (Auftrieb) Öl-Tröpfchen sind n-fach geladen: Im Gleichgewicht sind die beiden Kräfte gleich und es folgt:

9 Ausblick zum Magnetismus - Die Lorentzkraft Die Lorentzkraft Merke: Kreuzprodukt - rechte Handregel (für Rechtshänder) Geladenes Teilchen im Magnetfeld: Radius r der Bahn für Teilchen mit Impuls p

10 Elektrostatik - Das elektrische Feld für zwei entgegengesetzte Ladungen Beobachtung: Keine geschlossenen Feldlinien - elektrische Felder sind wirbelfrei!

11 Elektrostatik - Das elektrische Feld für zwei gleiche (positive) Ladungen Beobachtung: Keine geschlossenen Feldlinien - elektrische Felder sind wirbelfrei!

12 Elektrostatik - Das elektrische Feld eines Niederspannungsfisches Die erzeugten Signale (0,1V mit 1ms Pulsdauer) dienen der Kommunikation

13 Elektrostatik - Das elektrische Feld ist wirbelfrei Beobachtung: Keine geschlossenen Feldlinien - elektrische Felder sind wirbelfrei! Wir können die Beobachtung, dass die Feldlinien bei elektrischen Feldern nicht geschlossen sind, umformulieren zu: elektrische Felder sind wirbelfrei

14 Felder mit Wirbeln - Die Wirbelfelder Felder mit Wirbeln aus der Hydrodynamik Magnetfeld eines stromdurchflossenen Leiters - Wirbelfeld quer zum Leiter: längs zum Leiter:

15 Elektrostatik - Das elektrostatische Potential, die Spannung Berechnen die Arbeit der Coulomb-Kraft bei der Verschiebung der Ladung q Einheit der Spannung: Setzt man speziell dann erhält man für das Potential

16 Erinnerung an die Mechanik - Die Arbeit (Das Linienintegral oder Kurvenintegral) mühsamer Arbeit: Arbeit = Kraft x Weg Merke: Richtung von Kraft und Weg spielen eine Rolle Skalarprodukt Einheit der Arbeit:

17 Erinnerung an die Mechanik - Die Arbeit (Das Linienintegral oder Kurvenintegral) Linienintegral oder Kurvenintegral Skalarprodukt Einheit der Arbeit: Für die Arbeit auf dem Weg von 1 nach 2 gilt:

18 Elektrostatik - Das elektrostatische Potential, die Spannung

19 Elektrostatik/Mechanik - Potentielle Energie Potential der Feldes Gravitationsfeld Elektrisches Feld Arbeit Potentielle Energie U Potential V Spannung V

20 Elektrostatik - Das elektrostatische Potential für eine geschlossene Kurve Berechnen Potentialdifferenz für einen geschlossenen Weg: Weg: 1 nach 2-2 nach B - B nach A A nach 1 Für Potentialdifferenz gilt: Die potentielle Energie bleibt unverändert, es wird keine Arbeit geleistet! Integrationsweg

21 Ausblick zum Magnetismus - Das Linienintegral für ein Wirbelfeld Betrachten wieder einen stromdurchflossenen Leiter Integrationsweg C Für jeden Punkt des Integrationsweges C hat das Magnetfeld immer die gleiche Richtung wie der Weg, es gilt und Ist B konstant für festes r (sehen wir später), dann ist: Für ein Wirbelfeld verschwindet das Linienintegral über eine geschlossene Kurve nicht!

22 Definitionsgleichungen - für Quellen- und Wirbelfelder Beispiel: Elektrisches Feld Linienintegral über geschlossene Kurve ist 0 Beispiel: Magnetfeld Linienintegral über geschlossene Kurve ist ungleich 0

23 Der Fluss eines Feldes durch eine Fläche - Der Feldfluss Beispiele von Flüssen - Wassser -Luft - Wir beschäftigen uns jetzt mit dem Fluss des - elektrischen Feldes - magnetischen Feldes Illustrationen zum Fluss eines Feldes:

24 Der Fluss eines Feldes durch eine beliebige Fläche (Flächenintegral) Der Fluss durch beliebige Fläche Berechnen das Flächenintegral für eine beliebig geformte Ober- Fläche A Flächenelement Ist die Oberfläche geschlossen und begrenzt das Volumen V, dann ist es eine Gauss sche Fläche.

25 Berechnung des Flusses (Berechnung des Flächenintegrals) Berechnung des Flusses durch beliebige Fläche Der Einheitsvektor steht senkrecht auf dem Flächenelement, es ist: Der Fluss durch die Fläche A ist damit Der Fluss ist minimal für Der Fluss ist maximal für

26 Der Fluss eines Feldes durch eine geschlossene Fläche Wählen wir eine geschlossene Oberfläche (Gauss sche Fläche), dann ist der einkommende Fluss gleich dem ausgehenden Fluss. Der Gesamtfluss ist gleich null, wenn sich im Innern des - von A begrenzten - Volumens keine Quellen befinden. Zylinder als einfache Gauss sche Fläche antiparallel senkrecht parallel

27 Das Fluss vom Magnetfeld eines stromdurchflossenen Leiters Für Gauss sche Pillen - Schachtel gilt: Gauss sche Schachtel Für Gauss sche Pillen - Halbschachtel gilt: Für ein allgemeines Wirbelfeld gilt: Gauss sche Halb-Schachtel

28 Der Fluss des elektrischen Feldes einer Ladung Q Wählen als Gauss sche Integrationsoberfläche eine zur Ladung Q konzentrische Kugel: Integrationsfläche (Kugeloberfläche) Auf der Kugeloberfläche gilt immer: Berechnen das Integral für eine Punktladung: Elektrisches Feld für Punktladung: Betrag des elektrischen Feldes (für festes r konstant):

29 Der Gauss sche Satz der Elektrostatik Für den Fluss des elektrischen Feldes durch eine Kugeloberfläche finden wir: Das ist der Gauss sche Satz, dieser lautet in allgemeiner Form:

30 Der Fluss für ein Quellenfeld

31 Zusammenfassung Elektrostatik (1)

32 Zusammenfassung Elektrostatik (2)

33 Zusammenfassung Elektrostatik (3) Der Satz von Gauss

Fundamentale Kräfte Kontakt - Kräfte Feld - Kräfte

Fundamentale Kräfte Kontakt - Kräfte Feld - Kräfte Fundamentale Kräfte Kontakt - Kräfte Feld - Kräfte Fundamentale Kräfte Gravitationskraft und Gewicht (Melone) Reaktions- Partner Nach dem 3. Newton schen Prinzip übt der Körper auch Eine Kraft auf die

Mehr

ELEKTRIZITÄT & MAGNETISMUS

ELEKTRIZITÄT & MAGNETISMUS ELEKTRIZITÄT & MAGNETISMUS Elektrische Ladung / Coulombkraft / Elektrisches Feld Gravitationsgesetz ( = Gewichtskraft) ist die Ursache von Gravitationskonstante Coulombgesetz ( = Coulombkraft) Elementarladung

Mehr

E2: Wärmelehre und Elektromagnetismus 12. Vorlesung

E2: Wärmelehre und Elektromagnetismus 12. Vorlesung E2: Wärmelehre und Elektromagnetismus 12. Vorlesung 28.05.2018 Heute: - Elektrische Ladungen - Coulomb-Gesetz - Elektrische Felder - Gaußscher Satz - Elektrisches Potential https://xkcd.com/567/ Prof.

Mehr

E2: Wärmelehre und Elektromagnetismus 12. Vorlesung

E2: Wärmelehre und Elektromagnetismus 12. Vorlesung E2: Wärmelehre und Elektromagnetismus 12. Vorlesung 28.05.2018 Heute: - Elektrische Ladungen - Coulomb-Gesetz - Elektrische Felder - Gaußscher Satz - Elektrisches Potential https://xkcd.com/567/ Prof.

Mehr

2 Gauss Gesetz. 2.1 Elektrischer Fluss

2 Gauss Gesetz. 2.1 Elektrischer Fluss 2 Gauss Gesetz Das Gauss'sche Gesetz formuliert einen Zusammenhang zwischen der elektrischen Ladung und dem elektrischen Feld. Es ist allgemeiner und eleganter als das Coulomb Gesetz. Die Anwendung des

Mehr

Experimentalphysik II

Experimentalphysik II Experimentalphysik II PK2-6SP Webpage http://photonik.physik.hu-berlin.de/lehre/ss08exp2/ 1 Übungstermine 1. Dr. J. Puls: Die, 15-17, Raum 1'12, NEW 14 2. Dr. H.J. Wünsche: Die, 15-17, Raum 1 11 NEW 14

Mehr

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung

KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung KAPITEL III Elektrostatik Hier fehlt die obligatorische Einleitung... Im stationären Fall vereinfachen sich die Maxwell Gauß und die Maxwell Faraday-Gleichungen für die elektrische Feldstärke E( r) die

Mehr

C4.6: Oberflächenintegrale

C4.6: Oberflächenintegrale C4.6: Oberflächenintegrale Ziel: Berechnung von Integralen, deren Integrationsbereich eine 2-dim. Fläche in einem 3-dim. Raum ist (z.b. Fläche von Kugel) Motivation / Anwendungen: - z.b. Elektrostatik:

Mehr

O. Sternal, V. Hankele. 4. Magnetismus

O. Sternal, V. Hankele. 4. Magnetismus 4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt

Mehr

Magnetismus. Vorlesung 5: Magnetismus I

Magnetismus. Vorlesung 5: Magnetismus I Magnetismus Erzeugung eines Magnetfelds möglich durch: Kreisende Elektronen: Permanentmagnet Bewegte Ladung: Strom: Elektromagnet (Zeitlich veränderliches elektrisches Feld) Vorlesung 5: Magnetismus I

Mehr

Experimentalphysik I Elektrizität und Magnetismus. Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummern PTI 216 und PTI 416

Experimentalphysik I Elektrizität und Magnetismus. Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummern PTI 216 und PTI 416 Experimentalphysik I Elektrizität und Magnetismus Vorlesungsergänzung (VE), Wintersemester 2017 Modulnummern PTI 216 und PTI 416 Experimentalphysik I - Elektromagnetismus, Inhalt Vorlesungsinhalte zum

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 09. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 09. 06.

Mehr

Maxwell-Gleichungen (1873) Boltzmann: Es war ein Gott der diese Zeichen schrieb?

Maxwell-Gleichungen (1873) Boltzmann: Es war ein Gott der diese Zeichen schrieb? Literatur Feynman: Vorlesungen über Physik, Band II, Oldenbourg H. Vogel: Gerthsen Physik, Springer H.J. Paus: Physik in Experimenten und Beispielen, Hanser P.A. Tipler/R.A. Llewellyn: Moderne Physik,

Mehr

Kapitel 11: Oberflächen- und Flussintegrale

Kapitel 11: Oberflächen- und Flussintegrale Kapitel 11: Oberflächen- und Flussintegrale Ziel: Berechnung von Integralen, deren Integrationsbereich eine 2-dim. Fläche in einem 3-dim. Raum ist (z.b. Fläche von Kugel) Motivation / Anwendungen: - z.b.

Mehr

Vorkurs Physik des MINT-Kollegs

Vorkurs Physik des MINT-Kollegs www.mint-kolleg.de Vorkurs Physik des MINT-Kollegs Elektrizitätslehre MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales

Mehr

Höhere Experimentalphysik 1

Höhere Experimentalphysik 1 Höhere Experimentalphysik 1 Institut für Angewandte Physik GoetheUniversität Frankfurt am Main 1. Vorlesung 28.10.2016 Höhere Experimentalphysik 1 IAP GoetheUniversität Frankfurt am Main Ankündigung Übung

Mehr

Energie und Energieerhaltung

Energie und Energieerhaltung Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

Elektrisches Potenzial Kapitel 25

Elektrisches Potenzial Kapitel 25 Elektrisches Potenzial Kapitel 25 Zusammenfassung Coulomb (22) gleiche Ladungen stoßen sich ab ungleiche Ladungen ziehen sich an Das elektrische Feld (23) Ein geladener Körper beeinflusst einen anderen

Mehr

2 Elektrostatik. 2.1 Coulomb-Kraft und elektrische Ladung. 2.1 Coulomb-Kraft und elektrische Ladung

2 Elektrostatik. 2.1 Coulomb-Kraft und elektrische Ladung. 2.1 Coulomb-Kraft und elektrische Ladung 2.1 Coulomb-Kraft und elektrische Ladung 2 Elektrostatik 2.1 Coulomb-Kraft und elektrische Ladung Abb. 2.1 Durch Reiben verschiedener Stoffe aneinander verbleiben Elektronen der Atomhüllen überwiegend

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 05. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 05. 06.

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 30. 04. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 30. 04. 2009

Mehr

Magnetismus Elektrizität 19. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Zeitabhängig (dynamisch)

Magnetismus Elektrizität 19. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Zeitabhängig (dynamisch) Magnetismus Elektrizität 9. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Elektromagnetisches Feld Realität: elektrische Ladung elektrisches Feld magnetisches

Mehr

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz 5 Elektrizität und Magnetismus 5.5 Elektrisches Zentralfeld, Coulombsches Gesetz Elektrisches Zentralfeld Kugel mit Radius r um eine Punktladung = ǫ 0 Ed A = ǫ 0 E E d A Kugel da = ǫ 0 E(4πr 2 ) (5.26)

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 17. 04. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 17. 04.

Mehr

E2: Wärmelehre und Elektromagnetismus 13. Vorlesung

E2: Wärmelehre und Elektromagnetismus 13. Vorlesung E2: Wärmelehre und Elektromagnetismus 13. Vorlesung 04.06.2018 Heute: - Elektrisches Potential - Feld in Leitern; Faradayscher Käfig - Anwendungen von Hochspannung - Kapazitäten - Dielektrika https://xkcd.com/1991/

Mehr

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft Inhalt 10. Elektrodynamik 10.3 Das elektrische Potential 10.4 Elektrisches Feld und Potential ti 10.5 Magnetische Kraft und Felder 1051M 10.5.1 Magnetische Kraft 10.3 Das elektrische Potential ti Wir hatten

Mehr

4 Statische Magnetfelder

4 Statische Magnetfelder 4.1 Magnetismus und Ströme 4 Statische Magnetfelder 4.1 Magnetismus und Ströme In der Natur treten zahlreiche magnetische Effekte auf, die hier kurz zusammenfassend dargestellt und später quantitativ diskutiert

Mehr

Zusammenfassung v13 vom 20. Juni 2013

Zusammenfassung v13 vom 20. Juni 2013 Zusammenfassung v13 vom 20. Juni 2013 Magnetfeldberechnungen Gerader Leiter im Abstand r: B = µ 0 I/(2 r) (57) Auf der Achse einer Leiterschleife mit Radius R im Abstand x von der Mitte der Schleife: B

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Känzig, Alonso-Finn Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2002-2003

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

Elektrostatik ( ) r r. Der elektrische Fluss Ψ : Wie stark strömt das elektrische Feld durch eine gegebene Fläche?

Elektrostatik ( ) r r. Der elektrische Fluss Ψ : Wie stark strömt das elektrische Feld durch eine gegebene Fläche? Der elektrische Fluss Ψ : Wie stark strömt das elektrische Feld durch eine gegebene Fläche? A r r ( ) Φ ΨA = E r A r da Experimentalphysik für Biologen und Chemiker, O. Benson & A. Peters, HumboldtUniversität

Mehr

Ferienkurs Sommersemester 2011

Ferienkurs Sommersemester 2011 Ferienkurs Sommersemester 2011 Experimentalphysik II Elektrostatik - Übung Steffen Maurus 1 1 Elektrostatik Eine primitive Möglichkeit Ladungen zu messen, ist sie auf 2 identische leitende Kugeln zu verteilen,

Mehr

6.4.2 Induktion erzeugt Gegenkraft ******

6.4.2 Induktion erzeugt Gegenkraft ****** V642 6.4.2 ****** Motivation Ein permanenter Stabmagnet wird durch einen luminiumring bewegt. Der dabei im Ring fliessende Induktionsstrom bewirkt, dass der Ring der Bewegung des Stabmagneten folgt. 2

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 1 Thema: Elektrostatik Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Ladungen und Coulomb-Gesetz...................

Mehr

Elektrisches und magnetisches Feld. Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion

Elektrisches und magnetisches Feld. Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion Elektrisches und magnetisches Feld Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion Elektrostatik Elektrostatische Grundbegriffe Zusammenhang zwischen Ladung und Stromstärke

Mehr

Elektrodynamik. 1. Elektrostatik

Elektrodynamik. 1. Elektrostatik Elektrodynamik 1. Elektrostatik 1.1 Elektrische Ladung Es gibt positive und negative Ladungen. Sie ist quantisiert, d.h. jede beobachtete Ladung ist ein ganzes Vielfaches der Elementarladung: In jedem

Mehr

Elektrostatik. Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu

Elektrostatik. Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu KAPITEL II Elektrostatik Im stationären Fall vereinfachen sich die Maxwell Gauß- und Maxwell Faraday-Gleichungen zu E( r) = ρ el.( r) E( r) = 0. (II.1a) (II.1b) Dabei hängt die Rotation der jetzt zeitunabhängigen

Mehr

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld 11. Elektrodynamik Physik für ETechniker 11. Elektrodynamik 11.1 Das Gaußsche Gesetz 11.2 Kraft auf Ladungen 11.2.1 Punktladung im elektrischen Feld 11.2.2 Dipol im elektrischen Feld 11. Elektrodynamik

Mehr

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Stephan Huber 19. August 2009 1 Nachtrag zum Drehmoment 1.1 Magnetischer Dipol Ein magnetischer Dipol erfährt

Mehr

Felder und Wellen WS 2016/2017

Felder und Wellen WS 2016/2017 Felder und Wellen WS 216/217 Musterlösung zum 2. Tutorium 1. Aufgabe (**) Berechnen Sie das el. Feld einer in z-richtung unendlich lang ausgedehnten unendlich dünnen Linienladung der Ladungsdichte η pro

Mehr

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern.

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16. Kapazität Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16.1 Plattenkondensator Das einfachste Beispiel für einen Kondensator ist der

Mehr

Inhalt. Kapitel 3: Elektrisches Feld

Inhalt. Kapitel 3: Elektrisches Feld Inhalt Kapitel 3: Ladung Elektrische Feldstärke Elektrischer Fluss Elektrostatische Felder Kapazität Kugel- und Plattenkondensator Energie im elektrostatischen Feld Ladung und Feldstärke Ladung Q = n e,

Mehr

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer TUM EM-Tutorübung SS 1 1.5.21 Formelsammlung EM SS 21 Diese Formelsammlung dient nur zur Orientierung und stellt keinen nspruch auf ollständigkeit. Zudem darf sie während der Prüfung nicht benutzt werden,

Mehr

4. Beispiele für Kräfte

4. Beispiele für Kräfte 4. Beispiele für Kräfte Inhalt 4. Beispiele für Kräfte 4.1 Gravitation 4.2 Elektrische Kraft 4.3 Federkraft 4.4 Reibungskraft 4.5 Magnetische Kraft 4.1 Gravitation 4. Beispiele für Kräfte 4.1 Gravitation

Mehr

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld Inhalt 11. Elektrodynamik 11.1 Das Gaußsche Gesetz 11.2 Kraft auf Ladungen 11.2.1 Punktladung im elektrischen Feld 11. Elektromagnetische Kraft 11 Elektrodynamik 11. Elektrodynamik (nur Vakuum = Ladung

Mehr

3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B.

3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B. - 151-3.4 Magnetfelder 3.4.1 Grundlagen Während die Wechselwirkungen zwischen statischen elektrischen Ladungen sich durch das Coulomb'sche Gesetz, resp. ein elektrisches Feld beschreiben lassen, treten

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

10. Elektrodynamik Physik für E-Techniker. 10. Elektrodynamik Kraft auf Ladungen Dipol im elektrischen Feld. Doris Samm FH Aachen

10. Elektrodynamik Physik für E-Techniker. 10. Elektrodynamik Kraft auf Ladungen Dipol im elektrischen Feld. Doris Samm FH Aachen 10. Elektrodynamik 10.11 Das Gaußsche Gesetz 10.2 Kraft auf Ladungen 1021P 10.2.1 Punktladung im elektrischen kti Feld 10.2.2 Dipol im elektrischen Feld Einleitung (wir hatten) Es gibt (genau) zwei Arten

Mehr

In der Experimentalphysik-Vorlesung haben Sie die Maxwell schen Gleichungen der Magnetostatik in ihrer integralen Form kennengelernt:

In der Experimentalphysik-Vorlesung haben Sie die Maxwell schen Gleichungen der Magnetostatik in ihrer integralen Form kennengelernt: 13 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair Ferienkurs Experimentalphysik II Elektrodynamik Magnetostatik 12. September 2011 Michael Mittermair Inhaltsverzeichnis 1 Permanentmagnete und Polstärke 2 2 Magnetfelder stationärer Ströme 3 2.1 Magnetfeldstärke

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 26/8/13 Technische Universität München Abbildung 1: Punktladungen 1 Aufgaben zur Elektrostatik Aufgabe 1 Gegeben seien drei

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 2 Thema: Elektrischer Strom und Magnetostatik I Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 2 Elektrischer Strom 3 2.1

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Hecht, Alonso-Finn Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2002-2003

Mehr

Maxwell mit Minkowski. Max Camenzind Uni Würzburg Senioren 2015

Maxwell mit Minkowski. Max Camenzind Uni Würzburg Senioren 2015 Maxwell mit Minkowski Max Camenzind Uni Würzburg Senioren 2015 Vektorfelder in 3 Dimensionen F(t,x) = (F x,f y,f z ) Satz von Gauß Quelle Fluss Die Massenerhaltung Ein Nettomassenfluss M durch die festen

Mehr

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 2. Vorlesung 25.4.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Übungsstunde 2 Montag, 28. September :05

Übungsstunde 2 Montag, 28. September :05 Übungsstunde 2 Montag, 28. September 2015 19:05 Lernziele: Elektrostatik in Materie Grundgrößen der Elektrostatik: Elektrisches Potential Spannung Elektrostatische Energie Leiter & Nichtleiter Elektrostatik

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten orlesung können Sie sich noch erinnern? Elektrische Feldlinien Das elektrische Feld einer Punktladung Das Feld eines elektrischen Dipols E = Elektrische Felder von

Mehr

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen)

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen) Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie Ein Magnetfeld wird erzeugt durch: Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls

Mehr

Das resultierende elektrische Feld mehrerer Punktladungen? Superpositionsprinzip

Das resultierende elektrische Feld mehrerer Punktladungen? Superpositionsprinzip Elektrisches Potenzial Kapitel 25 Zusammenfassung Coulomb (22) gleiche Ladungen stoßen sich ab ungleiche Ladungen ziehen sich an Das elektrische Feld (23) Ein geladener Körper beeinflusst einen anderen

Mehr

Elektrodynamik. Rainer Hauser. Januar 2015

Elektrodynamik. Rainer Hauser. Januar 2015 Elektrodynamik Rainer Hauser Januar 2015 1 Einleitung 1.1 Vektorfelder Wenn man jedem Punkt im Raum eine physikalische Grösse zuordnen kann, spricht man von einem Feld. Die Temperatur ist ein skalares

Mehr

Theoretische Physik (Elektrodynamik)

Theoretische Physik (Elektrodynamik) Theoretische Physik (Elektrodynamik) Andreas Knorr andreas.knorr@physik.tu-berlin.de PN 72 Technische Universität Berlin Theoretische Physik III (Elektrodynamik) p.127 I Vorkenntnisse und Geschichte (1)

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

(a) Das elektrische Feld wird durch zwei Punktladungen, deren Felder sich ungestört überlagern, erzeugt.

(a) Das elektrische Feld wird durch zwei Punktladungen, deren Felder sich ungestört überlagern, erzeugt. 1. Superposition und Gauß scher Satz (a Das elektrische Feld wird durch zwei Punktladungen, deren Felder sich ungestört überlagern, erzeugt. E = E 1 + E 1 = 1 ( q 4πɛ 0 2 q = 1 8q (1 2 93a 2 4πɛ 0 9a 2

Mehr

1.3. DAS COULOMBSCHE GESETZ, ELEKTROSTATISCHES FELD 9

1.3. DAS COULOMBSCHE GESETZ, ELEKTROSTATISCHES FELD 9 8 KAPITEL. ELEKTROSTATIK.3 Das Coulombsche Gesetz, elektrostatisches Feld Zur Einführung verschiedener Grundbegriffe betrachten wir zunächst einmal die Kraft, die zwischen zwei Ladungen q an der Position

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 28. 05. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 28. 05. 2009

Mehr

Zulassungstest zur Physik II für Chemiker

Zulassungstest zur Physik II für Chemiker SoSe 2016 Zulassungstest zur Physik II für Chemiker 03.08.16 Name: Matrikelnummer: T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T TOT.../4.../4.../4.../4.../4.../4.../4.../4.../4.../4.../40 R1 R2 R3 R4 R TOT.../6.../6.../6.../6.../24

Mehr

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 2

Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 2 Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Übung 2 KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Mehr

1 Felder bewegter Ladungen

1 Felder bewegter Ladungen Universität Leipzig, Fakultät für Physik und Geowissenschaften Vorlesung zur Experimentalphysik III Wintersemester 2008/2009 Prof. Dr. Josef A. Käs Vorlesungsmitschrift zur Vorlesung vom 16.10.2008 1 Felder

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 27. 04. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 27. 04. 2009

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 3 Bearbeitung: 25.11.2011

Mehr

6.4.8 Induktion von Helmholtzspulen ******

6.4.8 Induktion von Helmholtzspulen ****** V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

Vorkurs Physik des MINT-Kollegs

Vorkurs Physik des MINT-Kollegs Vorkurs Physik des MINT-Kollegs Elektrizitätslehre MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales Forschungszentrum

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 21. 04. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 21. 04.

Mehr

GRUNDGESETZE DES ELEKTROMAGNETISCHEN FELDES

GRUNDGESETZE DES ELEKTROMAGNETISCHEN FELDES HOCHSCHULBÜCHER FÜR PHYSIK Herausgegeben von F. X. Eder und Robert Rompe BAND 30 GRUNDGESETZE DES ELEKTROMAGNETISCHEN FELDES K. SJMONYI ' - '»мяло : m VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN BERLIN 1963

Mehr

THEMEN UND INHALTE TUTORIUM FÜR AUSLANDSSTUDENTEN 2

THEMEN UND INHALTE TUTORIUM FÜR AUSLANDSSTUDENTEN 2 THEMEN UND INHALTE Kapitel Themen Inhalte 1. Kapitel Made in Germany 1.1 Was in Ingenieurwesen? 1.2 Ingenieur Studium an der OTH Regensburg? 1.3 Überblick über die OTH Regensburg 1.4 Studienordnung: SWS,

Mehr

PhysikI und II fürstudentender Zahnmedizinund Biologie-2. Teil Universität Hamburg Wintersemester 2016/17

PhysikI und II fürstudentender Zahnmedizinund Biologie-2. Teil Universität Hamburg Wintersemester 2016/17 PhysikI und II fürstudentender Zahnmedizinund Biologie-2. Teil Universität Hamburg Wintersemester 2016/17, Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed Mein Arbeitsgebiet: ExperimentelleElementarteilchenphysikan

Mehr

Antworten zu Wiederholungsfragen Stand:

Antworten zu Wiederholungsfragen Stand: 1.1) Was bedeutet der Begriff ionisiert? 1.2) Jede gegebene Ladungsmenge Q setzt sich aus Elementarladungen zusammen. Wieviele Elementarladungen enthält die Einheitsladung 1C? 1.3) Was sagt der Ladungserhaltungssatz

Mehr

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker 11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

10.1 Ampère sches Gesetz und einfache Stromverteilungen

10.1 Ampère sches Gesetz und einfache Stromverteilungen 1 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

1.12. MAKROSKOPISCHE ELEKTROSTATIK 87. In den vorangegangenen Abschnitten hatten wir die beiden Grundgleichungen der Elektrostatik.

1.12. MAKROSKOPISCHE ELEKTROSTATIK 87. In den vorangegangenen Abschnitten hatten wir die beiden Grundgleichungen der Elektrostatik. .. MAKROSKOPISCHE ELEKTROSTATIK 87. Makroskopische Elektrostatik.. Polarisation, dielektrische erschiebung In den vorangegangenen Abschnitten hatten wir die beiden Grundgleichungen der Elektrostatik rot

Mehr

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Feld Unterschiede: Beschreibung Ursache Kräfte auf elektrisches Feld Das elektrische Feld ist der besondere Zustand des

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 Definition: Ein Skalarfeld ordnet jedem Punkt im dreidimensionalen Raum R 3 eine ahl () zu. Unter einem räumlichen Vektorfeld

Mehr

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist. Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen

Mehr

Grundwissen. Physik. Jahrgangsstufe 9

Grundwissen. Physik. Jahrgangsstufe 9 Grundwissen Physik Jahrgangsstufe 9 Grundwissen Physik Jahrgangsstufe 9 Seite 1 1. Elektrische Felder und Magnetfelder 1.1 Elektrisches Feld Elektrisches Kraftgesetz: Gleichnamige Ladungen stoßen sich

Mehr

Feynman-Vorlesungen über Physik 3

Feynman-Vorlesungen über Physik 3 Richard P. Feynman, Robert B. Leighton, Matthew Sands Feynman-Vorlesungen über Physik 3 Elektromagnetismus New Millennium-Edition DE GRUYTER Inhaltsverzeichnis 1 Elektromagnetismus 1 1.1 Elektrische Kräfte

Mehr

4. Beispiele für Kräfte

4. Beispiele für Kräfte 4. Beispiele für Kräfte 4.1 Federkraft 4.2 Gravitation 4.3 Elektrische Kraft 4.4 Reibungskraft 4. Beispiele für Kräfte Man kennt: Federkraft, Reibungskraft, Trägheitskraft, Dipolkraft, Schubskraft, Coulombkraft,

Mehr

Höhere Experimentalphysik 1

Höhere Experimentalphysik 1 Höhere Experimentalphysik 1 Institut für Angewandte Physik Goethe-Universität Frankfurt am Main 2. Vorlesung 04.11.2016 Was bisher geschah Was ist eine Punktladung und wie misst man sie? Das elektrische

Mehr

Theoretische Elektrodynamik

Theoretische Elektrodynamik Theoretische Elektrodynamik Literatur: 1. Joos: Lehrbuch der Theoretische Physik 2. Jackson: Klassische Elektrodynamik 3. Nolting: Grundkurs Theoretische Physik zusätzlich: Sommerfeld: Landau/Lifschitz:

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 29. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 29. 05.

Mehr

Das Magnetfeld in der Umgebung eines sehr dünnen langen Leiters. ds H ds H ds H 2 r

Das Magnetfeld in der Umgebung eines sehr dünnen langen Leiters. ds H ds H ds H 2 r Das Magnetfeld in der Umgebung eines sehr dünnen langen Leiters Seite 1.1 von 1.10 H ds H ds H ds H Umlauf-Integral Länge der magnetischen Feldlinie, hier der Kreisumfang Durchflutung, Magnetische Spannung,

Mehr

Teil II. Magnetostatik

Teil II. Magnetostatik Teil II Magnetostatik 51 4. Ampère sches Kraftgesetz 4.1 Elektrischer Strom und Ladungserhaltung Elektrische Ströme werden durch bewegte Ladungsträger hervorgerufen. Ladungsträger können dabei z.b. sein:

Mehr