KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung

Größe: px
Ab Seite anzeigen:

Download "KAPITEL VIII. Elektrostatik. VIII.1 Elektrisches Potential. VIII.1.1 Skalarpotential. VIII.1.2 Poisson-Gleichung"

Transkript

1 KAPITEL III Elektrostatik Hier fehlt die obligatorische Einleitung... Im stationären Fall vereinfachen sich die Maxwell Gauß und die Maxwell Faraday-Gleichungen für die elektrische Feldstärke E( r) die jetzt zeitunabhängig ist zu E( r) = ρ el.( r) E( r) = 0. (III.1a) (III.1b) III.1 Elektrisches Potential III.1.1 Skalarpotential Betrachte ein einfach zusammenhängendes Gebiet (2) des Raums. Aus der stationären Maxwell Faraday-Gleichung (III.1b) folgt die Existenz einer differenzierbaren skalaren Funktion Φ( r) derart, dass die Beziehung E( r) = Φ( r) (III.2) in jedem Punkt r des Gebiets erfüllt wird. Nach Angabe eines beliebigen Punktes r 0 kann man nämlich Φ durch r Φ( r) = Φ( r 0 ) E( r ) d r (III.3) r 0 definieren, wobei das Wegintegral dank dem Stokes schen Satz unabhängig vom Weg ist, so dass Φ( r) eindeutig festgelegt ist, abgesehen von der beliebigen Wahl des Zahlenwerts für Φ( r 0 ). Φ wird als elektrostatisches Potential oder Skalarpotential bezeichnet. Die zugehörige SI-Einheit ist das olt () mit physikalischer Dimension [Φ] = M L 2 T 3 I 1. III.1.2 Poisson-Gleichung Das Ausdrücken des elektrostatischen Feldes in der Maxwell Gauß-Gleichung (III.1a) durch das Skalarpotential gemäß Gl. (III.2) führt zur Poisson-Gleichung Φ( r) = ρ el.( r) (III.4) mit dem Laplace-Operator. Insbesondere ergibt sich im akuum, d.h. in Abwesenheit von Ladungen, die Laplace-Gleichung Φ( r) = 0, (III.5) deren Lösungen die sog. harmonischen Funktionen sind.

2 130 Elektrostatik Gauß sches Gesetz Sei eine geschlossene Fläche, die ein zusammenhängendes Raumvolumen einschließt. Der elektrische Fluss durch die Oberfläche wird durch Φ E E( r) d 2 S (III.6) gegeben, mit d 2 S = d 2 S e n dem vektoriellen Oberflächenelement, wobei e n den Normaleinheitsvektor zu d 2 S bezeichnet. Unter erwendung des Integralsatzes von Gauß ist das Oberflächenintegral auf der rechten Seite gleich dem olumenintegral der Divergenz des Integranden, d.h. E( r) d 2 S = E( r) d 3 r. Unter Betrachtung der Maxwell Gauß-Gleichung (III.1a) lässt sich E( r) ersetzen ρ el. ( r) Φ E = d 3 r. Schließlich ergibt sich somit das Gauß sche Gesetz Φ E = Q in (III.7) mit Q in der Gesamtladung im olumen. Dieses Resultat stellt die globale Formulierung der lokalen Maxwell Gauß-Gleichung (III.1a) dar. III.1.3 Elektrisches Feld und Potential von Ladungen III.1.3 a Elektrisches Feld und Potential einer Punktladung Eine Punktladung befinde sich im Punkt r 0, während im ganzen Rest des Raums akuum herrscht. Die Situation ist dann kugelsymmetrisch um r 0. Insbesondere sollte das elektrische Feld E( r) in konstantem Abstand r r 0 von der Punktladung einen konstanten Betrag E ( r r 0 ) haben. Für die Richtung des elektrischen Feldes, die am meistens symmetrische Möglichkeit ist, das es in jedem Punkt entlang der Radialrichtung mit Einheitsvektor ( r r 0 )/ r r 0 zeigt. Somit ist ein vernünftiger Ansatz E( r) = E ( r r 0 ) r r 0 r r 0. (III.8) Betrachte man jetzt eine Kugel mit Radius R und Zentrum in r 0. In jedem Punkt der Kugelfläche ist das elektrische Feld normal, so dass E( r) d 2 S = E( r) d 2 S gilt. Dabei ist definitionsgemäß die Menge der Punkte mit r r 0 = R, so dass E( r) im Integral durch E(R) ersetzt werden kann. Da dieser Betrag konstant über bleibt, kann er aus dem Integral herausgezogen werden: E( r) d 2 S = E(R) d 2 S = 4πR 2 E(R), wobei benutzt wurde, dass das Oberflächenintegral im mittleren Glied einfach die Oberfläche der Kugel mit Radius R ist.

3 III.1 Elektrisches Potential 131 Dank dem Gauß schen Gesetz (III.7) ist die linke Seite auch mit der Gesamtladung innerhalb des durch abgeschlossenen olumens verknüpft. Hier ist diese Gesamtladung einfach gleich der Ladung, die im Zentrum der Kugel liegt: E( r) d 2 S =. Somit ergibt sich insgesamt = 4πR 2 E(R) bzw. E(R) = R 2. Nach Einsetzen dieses Betrags in den Ansatz (III.8) ergibt sich schließlich für das elektrische Feld einer Punktladung E( r) = r r 0 r r 0 3. Man prüft problemlos nach, dass das zugehörige Skalarpotential (III.9a) Φ( r) = r r 0 (III.9b) ist, hier mit der Wahl Φ( r) = 0 im Unendlichen. III.1.3 b Elektrisches Feld und Potential mehrerer Punktladungen Betrachte man jetzt N Punktladungen 1,..., N, die sich jeweils in r 1,..., r N befinden, in Abwesenheit weiterer Ladungen im ganzen Raum. Zur Bestimmung des entsprechenden elektrischen Feldes bzw. Skalarpotentials soll man nur darauf beachten, dass die Maxwell-Gleichungen linear in den Feldern ( E, B) und in den Quellen (ρ el., j el. ) sind. Demzufolge gilt ein Superpositionsprinzip für deren Lösungen, das natürlich auch für die stationären Gleichungen (III.1) gilt: wenn ( ρ el.,1 ( r), E 1 ( r), Φ 1 ( r) ) und ( ρ el.,2 ( r), E 2 ( r), Φ 2 ( r) ) zwei Lösungen der Gleichungen auf R 3 sind, dann ist ( ρ el.,1 ( r)+ρ el.,2 ( r), E 1 ( r)+ E 1 ( r), Φ 1 ( r)+φ 2 ( r) ) ebenfalls eine Lösung auf R 3. Dementsprechend lautet das Skalarpotential für die N Punktladungen Φ( r) = a=1 a r r a, (III.10a) wieder mit der Wahl Φ( r) = 0 für r ; das zugehörige elektrische Feld ist E( r) = a=1 a r r a r r a 3. (III.10b) III.1.3 c Elektrisches Feld und Potential einer Ladungsverteilung Ähnlich dem Übergang (III.1) von einer diskreten Massenverteilung m a, d.h. einer endlichen Anzahl von Massenpunkten, zu einer durch eine Massendichte ρ( r) beschriebenen kontinuierlichen erteilung, kann man von einer endlichen Anzahl von Punktladungen a zu einer kontinuierlichen Ladungsverteilung ρ el. übergehen, indem man das Rezept a f( r a ) f( r)ρ el. ( r) d 3 r (III.11) a anwendet, wobei das durch die Ladungsverteilung besetzte Raumvolumen bezeichnet.

4 132 Elektrostatik Dementsprechend lautet das elektrostatische Potential bzw. Feld für eine Ladungsverteilung ρ el. Φ( r) = ρ el. ( r ) r r d3 r, (III.12a) bzw. E( r) = ρ el. ( r ) r r r r 3 d3 r. (III.12b) Bemerkungen: Der orsicht halber sollte der Punkt r außerhalb des olumens sein, um unangenehme Divisionen durch 0 zu vermeiden. Hiernach wird das Potential (III.12a) auf eine alternative Weise hergeleitet ( III.2.2). Setzt man in die Gl. (III.12a) (III.12b) die Ladungsverteilung (II.6a) für eine Menge von Punktladungen ein, so findet man natürlich Gl. (III.10a) und (III.10b) wieder. III.1.4 Elektrostatische potentielle Energie III.1.4 a Coulomb-Kraft In Abwesenheit von magnetischen Feld oder für ruhende Ladungen lautet die Lorentz-Kraft auf eine Punktladung a F a ( r a ) = aea ( r a ) (III.13a) mit E a dem Feld, das die anderen Ladungen b a im Punkt r a erzeugen, d.h. wobei Gl. (III.10b) verwendet wurde. F a ( r a ) = b=1 b a a r a r b r a r b 3, (III.13b) Falls es nur eine andere Ladung gibt, die hiernach mit 2 bezeichnet wird und sich in r 2 befindet, ist das dadurch erzeugte elektrische Feld durch Gl. (III.9a) gegeben. Dann lautet die Kraft auf die Punktladung a 1 F ( r 1 ) = 1 2 r 1 r 2 r 1 r 2 3. (III.14a) Somit findet man die Coulomb-Kraft wieder, sowie das zugehörige Potential ( r 1 ) = 1 2 r 1 r 2, (III.14b) aus dem die Kraft sich gemäß F ( r 1 ) = 1 ( r 1 ) ableiten lässt. III.1.4 b Potentielle Energie Wegen der Maxwell Thomson-Gleichung a E a = 0 ist die Kraft F a [Gl. (III.13b)] auch im allgemeinen Fall konservativ. Genauer gilt F a ( r a ) = a ( { r b } ) (III.15a) mit a dem Gradient bezüglich des Ortsvektors r a und einer potentiellen Energie, die durch

5 III.1 Elektrisches Potential 133 ( { r b } ) = 1 2 a,b=1 a b a b r a r b (III.15b) gegeben ist. Alternativ gilt ( { r b } ) = 1 2 a Φ a ( r a ), a=1 (III.15c) wobei Φ a durch Gl. (III.10a) mit Summierung über die Punktladungen b a gegeben wird. Beweis: Mit dem Potential (III.15b) gilt unter erwendung der Kettenregel a = 1 ( ) c d 1 a = 1 ( ) c d r c r d δ ca 2 r a r b 2 r c r d 3 + δ r c r d da r c r d 3 = 1 2 d a c,d=1 c d a d r a r d r a r d 3 1 a c 2 c a c,d=1 c d r c r a r c r a 3. Ersetzt man d bzw. c durch b in der ersten bzw. zweiten Summe der zweiten Zeile, so sind beide Summanden gleich und man findet genau das gesuchte Ergebnis (III.13b). Im Limes einer kontinuierlichen Ladungsverteilung ρ el. wird die potentielle Energie (III.15c) zu = 1 2 Φ( r)ρ el. ( r) d 3 r (III.16) mit dem Raumvolumen, das die Ladungsverteilung besetzt; eigentlich kann durch R 3 ersetzt werden Bemerkung: Die letztere Gleichung könnte auf erster Sicht verwirrend sein, denn das elektrostatische Potential Φ im Integral wird in einem Punkt betrachtet, wo sich Ladungen befinden. Das heißt, dass dies nicht dem Gültigkeitsbereich der Gl. (III.12a) entspricht, für die der Punkt r außerhalb der Ladungsverteilung sein soll. Dies bedeutet nur, dass Φ( r) nicht durch Gl. (III.12a) gegeben ist. III.1.4 c Energie des elektrostatischen Feldes Die potentielle Energie (III.16) einer Ladungsverteilung ρ el. kann auch durch das elektrostatische Feld E( r) ausgedrückt werden, erzeugt durch die erteilung. In der Tat gilt R3 E( r) 2 = d 3 r, (III.17) 2 wobei sich das Integrand als die elektrische Energiedichte e e ( r) des Feldes im Punkt r interpretieren lässt. Zum Beweis dieses Ergebnisses kann das Integral auf der rechten Seite der Gl. (III.16) zuerst über das olumen einer Kugel mit Radius R berechnen, dann am Ende den Grenzwert R betrachten. Dank der Maxwell Gauß-Gleichung (III.1a) gilt 1 2 Φ( r)ρ el. ( r) d 3 r = 2 Dabei lässt sich das Integrand mithilfe der Identität Φ( r) E( r) d 3 r.

6 134 Elektrostatik Φ( r) E( r) = [Φ( r) E( r) ] E( r) Φ( r) = [Φ( r) E( r) ] + E( r) 2 umschreiben: 1 Φ( r)ρ el. ( r) d 3 r = ɛ 0 [Φ( r) E( r) 2 2 ] E( r) d 3 2 r + d 3 r. 2 Der zweite Term auf der rechten Seite gibt das gesuchte Ergebnis im Limes R, so dass man nur beweisen soll, dass der erste in diesem Limes verschwindet. Tatsächlich kann das erste olumenintegral auf der rechten Seite mit dem Gauß schen Integralsatz in ein Oberflächenintegral über die Kugelfläche transformiert werden [Φ( r) E( r) ] d 3 r = Φ( r) E( r) d 2 S. Wenn R groß genug ist, befinden sich alle Ladungen innerhalb der Kugel r R. Dann nehmen das elektrostatische Potential und das Feld mit R ab, gemäß (38) r =R Φ(R) 1 R, E(R) 1 R 2. Dagegen gilt d 2 S = R 2 d 2 Ω mit d 2 Ω dem Raumwinkelelement. Insgesamt kommt E( r) r =RΦ( r) d 2 S 4πR R R 2 1 R, so dass dieser Term im Grenzwert R Null wird. (38) Dies folgt aus dem Gauß schen Gesetz (III.7), unter erwendung des gleichen Arguments wie in III.1.3 a.

Magnetostatik. B( r) = 0

Magnetostatik. B( r) = 0 KAPITEL III Magnetostatik Die Magnetostatik ist die Lehre der magnetischen Felder, die von zeitlich konstanten elektrischen Strömen herrühren. Im entsprechenden stationären Regime vereinfachen sich die

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

X. Elektrostatik und Magnetostatik in Materie

X. Elektrostatik und Magnetostatik in Materie X. Elektrostatik und Magnetostatik in Materie Dieses Kapitel befasst sich mit den elektromagnetischen Feldern in Materie im stationären Regime, d.h. wenn die mikroskopischen und makroskopischen Felder

Mehr

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes X.3 Energie und Impuls des elektromagnetischen Feldes 169 X.3 Energie und Impuls des elektromagnetischen Feldes Genau wie mechanische Systeme trägt das elektromagnetische Feld Energie ( X.3.1 und Impuls

Mehr

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot

Mehr

Zeitabhängige elektromagnetische Felder

Zeitabhängige elektromagnetische Felder KAPITEL X Zeitabhängige elektromagnetische Felder Im Gegensatz zu den stationären Fällen der Elektro- und Magnetostatik sind das elektrische und das magnetische Feld im allgemeineren zeitabhängigen Fall

Mehr

6 Methoden zur Lösung des elektrostatischen Randwertproblems

6 Methoden zur Lösung des elektrostatischen Randwertproblems 6 Methoden zur Lösung des elektrostatischen Randwertproblems Die generelle Strategie zur Lösung des elektrostatischen Randwertproblems umfaßt zwei Schritte: 1. Finde eine spezielle Lösung der Poisson-Gleichung

Mehr

Moderne Theoretische Physik WS 2013/2014

Moderne Theoretische Physik WS 2013/2014 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 23/24 Prof. Dr. A. Shnirman Blatt 2:Lösungen Dr. B. Narozhny Besprechung 8..23. Gauß scher

Mehr

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem

4 Grenzflächen, Leiter und das elektrostatische Randwertproblem 4 Grenzflächen, Leiter und das elektrostatische Randwertproblem Bei der Berechnung elektrostatischer Felder und Potentiale mussten wir bisher voraussetzen, dass wir die Ladungsverteilungen im gesamten

Mehr

X.4 Elektromagnetische Wellen im Vakuum

X.4 Elektromagnetische Wellen im Vakuum X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte)

Aufgabe K1: Potential einer Hohlkugel ( = 11 Punkte) Aufgabe K: Potential einer Hohlkugel ( + 7 + = Punkte) (a) Leiten Sie die integrale Form der Maxwell Gleichungen der Elektrostatik aus den entsprechenden differentiellen Gleichungen her. Differentielle

Mehr

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer TUM EM-Tutorübung SS 1 1.5.21 Formelsammlung EM SS 21 Diese Formelsammlung dient nur zur Orientierung und stellt keinen nspruch auf ollständigkeit. Zudem darf sie während der Prüfung nicht benutzt werden,

Mehr

5. Grundgleichungen der Magnetostatik

5. Grundgleichungen der Magnetostatik 5. Grundgleichungen der Magnetostatik 5.1 Divergenz der magnetischen Induktion Wir bestimmen etzt die eldgleichungen der Magnetostatik, d.h. infinitesimale (lokale Gleichungen für die magnetische lussdichte,

Mehr

Elektrizität und Magnetismus - Einführung

Elektrizität und Magnetismus - Einführung Elektrizität und Magnetismus - Einführung Elektrostatik - elektrische Ladung - Coulomb Kraft - elektrisches Feld - elektrostatisches Potential - Bewegte Ladung -Strom - Magnetismus - Magnetfelder - Induktionsgesetz

Mehr

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld Inhalt 11. Elektrodynamik 11.1 Das Gaußsche Gesetz 11.2 Kraft auf Ladungen 11.2.1 Punktladung im elektrischen Feld 11. Elektromagnetische Kraft 11 Elektrodynamik 11. Elektrodynamik (nur Vakuum = Ladung

Mehr

1.3. DAS COULOMBSCHE GESETZ, ELEKTROSTATISCHES FELD 9

1.3. DAS COULOMBSCHE GESETZ, ELEKTROSTATISCHES FELD 9 8 KAPITEL. ELEKTROSTATIK.3 Das Coulombsche Gesetz, elektrostatisches Feld Zur Einführung verschiedener Grundbegriffe betrachten wir zunächst einmal die Kraft, die zwischen zwei Ladungen q an der Position

Mehr

Dass die Rotation eines konservativen Kraftfeldes null ist, folgt direkt aus der Identität C 1 C 2 C 2 C 1

Dass die Rotation eines konservativen Kraftfeldes null ist, folgt direkt aus der Identität C 1 C 2 C 2 C 1 I.1 Grundbegriffe der newtonschen Mechanik 11 I.1.3 c Konservative Kräfte Definition: Ein zeitunabhängiges Kraftfeld F ( r) wird konservativ genannt, wenn es ein Skalarfeld (3) V ( r) gibt, das F ( r)

Mehr

(Gaußscher Integralsatz)

(Gaußscher Integralsatz) Der Gaußsche Integralsatz Beim Oberflächenintegral O F n da beschreibt der Integrand den senkrechten Durchsatz des Vektorfeldes durch das Flächenelement da. Insgesamt liefert das Integral über eine geschlossene

Mehr

2. Grundlagen der Elektrostatik

2. Grundlagen der Elektrostatik . luss eines ektor-eldes. Grundlagen der Elektrostatik. Wichtige Integralsätze Im folgenden werden wir wiederholt die folgenden beiden Integralsätze im R 3 benötigen (in der ektoranalysis werden sie in

Mehr

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Stephan Huber 19. August 2009 1 Nachtrag zum Drehmoment 1.1 Magnetischer Dipol Ein magnetischer Dipol erfährt

Mehr

Felder und Wellen WS 2016/2017

Felder und Wellen WS 2016/2017 Felder und Wellen WS 216/217 Musterlösung zum 2. Tutorium 1. Aufgabe (**) Berechnen Sie das el. Feld einer in z-richtung unendlich lang ausgedehnten unendlich dünnen Linienladung der Ladungsdichte η pro

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 27. 04. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 27. 04. 2009

Mehr

10.1 Ampère sches Gesetz und einfache Stromverteilungen

10.1 Ampère sches Gesetz und einfache Stromverteilungen 1 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

Die Maxwell-Gleichungen

Die Maxwell-Gleichungen Die Maxwell-Gleichungen 1 Mathematische Grundlagen Wenn man erstmals mit der Elektrodynamik konfrontiert wird, hat man vermutlich mit der ektoranalysis und dem damit verbundenen Auftreten von partiellen

Mehr

Kapitel 11: Oberflächen- und Flussintegrale

Kapitel 11: Oberflächen- und Flussintegrale Kapitel 11: Oberflächen- und Flussintegrale Ziel: Berechnung von Integralen, deren Integrationsbereich eine 2-dim. Fläche in einem 3-dim. Raum ist (z.b. Fläche von Kugel) Motivation / Anwendungen: - z.b.

Mehr

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

5 Harmonische Funktionen

5 Harmonische Funktionen 5 Harmonische Funktionen Generell kann man die allgemeine Lösung des elektrostatischen andwertproblems auch als Summe einer speziellen Lösung der Poisson-Gleichung und einer Lösung der Laplace-Gleichung

Mehr

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.

Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist. Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 Definition: Ein Skalarfeld ordnet jedem Punkt im dreidimensionalen Raum R 3 eine ahl () zu. Unter einem räumlichen Vektorfeld

Mehr

Lösung für Blatt 7,,Elektrodynamik

Lösung für Blatt 7,,Elektrodynamik Institut für Theoretische Physik, Universität Zürich Lösung für Blatt 7,,Elektrodynamik Prof. Dr. T. Gehrmann Blatt 7 FS 213 Aufgabe 1 Induktion im Magnetfeld Nach dem Faraday schen Induktionsgesetz induziert

Mehr

1 Mathematische Hilfsmittel

1 Mathematische Hilfsmittel Mathematische Hilfsmittel. Vektoranalysis Wiederholung Vektor: Länge und Richtung Vektoraddition: A + B = B + A (A + B) + C = A + (B + C) kartesische Koordinaten: B A + B = i (a i + b i )e i A+B Multiplikation

Mehr

Zusammenfassung: Flächenintegrale

Zusammenfassung: Flächenintegrale Zusammenfassung: Flächenintegrale Gerichtetes Flächenelement: "Fluss" durch Flächenelement: "Fläche über G": "Fluss" durch die Fläche : Für orthogonale Koordinaten: Betrag des Flächenelements: Richtung:

Mehr

C4.6: Oberflächenintegrale

C4.6: Oberflächenintegrale C4.6: Oberflächenintegrale Ziel: Berechnung von Integralen, deren Integrationsbereich eine 2-dim. Fläche in einem 3-dim. Raum ist (z.b. Fläche von Kugel) Motivation / Anwendungen: - z.b. Elektrostatik:

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld 11. Elektrodynamik Physik für ETechniker 11. Elektrodynamik 11.1 Das Gaußsche Gesetz 11.2 Kraft auf Ladungen 11.2.1 Punktladung im elektrischen Feld 11.2.2 Dipol im elektrischen Feld 11. Elektrodynamik

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Technische Universität München Physik Department Ferienkurs Experimentalphysik 2 Vorlesung 1: Elektrostatik Tutoren: Elena Kaiser Matthias Golibrzuch Nach dem Skript Konzepte der Experimentalphysik 2:

Mehr

2 Gauss Gesetz. 2.1 Elektrischer Fluss

2 Gauss Gesetz. 2.1 Elektrischer Fluss 2 Gauss Gesetz Das Gauss'sche Gesetz formuliert einen Zusammenhang zwischen der elektrischen Ladung und dem elektrischen Feld. Es ist allgemeiner und eleganter als das Coulomb Gesetz. Die Anwendung des

Mehr

IV.2 Kanonische Transformationen

IV.2 Kanonische Transformationen IV.2 Kanonische Transformationen 79 IV.2 Kanonische Transformationen IV.2.1 Phasenraum-Funktionen Die verallgemeinerten Koordinaten q a t) und die dazu konjugierten Impulse p a t) bestimmen den Bewegungszustand

Mehr

2. Aufgabe (*) 2. r R 0 : (3R 2 0 r 2 ) φ(r) = Insgesamt ergibt sich: r > R 0 : Gegeben ist folgendes Vektorfeld in Zylinderkoordinaten: H R = 0

2. Aufgabe (*) 2. r R 0 : (3R 2 0 r 2 ) φ(r) = Insgesamt ergibt sich: r > R 0 : Gegeben ist folgendes Vektorfeld in Zylinderkoordinaten: H R = 0 Felder und Wellen WS 217/218 Musterlösung zum 3. Tutorium 1. Aufgabe (**) 1. E-Feld der homogen geladenen Kugel; außerhalb (r > R ) (3. Tutorium) E = Q 4πε r 2 e r mit Q = 4πR3 3 2. E-Feld innerhalb der

Mehr

8. Energie, Impuls und Drehimpuls des elektromagnetischen

8. Energie, Impuls und Drehimpuls des elektromagnetischen 8. Energie, Impuls und Drehimpuls des elektromagnetischen Feldes 8.1 Energie In Abschnitt 2.5 hatten wir dem elektrostatischen Feld eine Energie zugeordnet, charakterisiert durch die Energiedichte ω el

Mehr

(a) Das elektrische Feld wird durch zwei Punktladungen, deren Felder sich ungestört überlagern, erzeugt.

(a) Das elektrische Feld wird durch zwei Punktladungen, deren Felder sich ungestört überlagern, erzeugt. 1. Superposition und Gauß scher Satz (a Das elektrische Feld wird durch zwei Punktladungen, deren Felder sich ungestört überlagern, erzeugt. E = E 1 + E 1 = 1 ( q 4πɛ 0 2 q = 1 8q (1 2 93a 2 4πɛ 0 9a 2

Mehr

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16 Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 215/16 Abgabetermin: keine Abgabe, sondern Wertung als Präsenzübung Prof. Dr. Claudius Gros, Institut für Theoretische Physik, Goethe-Universität

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 1 Thema: Elektrostatik Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Ladungen und Coulomb-Gesetz...................

Mehr

Bewegung im elektromagnetischen Feld

Bewegung im elektromagnetischen Feld Kapitel 6 Bewegung im elektromagnetischen Feld 6. Hamilton Operator und Schrödinger Gleichung Felder E und B. Aus der Elektrodynamik ist bekannt, dass in einem elektrischen Feld E(r) und einem Magnetfeld

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 26/8/13 Technische Universität München Abbildung 1: Punktladungen 1 Aufgaben zur Elektrostatik Aufgabe 1 Gegeben seien drei

Mehr

Elektrisches Potenzial Kapitel 25

Elektrisches Potenzial Kapitel 25 Elektrisches Potenzial Kapitel 25 Zusammenfassung Coulomb (22) gleiche Ladungen stoßen sich ab ungleiche Ladungen ziehen sich an Das elektrische Feld (23) Ein geladener Körper beeinflusst einen anderen

Mehr

Musterlösung Elektrostatik

Musterlösung Elektrostatik Ferienkurs Elektrodynamik Musterlösung Elektrostatik Multiple Choice 5.. Frage X Wie das einer Punktladung Q. Ziemlich kompliziert... Wie das einer geladenen Schale, die wie die Höhle geformt ist. Warum?

Mehr

Übungsblatt 3 - Lösungen

Übungsblatt 3 - Lösungen Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.

Mehr

Theoretische Physik: Elektrodynamik

Theoretische Physik: Elektrodynamik Ferienkurs Merlin Mitschek, Verena Walbrecht 6.3.25 Ferienkurs Theoretische Physik: Elektrodynamik Vorlesung Technische Universität München Fakultät für Physik Ferienkurs Merlin Mitschek, Verena Walbrecht

Mehr

Elektrodynamik. 1. Elektrostatik

Elektrodynamik. 1. Elektrostatik Elektrodynamik 1. Elektrostatik 1.1 Elektrische Ladung Es gibt positive und negative Ladungen. Sie ist quantisiert, d.h. jede beobachtete Ladung ist ein ganzes Vielfaches der Elementarladung: In jedem

Mehr

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern TP2: Elektrodynamik WS 2017-2018 Arbeitsblatt 10 21/22.12. 2017 Dipole und Multipole in stationären Feldern Die Multipolentwicklung ist eine hilfreiche Näherung zur Lösung der Poisson Gleichung, wenn eine

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt Dr.

Mehr

3. Die Divergenz und die Quellen des elektrischen Feldes

3. Die Divergenz und die Quellen des elektrischen Feldes 3. Die Divergenz und die Quellen des elektrischen Feldes Das Gauß sche Gesetz V E d f = ɛ Q in = ɛ V ρ el dv stellte eine beachtliche Verbindung her zwischen dem elektrischen Feld E und seinen Quellen,

Mehr

31 Die Potentialgleichung

31 Die Potentialgleichung 3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-

Mehr

Feldlinienbilder: nur die halbe Wahrheit! H. Hauptmann, F. Herrmann Abteilung für Didaktik der Physik, Universität, Karlsruhe

Feldlinienbilder: nur die halbe Wahrheit! H. Hauptmann, F. Herrmann Abteilung für Didaktik der Physik, Universität, Karlsruhe Feldlinienbilder: nur die halbe Wahrheit! H. Hauptmann, F. Herrmann Abteilung für Didaktik der Physik, Universität, 76128 Karlsruhe Einleitung Ein Feldlinienbild ist wohl die am häufigsten benutzte Methode

Mehr

Kapitel 7: Maxwell-Gleichungen

Kapitel 7: Maxwell-Gleichungen Kapitel 7: Maxwell-Gleichungen 1831-1879 Physik-II - Christian Schwanenberger - Vorlesung 50 7.1 Der Verschiebungsstrom 7 Maxwell - Gleichungen 7.1 Der Verschiebungsstrom Das Faraday sche Gesetz B beschreibt,

Mehr

Skalarfelder. 1-1 Ma 2 Lubov Vassilevskaya

Skalarfelder. 1-1 Ma 2 Lubov Vassilevskaya Skalarfelder 1-1 Ma 2 Lubov Vassilevskaya Einführendes Beispiel r P + q F (P) + Q Abb. 1-1: Kraftwirkung auf eine positive Ladung Wir betrachten das elektrische Feld in der Umgebung einer positiven Punktladung

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu Klassische Elektrodynamik 1 Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de

Mehr

Im folgenden Schaltkreis beobachtet man eigenartige Phänomene: = > Beim Einschalten leuchtet die Glühbirne für

Im folgenden Schaltkreis beobachtet man eigenartige Phänomene: = > Beim Einschalten leuchtet die Glühbirne für + Kapitel 4 KAPAZITÄT und ENERGIE 4. Kondensator Ein Kondensator besteht typischerweise aus zwei Leiterplatten, die sich in einem kleinen Abstand voneinander befinden. Meist liegt zwischen den Elektroden

Mehr

I.6.3 Kepler-Problem. V ( x ) = G Nm 1 m 2. (I.91a) mit dem Potential. . (I.91b)

I.6.3 Kepler-Problem. V ( x ) = G Nm 1 m 2. (I.91a) mit dem Potential. . (I.91b) 38 Newton sche Mechanik I.6.3 Kepler-Problem Die Newton sche Gravitationskraft zwischen zwei Massenpunkten mit Massen m 1, m 2 ist eine konservative Zentralkraft, gegeben durch mit dem Potential F ( x

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

Einführung in die theoretische Physik II Sommersemester 2015

Einführung in die theoretische Physik II Sommersemester 2015 Einführung in die theoretische Physik II Sommersemester 25 martin.eckstein@mpsd.cfel.de Ausgewählte Aufgaben zur Klausurvorbereitung Lösungshinweise Aufgabe : Elektrostatik Betrachten Sie eine geladene

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Randwertprobleme der Elektrostatik

Randwertprobleme der Elektrostatik Kapitel 3 Randwertprobleme der Elektrostatik 3.1 Eindeutigkeitstheorem Wir wollen im folgenden zeigen, dass die Poisson-Gleichung bzw. die Laplace-Gleichung eine eindeutige Lösung besitzt, wenn eine der

Mehr

Das resultierende elektrische Feld mehrerer Punktladungen? Superpositionsprinzip

Das resultierende elektrische Feld mehrerer Punktladungen? Superpositionsprinzip Elektrisches Potenzial Kapitel 25 Zusammenfassung Coulomb (22) gleiche Ladungen stoßen sich ab ungleiche Ladungen ziehen sich an Das elektrische Feld (23) Ein geladener Körper beeinflusst einen anderen

Mehr

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe:

Mehr

Magnetostatik. Kapitel Problemstellung. 3.2 Langer gerader Draht

Magnetostatik. Kapitel Problemstellung. 3.2 Langer gerader Draht Kapitel 3 Magnetostatik 3.1 Problemstellung In der Magnetostatik betrachten wir das Magnetfeld ~ B = ~ r ~ A,dasvoneiner gegebenen zeitunabhängigen Stromverteilung ~j (~r ) produziert wird. Die Feldlinien

Mehr

"Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab"

Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab V4.2 - V4.3: Integralsätze der Vektoranalysis [Notation in diesem Kapitel: Vorausschau/Überblick: alle Indizes unten!] "Integral über die Ableitung einer Funktion hängt nur von ihrem Wert am Rand ab" Hauptsatz

Mehr

2 Die Newton sche Gravitationstheorie

2 Die Newton sche Gravitationstheorie 2 Die Newton sche Gravitationstheorie Von welchem Ausgangspunkt wollen wir Einsteins Gravitationstheorie kennenlernen? Wir rekapitulieren zu Beginn die Beschreibung der Gravitation nach Newton. Vektoren

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 17. 04. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 17. 04.

Mehr

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 25 Vorlesung 060503 6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6.1 Grundaufgabe der Elektrodynamik Gegeben: Ladungsdichte

Mehr

3.7 Das magnetische Feld in Materie

3.7 Das magnetische Feld in Materie 15 KAPITEL 3. MAGNETOSTATIK 3.7 Das magnetische Feld in Materie Wie wir in den vorangegangenen Kapiteln bereits gesehen haben, wird die magnetische Induktionsdichte B durch ein Vektorpotenzial A charakterisiert,

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair

Ferienkurs Experimentalphysik II Elektrodynamik. Magnetostatik. 12. September 2011 Michael Mittermair Ferienkurs Experimentalphysik II Elektrodynamik Magnetostatik 12. September 2011 Michael Mittermair Inhaltsverzeichnis 1 Permanentmagnete und Polstärke 2 2 Magnetfelder stationärer Ströme 3 2.1 Magnetfeldstärke

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l 19. Dec. 2013 Literaturvorschläge:

Mehr

Lagrange-Formalismus

Lagrange-Formalismus KAPITEL II Lagrange-Formalismus Die im letzten Kapitel dargelegte Formulierung der Mechanik nach Newton ist zwar sehr intuitiv: man zählt alle auf das zu studierende System wirkenden Kräfte auf, schreibt

Mehr

Abb. 5.10: Funktion und Tangentialebene im Punkt ( ) ( ) ( ) 3.) Die Zahlenwerte und in Gleichung (Def. 5.11) berechnen sich durch ( ) ( )

Abb. 5.10: Funktion und Tangentialebene im Punkt ( ) ( ) ( ) 3.) Die Zahlenwerte und in Gleichung (Def. 5.11) berechnen sich durch ( ) ( ) Abb. 5.0: Funktion und Tangentialebene im Punkt Aus der totalen Differenzierbarkeit folgt sowohl die partielle Differenzierbarkeit als auch die Stetigkeit von : Satz 5.2: Folgerungen der totalen Differenzierbarkeit

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Theoretische Elektrodynamik

Theoretische Elektrodynamik Theoretische Elektrodynamik Literatur: 1. Joos: Lehrbuch der Theoretische Physik 2. Jackson: Klassische Elektrodynamik 3. Nolting: Grundkurs Theoretische Physik zusätzlich: Sommerfeld: Landau/Lifschitz:

Mehr

Übungsblatt 2. Arbeit beim elektrischen Auaden. Eine Kugel aus Metall habe den Radius R = 5cm und sei zu beginn elektrisch neutral geladen.

Übungsblatt 2. Arbeit beim elektrischen Auaden. Eine Kugel aus Metall habe den Radius R = 5cm und sei zu beginn elektrisch neutral geladen. Aufgabe 5 Arbeit beim elektrischen Auaden Eine Kugel aus Metall habe den Radius R = 5cm und sei zu beginn elektrisch neutral geladen. a) Welche Arbeit W ist erforderlich, um die Kugel auf die Ladung Q

Mehr

6.4.8 Induktion von Helmholtzspulen ******

6.4.8 Induktion von Helmholtzspulen ****** V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment

Mehr

12 Der Gaußsche Integralsatz

12 Der Gaußsche Integralsatz 12. Der Gaußsche Integralsatz 1 12 Der Gaußsche Integralsatz Das Ziel dieses Abschnitts ist die folgende zentrale Aussage der mehrdimensionalen Analysis und der Theorie der partiellen Differentialgleichungen:

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 29. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 29. 05.

Mehr

24 Herleitung der Maxwell-Gleichungen

24 Herleitung der Maxwell-Gleichungen 24 Herleitung der Maxwell-Gleichungen In dieser Vorlesung werden wir die Maxwell-Gleichungen aus rein theoretischen Erwägungen herleiten. Dabei muß der Begriff Herleitung allerdings mit Vorsicht betrachtet

Mehr

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung

Kapitel 6. Der Lagrange-Formalismus. 6.2 Lagrange-Funktion in der relativistischen Feldtheorie. 6.1 Euler-Lagrange-Gleichung 92 Teilchenphysik, HS 2007-SS 2008, Prof. A. Rubbia (ETH Zurich) 6.2 Lagrange-Funktion in der relativistischen Felheorie Kapitel 6 Der Lagrange-Formalismus 6.1 Euler-Lagrange-Gleichung In der Quantenmechanik

Mehr

6. Die dreidimensionale Wellengleichung

6. Die dreidimensionale Wellengleichung H.J. Oberle Differentialgleichungen II SoSe 2013 6. Die dreidimensionale Wellengleichung Wir suchen Lösungen u(x, t) der folgenden AWA für die 3-D Wellengleichung u t t c 2 3 u = 0, x R 3, t 0, u(x, 0)

Mehr

Musterlösungen zur Übung Elektrotechnik 2 SS 2013

Musterlösungen zur Übung Elektrotechnik 2 SS 2013 TNF Musterlösungen zur Übung Elektrotechnik 2 SS 2013 Übungsleiter: Christian Diskus Martin Heinisch Erwin Reichel Institut für Mikroelektronik und Mikrosensorik Altenbergerstr. 69, 4040 Linz, Internet:

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2009-2 Name : Vorname : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe

Mehr

TU München, Musterlösung. Ferienkurs Experimentalphysik II: Elektrostatik und elektrischer Strom. Rolf Ripszam. x + a. L = q.

TU München, Musterlösung. Ferienkurs Experimentalphysik II: Elektrostatik und elektrischer Strom. Rolf Ripszam. x + a. L = q. TU München, 9.08.2009 Musterlösung Geladener Stab Ferienkurs Experimentalphysik II: Elektrostatik und elektrischer Strom Rolf Ripszam (a) Der Stab ist homogen geladen, also gilt einfach λ = L. (b) Das

Mehr

Teil VI. Das elektromagnetische Feld in Materie. 13. Makroskopische Felder. f( x, t) = d 3 ξ dτ f( x + ξ, t + τ) (13.1) E + B t = 0 (13.

Teil VI. Das elektromagnetische Feld in Materie. 13. Makroskopische Felder. f( x, t) = d 3 ξ dτ f( x + ξ, t + τ) (13.1) E + B t = 0 (13. 13. Makroskopische Felder Teil VI Das elektromagnetische Feld in Materie Im Prinzip erlauben die Maxwell-Gleichungen von Teil III das elektromagnetische Feld beliebiger Materieanordnungen zu berechnen,

Mehr

INHALTSVERZEICHNIS. Seite 1 VEKTOREN UND EINFACHE GESETZMÄSSIGKEITEN

INHALTSVERZEICHNIS. Seite 1 VEKTOREN UND EINFACHE GESETZMÄSSIGKEITEN I INHALTSVERZEICHNIS Seite 1 VEKTOREN UND EINFACHE GESETZMÄSSIGKEITEN 1 1.1 Skalare und Vektoren 1.2 Art von Vektoren 1.3 Summe und Differenz von Vektoren 1.4 Parallele Vektoren 1.5 Betrag eines Vektors

Mehr

V4.3 Rotation, Satz von Stokes. Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck:

V4.3 Rotation, Satz von Stokes. Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck: V4.3 Rotation, Satz von Stokes Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck: Erinnerung: Gradiententelder sind 'wirbelfrei': Für ein beliebiges (zweifach

Mehr

Elektromagnetische Eigenschaften von Metallen, Potentiale

Elektromagnetische Eigenschaften von Metallen, Potentiale Übung 8 Abgabe: 02.05. bzw. 05.05.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Elektromagnetische Eigenschaften von Metallen, Potentiale

Mehr

Magnetismus Elektrizität 19. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Zeitabhängig (dynamisch)

Magnetismus Elektrizität 19. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Zeitabhängig (dynamisch) Magnetismus Elektrizität 9. Jhd: Magnetismus und Elektrizität sind zwei unterschiedliche Aspekte eines neues Konzeptes : Elektromagnetisches Feld Realität: elektrische Ladung elektrisches Feld magnetisches

Mehr

Themenschwerpunkt A. Mechanik

Themenschwerpunkt A. Mechanik Herbst 2011 Einzelprüfungsnummer: 64013 Seite: 1 Themenschwerpunkt A Mechanik Aufgabe 1: Reibung Ein Teilchen der Masse m bewege sich mit der Anfangsgeschwindigkeit v 0 > 0 in x-richtung und soll durch

Mehr

6.4 Oberflächenintegrale 1. und 2. Art

6.4 Oberflächenintegrale 1. und 2. Art 6.4 Oberflächenintegrale. und. Art 6.4. Integration über Flächen im Raum Es gibt verschiedene Möglichkeiten der arstellung von Flächen im Raum:. explizite arstellung als Graph z = f(x, y), was aber eigentlich

Mehr