Im folgenden Schaltkreis beobachtet man eigenartige Phänomene: = > Beim Einschalten leuchtet die Glühbirne für

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Im folgenden Schaltkreis beobachtet man eigenartige Phänomene: = > Beim Einschalten leuchtet die Glühbirne für"

Transkript

1 + Kapitel 4 KAPAZITÄT und ENERGIE 4. Kondensator Ein Kondensator besteht typischerweise aus zwei Leiterplatten, die sich in einem kleinen Abstand voneinander befinden. Meist liegt zwischen den Elektroden eine dielektrische Isolierschicht, die auch zur Erhöhung der Kapazität führt. Im folgenden Schaltkreis beobachtet man eigenartige Phänomene: = > Beim Einschalten leuchtet die Glühbirne für einige Zeit auf, wird immer schwächer und verlischt, wenn der Kondensator aufgeladen ist. Ersetzt man darauf hin die Stromquelle durch einen Kurzschluss beobachtet man dasselbe Phänomen: Die Glühbirne leuchtet für einige Zeit auf, wird immer schwächer und verlischt, wenn der Kondensator entladen ist. = F A * = J J A H E A * = J J A H E A Zu Beginn besteht keine Potentialdifferenz zwischen den Kondensatorplatten. Deshalb erscheint beim Anlegen der Batterie die Potentialdifferenz U b an der Glühlampe und sie leuchtet. Der Stromfluß durch die Lampe führt zur Aufladung des Kondensators, bis die Kondensatorspannung den Wert U c U b. erreicht. 33

2 34 KAPITEL 4. KAPAZITÄT UND ENERGIE Im geladenen Zustand beschreibt man den Kondensator durch zwei Elektroden, die jeweils die Ladungen + und tragen. Die beiden Elektroden befinden sich auf dem Potential φ und φ 2. Die Potentialdifferenz beträgt U = φ φ 2. Die Flächenladungsdichte auf den Elektroden ist σ = /ɛ 0. Das Feld im Kondensator ist proportional zur Ladung, die auf den Leiterflächen sitzt und umso kleiner, je größer die Elektrodenoberfläche A ist (siehe dazu Seite 7) E = ɛ 0 A = σ ɛ 0 (4.) Die Kapazität dieses Systems definiert man als C = U (4.2) Die Dimension der Kapazität ist [ ] Coulomb = [F arad] (4.3) V olt Gebräuchlich sind Kondensatoren im Pico, Nano und MikrofaradBereich. Feld in einem Plattenkondensator Zwei Platten, bei x = 0 und bei x = d, tragen die Ladungen + und. Im Raum dazwischen befinden sich keine freien Ladungen (auch keine Materie). Zur Berechnung der Potentialverteilung verwenden wir die LaplaceGleichung (siehe Seite 20) in einer Dimension d 2 φ = 0 φ(x) = ax + b (4.4) dx2 mit den Randbedingungen φ x=0 = φ = b und φ x=d = φ 2 = ad + φ. Mit a = (φ 2 φ )/d = U/d ergibt sich der Potentialverlauf zwischen den Platten als φ(x) = U d x + φ (4.5) und das Feld als E = φ = U ˆx. (4.6) d Bei einer Plattenfläche A gilt für den Betrag ( ausgedehnter B B 7 E = σ ɛ 0 = ɛ 0 A = U d (4.7) und den Proportionalitätsfaktor in der Beziehung = C U, die Kapazität C = ɛ 0 A d. (4.8) Diese Gleichung gilt für einen mit Luft (=Vakuum) gefüllten Kondensator. Beispiel: für A = cm 2 und d = mm ist C = 0.9 pf.

3 3 H 4.. KONDENSATOR 35 Kapazität eines Kugelkondensators Zwei konzentrische Hohlkugeln mit den Radien r i und r a tragen die Ladungen + und. Im Innenraum r < r i herrscht kein Feld. Das Potential in diesem Bereich ist gleich dem der inneren Kugel φ i = f c r i (4.9) Das Feld zwischen beiden Kugelflächen ist gleich dem, das durch eine im Kugelmittelpunkt sitzende Ladung + erzeugt würde: E(r >r i ) = f c r 2 êr (4.0) Das Potential für (r i <r <r a ) ist φ(r) = f c r (4.) 3 H E H = Im Aussenraum (r >r a ) addiert sich das Feld der innernen Kugel (Gl.4.0) und das der äußeren Kugel zum Gesamtfeld Null (die eingeschlossene Gesamtladung ist gleich Null). Die Feldstärke macht an der Innen bzw. Aussenwand je einen Sprung um σ/ɛ 0, wobei in unserem Beispiel σ i = +/(4ri 2π) und σ a = /(4raπ) 2 ist. Die Potentialdifferenz zwischen den Kugelflächen ist ( U = φ i φ a = f c ) (4.2) r i r a Damit ist die Kapazität des Kugelkondensators C = U = = φ i φ a f c r i r a r a r i (4.3) Wenn der Abstand zwischen den Kugelflächen klein ist (r i R r a ), führen wir für den Abstand d = r a r i ein und setzen R 2 r i r a C = f c R 2 d = 4πɛ 0R 2 d = ɛ 0 A d wobei A = 4R 2 π die Oberfläche der Kugel ist. (4.4) Inwieweit im Außenraum dennoch eine von Null verschiedene Feldstärke vorliegt, hägt von der Potentialdifferenz zwischen der äußeren Kugel und seiner Umgebung ab! Im Bild hier haben wir die äussere Hohlkugel geerdet.

4 36 KAPITEL 4. KAPAZITÄT UND ENERGIE Kapazität einer Kugel Wenn wir den Radius der äußeren Kugel gegen anwachsen lassen, ergibt sich aus (4.2) die Kapazität einer einzelnen Kugel mit Radius R = r i gegenüber einer Gegenelektrode im Unendlichen (φ = 0) als C = 4πɛ 0 R (4.5) Schaltung von Kondensatoren parallel: gleiche Spannung liegt an der Summe der Flächen, damit steigt nach Gl.(4.8) die Kapazität C gesamt = i C i. (4.6) in Serie: Die gleiche Ladungsdifferenz (jeweils + und ) verteilt sich über die Summe der Abstände zwischen den Kondensatorplatten. Für die gesamte angliegende Spannung gilt U 0 = i U i. Damit sinkt nach Gl.(4.8) die Kapazität C gesamt = i C i. (4.7) Spannungsüberhöhung bei Verringerung der Kapazität Wir laden einen Kondensator auf, an dem ein Elektrometer angeschlossen ist. Die Ladung verteilt sich auf den Kondensator und das Elektrometer gemäß ges = C + E = C E U E + C C U C Die Ladung sei zeitlich konstant. Die Potentialdifferenz U E = U C = U und ges = (C E + C C ) U Wenn wir jetzt den Plattenabstand d erhöhen und damit die Kapazität C C erniedrigen, dann steigt die Spannung U an! 7 7 +

5 ) Energie des elektrischen 3 Ein Ladungslöffel überträgt die Ladungsmenge d auf eine isolierte Kugel im Vakuum und leistet dabei die Arbeit dw = d (φ R φ ) = d φ R wobei wir φ = 0 gesetzt haben. Für das Potential der Kugel schreiben wir φ R = f c R. Die Arbeit ist also gleich W = f c R d = 4πɛ 0 R 2 2 = 2 2 C Eine geladene Kugel ist damit ein Energiespeicher (4.8) W el = 2 2 C = 2 CU 2 (4.9) Diese Gleichung verwenden wir jetzt für einen Plattenkondensator. Für einen ebenen Plattenkondensator gelten die Beziehungen: und C = ɛ 0 A/d U = E d Mit dem Ausdruck für das im Volumen des Kondensators A d = V ist die im elektrischen Feld des Plattenkondensators gespeicherte Energie W el = 2 C U 2 = 2 ɛ 0E 2 Ad = 2 ɛ 0E 2 V (4.20) Diese Beziehung gilt für beliebige elektrische Feldanordnungen im Vakuum. Über sie lässt sich die Energiedichte des elektrischen Feldes definieren: w el = W el /V = 2 ɛ 0E 2 (4.2) Die Dimension der Energiedichte des elektrischen Feldes ergibt sich aus dieser Gleichung als [ ] [w el ] = 2 ɛ 0E 2 = A s V 2 V m m 2 = V A s m 3 = W s m 3 = J m 3 (4.22)

6 38 Kraft zwischen Platten eines Kondensators Das elektrische Feld zwischen den Platten eines Kondensators beträgt E = σ ɛ 0 = ɛ 0 A (4.23) wobei A die Plattenfläche angibt. Die elektrische Feldstärke ist unabhängig vom Abstand der Platten (siehe Seite 7). Da die Platten entgegengesetzt geladen sind (+ und ) ziehen sie sich mit einer Kraft F an. Vergrößern wir den Plattenabstand d um einen Betrag d, dann leisten wir die Arbeit F d. Dieser Arbeit entspricht eine Zunahme der elektrostatischen Feldenergie um 2 ɛ 0E 2 A d. Damit ergibt sich für die Kraft zwischen beiden Platten F = 2 ɛ 0E 2 A = 2 E (4.24) wobei wir E = /(ɛ 0 A) verwendet haben. Der Faktor /2 gegenüber dem Ausdruck (2.9) ist folgendermaßen einzusehen: Ausserhalb der Kondensatorplatten ist das elektrische Feld gleich Null. Die Feldstärke fällt also über die endliche Dicke der Ladungsschicht auf der Kondensatorplatte auf Null ab, sodass auf die Ladungen im Mittel nur das Feld E/2 wirkt. Sicherheitsaspekte Die Gefährlichkeit eines Stromschlages ist durch die Größe des Stromes bestimmt. Kleine Ströme (< 5 ma) spürt man als unangenehm, sie führen aber zu keinem dauerhaften Schaden. Ströme > 50 ma führen zu Schäden, da sie Nervensignale übertreffen und Muskeln (Herz) einfrieren lassen. Trifft dies für mehrere Sekunden zu, kann dies zum Tod führen. Der typische Innenwiderstand des menschlichen Körpers liegt im Bereich von einigen 00 Ω. Damit ist die Spannungsgrenze für gefährliche Stromschläge im Bereich von U = I R = = 5 V olt! Das bedeutet, dass im Prinzip eine Autobatterie für einen tödlichen Stromschlag ausreicht. Auf Grund des hohen Widerstandes trockener Haut ( 20kΩ) liegt aber die gefährliche Grenze erheblich höher. Aus diesem Grund überlebt man typisch den Stromschlag aus dem Netz (es sei denn, man sitzt in der Badewanne). Ein weiterer Gesichtspunkt ist die Leistung der Stromquelle. Eine kv Überlandleitung kann problemlos über längere Zeit große Ströme abführen und ist damit tödlich. Ein VandeGraff Generator schafft mehrere 00 kv, kann aber nur Strom für sehr kurze Zeit liefern. Dasselbe gilt für eine TeslaSpule die mehrere 0 6 V liefert, aber im Normalfall keine großen Ströme. Beim Gehen auf einem isolierten Teppich kann sich der Körper auf mehrere Tausend Volt aufladen und mit einem entsprechenden Blitz (z.b. bei Berührung mit einem geerdeten Stiegengeländer) entladen, ohne dass großer Schaden entsteht.

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 3 Bearbeitung: 25.11.2011

Mehr

Übungsaufgaben z. Th. Plattenkondensator

Übungsaufgaben z. Th. Plattenkondensator Übungsaufgaben z. Th. Plattenkondensator Aufgabe 1 Die Platten eines Kondensators haben den Radius r 18 cm. Der Abstand zwischen den Platten beträgt d 1,5 cm. An den Kondensator wird die Spannung U 8,

Mehr

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz 5 Elektrizität und Magnetismus 5.5 Elektrisches Zentralfeld, Coulombsches Gesetz Elektrisches Zentralfeld Kugel mit Radius r um eine Punktladung = ǫ 0 Ed A = ǫ 0 E E d A Kugel da = ǫ 0 E(4πr 2 ) (5.26)

Mehr

Inhalt. Kapitel 3: Elektrisches Feld

Inhalt. Kapitel 3: Elektrisches Feld Inhalt Kapitel 3: Ladung Elektrische Feldstärke Elektrischer Fluss Elektrostatische Felder Kapazität Kugel- und Plattenkondensator Energie im elektrostatischen Feld Ladung und Feldstärke Ladung Q = n e,

Mehr

= Dimension: = (Farad)

= Dimension: = (Farad) Kapazität / Kondensator Ein Kondensator dient zur Speicherung elektrischer Ladung Die Speicherkapazität eines Kondensators wird mit der Größe 'Kapazität' bezeichnet Die Kapazität C ist definiert als: Dimension:

Mehr

Übungsblatt 03 Grundkurs IIIb für Physiker

Übungsblatt 03 Grundkurs IIIb für Physiker Übungsblatt 03 Grundkurs IIIb für Physiker Othmar Marti, (othmar.marti@physik.uni-ulm.de) 8.. 2002 oder 25.. 2002 Aufgaben für die Übungsstunden Elektrostatisches Potential,. Zwei identische, ungeladene,

Mehr

Lk Physik in 12/1 1. Klausur aus der Physik Blatt 1 (von 2) C = 4πε o r

Lk Physik in 12/1 1. Klausur aus der Physik Blatt 1 (von 2) C = 4πε o r Blatt 1 (von 2) 1. Ladung der Erde 6 BE a) Leite aus dem oulombpotential die Beziehung = 4πε o r für die Kapazität einer leitenden Kugel mit Radius r her. In der Atmosphäre herrscht nahe der Erdoberfläche

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 26/8/13 Technische Universität München Abbildung 1: Punktladungen 1 Aufgaben zur Elektrostatik Aufgabe 1 Gegeben seien drei

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Aufgaben

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Aufgaben Physik-Department Ferienkurs zur Experimentalphysik 2 - Aufgaben Daniel Jost 26/08/13 Technische Universität München Aufgabe 1 Gegeben seien drei Ladungen q 1 = q, q 2 = q und q 3 = q, die sich an den

Mehr

K l a u s u r N r. 2 Gk Ph 12

K l a u s u r N r. 2 Gk Ph 12 0.2.2009 K l a u s u r N r. 2 Gk Ph 2 ) Leiten Sie die Formel für die Gesamtkapazität von drei in Serie geschalteten Kondensatoren her. (Zeichnung, Formeln, begründender Text) 2) Berechnen Sie die Gesamtkapazität

Mehr

2 Das elektrostatische Feld

2 Das elektrostatische Feld Das elektrostatische Feld Das elektrostatische Feld wird durch ruhende elektrische Ladungen verursacht, d.h. es fließt kein Strom. Auf die ruhenden Ladungen wirken Coulomb-Kräfte, die über das Coulombsche

Mehr

KAPAZITÄT und ENERGIE

KAPAZITÄT und ENERGIE Kapitel 4 KAPAZITÄT und ENERGIE 4. Kondensator Ein Kondensator besteht aus zwei Leiterplatten, die sich in einem kleinen Abstand voneinander befinden. Häufig bringt man zwischen den Elektroden eine dielektrische

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Übung 1 - Angabe Technische Universität München 1 Fakultät für Physik 1 Kupfermünze Die alte, von 1793 bis 1837 geprägte Pennymünze in den USA bestand aus reinem

Mehr

Übungsblatt 03. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 03. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 03 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 29. 11. 2004 oder 6. 12. 2004 1 Aufgaben 1. In einer Metall-Hohlkugel (Innenradius

Mehr

1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität

1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität 1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität Ladung und Stromstärke Die Einheit der Stromstärke wurde früher durch einen chemischen Prozess definiert; heute

Mehr

Zusammenfassung v06 vom 2. Mai 2013

Zusammenfassung v06 vom 2. Mai 2013 Zusammenfassung v06 vom 2. Mai 2013 Ausflug in die Kernphysik: Atomkerne des Elements Sym werden durch Angabe der Massenzahl A und Kernladungszahl Z spezifiziert: A = Z + N, wobei N die Neutronenzahl ist.

Mehr

Physik für Naturwissenschaften (HS 2016) Lösungen

Physik für Naturwissenschaften (HS 2016) Lösungen Physik für Naturwissenschaften (HS 2016) Lösungen students4students info@students4students.ch 1 Inhaltsverzeichnis 1 Serie 1 1 1.1 Elektrostatisches Pendel....................... 1 1.1.1 Aufgabe............................

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 19. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 05.

Mehr

Physik. Abiturwiederholung. Das Elektrische Feld

Physik. Abiturwiederholung. Das Elektrische Feld Das Elektrische Feld Strom Strom ist bewegte Ladung, die Stromstärke ergibt sich also als Veränderung der Ladung nach der Zeit, also durch die Ableitung. Somit kann man die Ladung als Fläche betrachten,

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 27. 04. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 27. 04. 2009

Mehr

Übungsblatt 3 - Lösungen

Übungsblatt 3 - Lösungen Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.

Mehr

Aufgaben zur Elektrizitätslehre

Aufgaben zur Elektrizitätslehre Aufgaben zur Elektrizitätslehre Elektrischer Strom, elektrische Ladung 1. In einem Metalldraht bei Zimmertemperatur übernehmen folgende Ladungsträger den Stromtransport (A) nur negative Ionen (B) negative

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 19/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Elektrizitätslehre Teil 2 Kondensator Kondensator Im einfachsten Fall besteht ein Kondensator aus

Mehr

Übungsbeispiele: 1) Auf eine Ladung von 20nClb wirkt eine Kraft von 8mN. Berechnen Sie die Feldstärke.

Übungsbeispiele: 1) Auf eine Ladung von 20nClb wirkt eine Kraft von 8mN. Berechnen Sie die Feldstärke. Übungsbeispiele: 1) Auf eine Ladung von 20nClb wirkt eine Kraft von 8mN. Berechnen Sie die Feldstärke. 2) Zwischen zwei Aluminum-Folien eines Wickelkondensators,der an einer Gleichspannung vo 60 V liegt,

Mehr

Physik Klausur

Physik Klausur Physik Klausur 1.1 1 6. November 00 Aufgaben Aufgabe 1 a) Eine Kugel mit der Ladung q 3 nc und der Masse m 1 g hängt an einem Faden der Länge l 1 m. Der Kondersator hat den Plattenabstand d 0 10 cm und

Mehr

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz KRG NW, Physik Klasse 10, Kräfte auf Ladungen, Kondensator, Fachlehrer Stahl Seite 1 Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz Kraft auf eine Probeladung q im elektrischen Feld (homogen,

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 4 - letzte Übung in

Mehr

Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert.

Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert. Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert. 11.1 Grundlagen Versuch 1: "Der geladene Schüler" Beobachtungen:

Mehr

Aufgaben zum Kondensator - ausgegeben am

Aufgaben zum Kondensator - ausgegeben am Aufgaben zum Kondensator - ausgegeben am 17.09.2012 konden2_17_09_2012.doc 1.Aufgabe: Ein Kondensator hat die Plattenfläche A 1,2 10-2 m 2, den Plattenabstand d 0,5 mm und die Ladung Q 2,6 10-7 C. Berechnen

Mehr

81 Übungen und Lösungen

81 Übungen und Lösungen STR ING Elektrotechnik 10-81 - 1 _ 81 Übungen und Lösungen 81.1 Übungen 1. ELEKTRISCHES FELD a 2 A α 1 b B Zwischen zwei metallischen Platten mit dem Abstand a = 15 mm herrsche eine elektrische Feldstärke

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 1 Thema: Elektrostatik Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Ladungen und Coulomb-Gesetz...................

Mehr

TU München, Musterlösung. Ferienkurs Experimentalphysik II: Elektrostatik und elektrischer Strom. Rolf Ripszam. x + a. L = q.

TU München, Musterlösung. Ferienkurs Experimentalphysik II: Elektrostatik und elektrischer Strom. Rolf Ripszam. x + a. L = q. TU München, 9.08.2009 Musterlösung Geladener Stab Ferienkurs Experimentalphysik II: Elektrostatik und elektrischer Strom Rolf Ripszam (a) Der Stab ist homogen geladen, also gilt einfach λ = L. (b) Das

Mehr

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern Elektromagnetische Felder und Wellen Klausur Herbst 2000 Aufgabe 1 (5 Punkte) Ein magnetischer Dipol hat das Moment m = m e z. Wie groß ist Feld B auf der z- Achse bei z = a, wenn sich der Dipol auf der

Mehr

Übung 3 - Musterlösung

Übung 3 - Musterlösung Experientalphysik 2 für Lehratskandidaten und Meteorologen 5. Mai 200 Übungsgruppenleiter: Heiko Dulich Übung 3 - Musterlösung Aufgabe 6: Wann funkt es? Eigene Koordinaten r 2, 2. Hohlkugel: Koordinaten

Mehr

Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/

Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/ Aufgaben zur Vorbereitung der Klausur zur Vorlesung inführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS213/14 5.2.213 Aufgabe 1 Zwei Widerstände R 1 =1 Ω und R 2 =2 Ω sind in

Mehr

Rechenübungen zum Physik Grundkurs 2 im SS 2010

Rechenübungen zum Physik Grundkurs 2 im SS 2010 Rechenübungen zum Physik Grundkurs 2 im SS 2010 1. Klausur (Abgabe Mi 2.6.2010, 12.00 Uhr N7) Name, Vorname: Geburtstag: Ihre Identifizierungs-Nr. (ID1) ist: 122 Hinweise: Studentenausweis: Hilfsmittel:

Mehr

Inhalt. 10. Elektrostatik. 10. Elektrostatik

Inhalt. 10. Elektrostatik. 10. Elektrostatik Inhalt 10. Elektrostatik 10.1 Elektrische Ladung 10.2 Coulombsches Gesetz 10.3 Elektrisches Feld 10.4 Kraft auf Ladungen 10.5 Elektrisches Potential 10.6 Elektrische Kapazität 1.1 Der Raum 10.1 Elektrische

Mehr

Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung:

Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung: 3.11 Der Kondensator In den vorangegangenen Kapiteln wurden die physikalischen Eigenschaften von elektrischen Ladungen und Feldern näher untersucht. In vielen Experimenten kamen dabei bereits Kondensatoren

Mehr

Aufgabe 1 Kondensatorformel

Aufgabe 1 Kondensatorformel Physikklausur Elektrische Felder Tarmstedt, 02.10.2009 erhöhtes Niveau (Folker Steinkamp) Ph_eN_2011 Name: Punkte: von Notenp. Zensur Aufgabe 1 Kondensatorformel Versuchsbeschreibung: Lädt man einen Kondensator

Mehr

E q q 4. Die elektrische Feldstärke ist eigentlich ein Vektor der in Richtung der Coulombkraft zeigt falls eine (positive) Ladung q vorhanden wäre.

E q q 4. Die elektrische Feldstärke ist eigentlich ein Vektor der in Richtung der Coulombkraft zeigt falls eine (positive) Ladung q vorhanden wäre. 11.3 Elektrische Feldstärke Hat man eine Ladung Q und bringt in deren Nähe eine zweite Ladung q so erfährt die zweite Ladung eine abstoßende bzw. anziehende Kraft F C. Da diese Kraft an jeder Stelle in

Mehr

9. Elektrostatik Physik für Informatiker. 9. Elektrostatik

9. Elektrostatik Physik für Informatiker. 9. Elektrostatik 9. Elektrostatik 9.1 Elektrische Ladung 9.2 Coulombsches Gesetz 9.3 Elektrisches Feld 9.4 Kraft auf Ladungen 9.5 Elektrisches Potential 9.6 Elektrische Kapazität 9.1 Elektrische Ladung Es gibt (genau)

Mehr

Der Ladungsbetrag Q, den jede Kondensatorplatten aufnimmt, ist dabei proportional zur angelegten. Q U = konst.

Der Ladungsbetrag Q, den jede Kondensatorplatten aufnimmt, ist dabei proportional zur angelegten. Q U = konst. I. Elektrostatik ==================================================================. Das elektrische Feld eines Plattenkondensators Ein Plattenkondensator besteht aus zwei sich parallel gegenüberliegenden

Mehr

2. Klausur in K1 am

2. Klausur in K1 am Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Klausur in K am 7.. 00 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

1. Klausur in K1 am

1. Klausur in K1 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 4. 0. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.)

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) 1 Grieskörner schwimmen in Rhizinusöl. Weil sie kleine Dipole werden, richten sie sich entlang der Feldlinien

Mehr

Das statische elektrische Feld

Das statische elektrische Feld Das statische elektrische Feld M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis 1 Darstellung eines elektrischen Feldes (6 Std.) Wiederholung Die elektrische Ladung Das elektrische Feld

Mehr

6 Methoden zur Lösung des elektrostatischen Randwertproblems

6 Methoden zur Lösung des elektrostatischen Randwertproblems 6 Methoden zur Lösung des elektrostatischen Randwertproblems Die generelle Strategie zur Lösung des elektrostatischen Randwertproblems umfaßt zwei Schritte: 1. Finde eine spezielle Lösung der Poisson-Gleichung

Mehr

2. Elektrisches Feld 2.2 Elektrostatisches Feld

2. Elektrisches Feld 2.2 Elektrostatisches Feld Definition Verschiebungsfluß und Verschiebungsflußdichte Arbeit im elektrostatischen Feld Feld einer geladenen Kugel, Zylinder Potential im elektrischen Feld Feld einer Linienladung 1 Feldbegriff Elektrisches

Mehr

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern.

Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16. Kapazität Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16.1 Plattenkondensator Das einfachste Beispiel für einen Kondensator ist der

Mehr

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld 11. Elektrodynamik Physik für ETechniker 11. Elektrodynamik 11.1 Das Gaußsche Gesetz 11.2 Kraft auf Ladungen 11.2.1 Punktladung im elektrischen Feld 11.2.2 Dipol im elektrischen Feld 11. Elektrodynamik

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Technische Universität München Physik Department Ferienkurs Experimentalphysik 2 Vorlesung 1: Elektrostatik Tutoren: Elena Kaiser Matthias Golibrzuch Nach dem Skript Konzepte der Experimentalphysik 2:

Mehr

Ferienkurs der Experimentalphysik II Musterlösung Übung 3

Ferienkurs der Experimentalphysik II Musterlösung Übung 3 Ferienkurs der Experimentalphysik II Musterlösung Übung 3 Michael Mittermair 29. August 213 1 Aufgabe 1 Wie groß ist die Leistung, die von einem geladenen Teilchen mit der Ladung q abgestrahlt wird, das

Mehr

10. Elektrostatik Elektrische Ladung 10.2 Coulomb sches Gesetz Kraft auf Ladungen 10.5 Elektrisches Potential 10.6 Elektrische Kapazität

10. Elektrostatik Elektrische Ladung 10.2 Coulomb sches Gesetz Kraft auf Ladungen 10.5 Elektrisches Potential 10.6 Elektrische Kapazität 10. Elektrostatik 10.11 Elektrische Ladung 10.2 Coulomb sches Gesetz 10.3 Elektrisches Feld 10.4 Kraft auf Ladungen 10.5 Elektrisches Potential 10.6 Elektrische Kapazität 10.1 Elektrische Ladung Es gibt

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur

Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2014-2 1 Aufgabe 1 ( 7 Punkte) Eine ebene Welle der Form E = (E x, ie x, 0) exp{i(kz + ωt)} trifft aus dem Vakuum bei z = 0 auf ein Medium mit ε = 6 und

Mehr

IIE2. Modul Elektrizitätslehre II. Dielektrika

IIE2. Modul Elektrizitätslehre II. Dielektrika IIE2 Modul Elektrizitätslehre II Dielektrika Ziel dieses Versuches ist, die Funktionsweise eines Kondensators mit Dielektrikum zu verstehen. Des weiteren soll die Kapazität des Kondensators und die relative

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

Grundlagen der Elektrotechnik II Übungsaufgaben

Grundlagen der Elektrotechnik II Übungsaufgaben Grundlagen der Elektrotechnik II Übungsaufgaben Mag. Manfred Smolik Wien, 2. Juni 2016 Inhaltsverzeichnis 1 Kondensator 1 2 Magnetische Feldstärke 4 3 Magnetischer Fluss, magnetische Flussdichte 6 4 Induktivität

Mehr

Frequenzverhalten eines Kondensators Ein Kondensator hat bei 50 Hz einen kapazitiven Blindwiderstand von

Frequenzverhalten eines Kondensators Ein Kondensator hat bei 50 Hz einen kapazitiven Blindwiderstand von TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ INDUKTION, EINPHASEN-WECHSELSTROM PETITIONEN KONDENSATOR IM WECHSELSTROMKIS 7 Frequenzverhalten eines Kondensators Ein Kondensator hat bei 0 Hz einen kapazitiven Blindwiderstand

Mehr

Elektrisches Potenzial Kapitel 25

Elektrisches Potenzial Kapitel 25 Elektrisches Potenzial Kapitel 25 Zusammenfassung Coulomb (22) gleiche Ladungen stoßen sich ab ungleiche Ladungen ziehen sich an Das elektrische Feld (23) Ein geladener Körper beeinflusst einen anderen

Mehr

Übungen zu ET1. 3. Berechnen Sie den Strom I der durch die Schaltung fließt!

Übungen zu ET1. 3. Berechnen Sie den Strom I der durch die Schaltung fließt! Aufgabe 1 An eine Reihenschaltung bestehend aus sechs Widerständen wird eine Spannung von U = 155V angelegt. Die Widerstandwerte betragen: R 1 = 390Ω R 2 = 270Ω R 3 = 560Ω R 4 = 220Ω R 5 = 680Ω R 6 = 180Ω

Mehr

Aufgabensammlung zu Kapitel 2

Aufgabensammlung zu Kapitel 2 Aufgabensammlung zu Kapitel 2 Aufgabe 2.1: Ein Plattenkondensator (quadratische Platten der Kantenlänge a=15cm, Plattenabstand d=5mm) wird an eine Gleichspannungsquelle mit U=375V angeschlossen. Berechnen

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD Elektrizitätslehre Coulombgesetz Durchgeführt am 1.6.6 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Marcel Müller Marius Schirmer Inhaltsverzeichnis 1 Ziel des

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt Dr.

Mehr

Elektrotechnische Grundlagen, WS 00/01. Musterlösung Übungsblatt 1. Hieraus läßt sich der Strom I 0 berechnen:

Elektrotechnische Grundlagen, WS 00/01. Musterlösung Übungsblatt 1. Hieraus läßt sich der Strom I 0 berechnen: Elektrotechnische Grundlagen, WS 00/0 Prof. aitinger / Lammert esprechung: 06..000 ufgabe Widerstandsnetzwerk estimmen Sie die Werte der Spannungen,, 3 und 4 sowie der Ströme, I, I, I 3 und I 4 in der

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Elektronen im elektrischen Querfeld. Die nebenstehende Skizze

Mehr

Das elektrische Potential

Das elektrische Potential Das elektrische Potential Wir gehen nun genauso wie in der Mechanik vor: nachdem wir die elektrische Kraft diskutiert und durch eine Feldgröße beschrieben haben (das elektrische Feld E), betrachten wir

Mehr

Elektrodynamik. 1. Elektrostatik

Elektrodynamik. 1. Elektrostatik Elektrodynamik 1. Elektrostatik 1.1 Elektrische Ladung Es gibt positive und negative Ladungen. Sie ist quantisiert, d.h. jede beobachtete Ladung ist ein ganzes Vielfaches der Elementarladung: In jedem

Mehr

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS03/04. Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:...

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS03/04. Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:... Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik WS03/04 Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 29. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 29. 05.

Mehr

Moderne Theoretische Physik WS 2013/2014

Moderne Theoretische Physik WS 2013/2014 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 23/24 Prof. Dr. A. Shnirman Blatt 2:Lösungen Dr. B. Narozhny Besprechung 8..23. Gauß scher

Mehr

Probeklausur. Bitte schreiben Sie Ihren Namen auf jede Seite und legen Sie Ihren Lichtbildausweis bereit.

Probeklausur. Bitte schreiben Sie Ihren Namen auf jede Seite und legen Sie Ihren Lichtbildausweis bereit. PN2 Einführung in die Physik für Chemiker 2 Prof. J. Lipfert SS 2016 Probeklausur Probeklausur Name: Matrikelnummer: Bitte schreiben Sie Ihren Namen auf jede Seite und legen Sie Ihren Lichtbildausweis

Mehr

Elektrisches und magnetisches Feld. Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion

Elektrisches und magnetisches Feld. Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion Elektrisches und magnetisches Feld Elektrostatik Das elektrische Feld Kondensator Magnetische Felder Induktion Elektrostatik Elektrostatische Grundbegriffe Zusammenhang zwischen Ladung und Stromstärke

Mehr

Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen)

Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Der Kondensator Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Kondensatoren sind Bauelemente, welche elektrische Ladungen bzw. elektrische Energie

Mehr

Elektrotechnik I MAVT

Elektrotechnik I MAVT Prof. Dr. Q. Huang Elektrotechnik MAVT Prüfung H07 BSc 23.08.2007 1. [30P] DC-Aufgaben (a) [9P] Betrachten Sie die Schaltung in Abbildung 1 und lösen Sie die nachfolgenden Aufgaben. Vereinfachen Sie die

Mehr

Polarisierung und Magnetisierung

Polarisierung und Magnetisierung Übung 2 Abgabe: 10.03. bzw. 14.03.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisierung und Magnetisierung 1 Mathematische

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

Aufgabe 1 ( 3 Punkte)

Aufgabe 1 ( 3 Punkte) Elektromagnetische Felder und Wellen: Klausur 2016-2 1 Aufgabe 1 ( 3 Punkte) Welche elektrische Feldstärke benötigt man, um ein Elektron (Masse m e, Ladung q = e) im Schwerefeld der Erde schweben zu lassen?

Mehr

2 Übungen und Lösungen

2 Übungen und Lösungen ST ING Elektrotechnik 0-2 - 2 Übungen und Lösungen 2. Übungen. ELEKTISCHES FELD a b α 2 Zwischen zwei metallischen Platten mit dem bstand a = 5 mm herrsche eine elektrische Feldstärke von E = 500 kvm -.

Mehr

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer TUM EM-Tutorübung SS 1 1.5.21 Formelsammlung EM SS 21 Diese Formelsammlung dient nur zur Orientierung und stellt keinen nspruch auf ollständigkeit. Zudem darf sie während der Prüfung nicht benutzt werden,

Mehr

Versuch E1: Elektrisches Feld

Versuch E1: Elektrisches Feld Versuch E1: Elektrisches Feld Aufgaben: 1. Untersuchen Sie die Abhängigkeit der räumlich konstanten elektrischen Feldstärke im Plattenkondensator von der Spannung und vom Plattenabstand. 2. Untersuchen

Mehr

1. Theorie: Kondensator:

1. Theorie: Kondensator: 1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und

Mehr

Zwischenklausur Physik I für MWWT

Zwischenklausur Physik I für MWWT Prof. Martin H. Müser Lehrstuhl f. Materialsimulation Universität des Saarlandes 17. 12. 2011 Name: Zwischenklausur Physik I für MWWT Matrikelnummer: Die sechs besten Punktezahlen aus den acht reguären

Mehr

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV. Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu

Mehr

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:

Mehr

Reihen- und Parallelschaltung von Kondensatoren

Reihen- und Parallelschaltung von Kondensatoren Ladung Spannung Kapazität Skizze wir-sind-klasse.jimdo.com Das elektrische Feld Energie des Kondensators Die Energie sitzt nach Faradays Feldvorstellung nicht bei den Ladungen auf den Platten sondern zwischen

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 22.Februar 2006, 9:00-11:00 Uhr für die Studiengänge Mb, Inft, Ciw, E+R/Bach. (bitte deutlich

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Probeklausur Technische Universität München 1 Fakultät für Physik Aufgabe 1: Punktförmige Ladungsverteilung 1. Ein Elektron in der Nähe der Erdoberfläche wird durch ein

Mehr

Übungsblatt 07. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Übungsblatt 07. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Übungsblatt 07 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 05.06.2008 Aufgaben 1. Ein Plattenkondensator (C = 1 µf) aus kreisförmigen Platten mit Radius

Mehr

Elektrische Felder und Potentiale im Plattenkondensator (Artikelnr.: P )

Elektrische Felder und Potentiale im Plattenkondensator (Artikelnr.: P ) Elektrische Felder und Potentiale im Plattenkondensator (Artikelnr.: P2420100) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Hochschule Lehrplanthema: Elektrizität und Magnetismus Unterthema:

Mehr

Elektrodynamik I Elektrische Schaltkreise

Elektrodynamik I Elektrische Schaltkreise Physik A VL35 (7.0.03) Elektrodynamik Elektrische Schaltkreise Strom, Ohm sches Gesetz und Leistung Elektrische Schaltkreise Parallel- und Serienschaltung von Widerständen Messung von Spannungen und Strömen

Mehr

2. Teilprüfung im Fach TET I. Name:... Vorname:... Matr.-Nr.:... Studiengang:... bitte in Druckbuchstaben ausfüllen

2. Teilprüfung im Fach TET I. Name:... Vorname:... Matr.-Nr.:... Studiengang:... bitte in Druckbuchstaben ausfüllen Technische Universität Berlin Fachgebiet Theoretische Elektrotechnik Prüfungen in Theoretischer Elektrotechnik Semester: WS 2006/07 Tag der Prüfung: 11.01.2007 2. Teilprüfung im Fach TET I Name:........................

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2011-1 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

Strom und Magnetismus. Musterlösungen. Andreas Waeber Ohmsche Widerstände I: Der Widerstand von Draht A beträgt mit r A = 0, 5mm

Strom und Magnetismus. Musterlösungen. Andreas Waeber Ohmsche Widerstände I: Der Widerstand von Draht A beträgt mit r A = 0, 5mm Strom und Magnetismus Musterlösungen Andreas Waeber 5. 0. 009 Elektrischer Strom. Strahlungsheizer: U=5V, P=50W a) P = U = P = 0, 9A U b) R = U = 0, 6Ω c) Mit t=3600s: E = P t = 4, 5MJ. Ohmsche Widerstände

Mehr

5 Harmonische Funktionen

5 Harmonische Funktionen 5 Harmonische Funktionen Generell kann man die allgemeine Lösung des elektrostatischen andwertproblems auch als Summe einer speziellen Lösung der Poisson-Gleichung und einer Lösung der Laplace-Gleichung

Mehr

NvK-Gymnasium Bernkastel-Kues Widerstände. Physik Elektronik 1 U 5V = R= 20 = 0,25A R 20 1V 1A

NvK-Gymnasium Bernkastel-Kues Widerstände. Physik Elektronik 1 U 5V = R= 20 = 0,25A R 20 1V 1A Widerstände I R 20 = Ω U 5V I = R= 20 = Ω 0,25A U = R I 10 100Ω = 1kΩ ± 5% 402 100Ω = 40, 2kΩ ± 2% 1Ω = 1V 1A Widerstände U = R I 1Ω = 1V 1A 12 100 kω = 1, 2MΩ ± 5% 56 10Ω = 560Ω ± 10% 47 100Ω = 4,7kΩ

Mehr

Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5

Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Klausur 15.08.2011 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Vorname: Matr.-Nr.: Nachname: Aufgabe 1 (6 Punkte) Gegeben ist folgende Schaltung aus Kondensatoren. Die Kapazitäten der

Mehr

IIE1. Modul Elektrizitätslehre II. Cavendish-Experiment

IIE1. Modul Elektrizitätslehre II. Cavendish-Experiment IIE1 Modul Elektrizitätslehre II Cavendish-Experiment Ziel dieses Experiments ist es, dich mit dem Phänomen der elektrischen Influenz vertraut zu machen. Des weiteren sollen Eigenschaften wie Flächenladungsdichte,

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2015-1 1 Aufgabe 1 ( 5 Punkte) Ein Elektronenstrahl ist entlang der z-achse gerichtet. Bei z = 0 und bei z = L befindet sich jeweils eine Lochblende, welche

Mehr