Zwischenklausur Physik I für MWWT

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Zwischenklausur Physik I für MWWT"

Transkript

1 Prof. Martin H. Müser Lehrstuhl f. Materialsimulation Universität des Saarlandes Name: Zwischenklausur Physik I für MWWT Matrikelnummer: Die sechs besten Punktezahlen aus den acht reguären Aufgaben werden gezählt plus alle Punkte aus den Zusatzaufgaben. 100% entsprechen 70 Punkten. KEINE Taschenrechner!!! Schreiben Sie auf jedes Blatt, das Sie abgeben, ihren Namen und Matrikelnummer. Reguläre Aufgaben. 1. Gleichgewichtslage einer Punktladung Eine Ladung 1 = e befinde sich im Ursprung des Koordinatensystems. Eine zweite Ladung mit 2 = 3 e liege bei der Koordinate 2, 2, 1) Å. Berechnen Sie die Gleichgewichtslage einer dritten Testladung. Die Testladung ist positiv. Lösung: Aus Symmetriegründen liegt die Ladung 3 auf der Geraden, die die Ladungen 1 und 2 verbindet. Dabei wird die positive dritte Ladung von der Ladung 1 abgestoßen und von der Ladung 2 angezogen, sodass die Gleichgewichtslage nicht zwischen den Ladungen liegen kann. Weil 2 größer ist als 1, muss die Ladung näher an 1 liegen. Somit gilt: r 23 = r 13 + r 12. Für die Beträge der Kräfte muss F 12 = F 23 gelten, sodass: 1 3 4πɛ 0 r 2 13 = 2 3 4πɛ 0 r r 2 13 = 2 r r 13 = 2 r 23 Da r 23 = r 13 + r 12 können wir die letzte Gleichung umschreiben: 1 2 = r 13 1 =... = r 13 1 = r 13 + r r 12 /r 13 r 12 2 / 1 1 =... = Da 3 wie erwähnt nicht zwischen 1 und 2 liegen kann und näher an 1 liegt, ist die Lösung: r 3 = 2, 2, 1 ) Elektrisches Potenzial Es sei das folgende elektrische Potenzial gegeben: V x, y, z) = V 0 x 2 e r/a mit r = x 2 + y 2 + z 2. a) Ist V x, y, z) ein Zentralpotenzial? Begründen Sie Ihre Antwort. [3 Punkte] Lösung: Nein, weil es nicht nur vom Abstand abhängt. z.b. ist V a, 0, 0) = V 0 a 2 /e während es bei dem Punkt 0, a, 0), der denselben Abstand vom Ursprung hat wie a, 0, 0), den Wert null annimmt. 1

2 b) Berechnen Sie die drei Komponenten des elektrischen Feldes. Sie dürfen dr/dx = x/r,..., dr/dz = z/r als gegeben verwenden. [7 Punkte] Lösung: [ E x = V 0 2x e r a + x 2 1 )] ) a r 1 e a 2 2x1 = V 0 x e r a 2 x2 r ar E y = V 0 x 2 1 ) a r y e a = V 0 x2 y r ar r e a E z = V 0 x 2 1 ) a r z e a = V 0 x2 z r ar r e a 3. Elektrische Feld einer ringförmigen Ladungsverteilung Betrachten Sie einen homogen geladenen Ring in der yz-ebene mit Schwerpunkt im Koordinatenursprung, Radius a und Ladungsdichte λ = /2πa. Gesucht ist das elektrische Feld auf der x Achse. a) Diskutieren Sie die Grenzfälle x a und x a. Dies können Sie auch tun, ohne die eigentliche Rechnung durchgeführt zu haben. [4 Punkte] Lösung: Da das Potenzial symmetrisch ist, also V x) = V x) und zudem im Ursprung differenzierbar), muss für x/a 0 dann E x 0 gelten. Für x >> a erscheint der Ring aus der Ferne als punktförmig, sodass E x 4πɛ 0 x 2. b) Leiten Sie die genaue Abhängigkeit von E auf der Symmetrieachse des Rings ab. [6 Punkte] Lösung: Die Feldstärke auf der x-achse von einer ringförmigen Ladungsverteilung in der yz- Ebene kann über Integration der Feldstärken infinitesimaler Ladungen berechnet werden de = d R x R d 4πɛ 0 R x R d. 3 Dabei sind die Radiusvektoren der Positionen auf der x-achse und der infinitesimalen Ladungen am Ring R x = x, 0, 0) und Rd = 0, a cos φ, a sin φ). Abstand zwischen einer infinitesimalen Ladung und R x Für die Feldstärke in x-richtung gilt R x R d = x 2 + a 2. de x = d x 4πɛ 0 x2 + a. 23 Da jede infinitesimale Ladung über infinitesimale Ringlänge berechnet werden kann Die Feldstärke ist dann E x = 2π 0 λdφ a 4πɛ 0 x x2 + a 23 = d = λdl = λdφ a. 2πa 2π a 4πɛ 0 x x2 + a 23 = 4πɛ 0 x x2 + a 23. Der oben aufgeführte Ausdruck genügt den beiden Grenzfällen, die wir in Teilaufgabe a) geschildert haben. 2

3 4. Effektiver Widerstand Eine Batterie, die die Spannung 1,5 V liefert, hat einen Innenwiderstand von 20 Ω. Diese Batterie ist an zwei parallel geschaltete Widerstände angeschlossen, die jeweils einen Widerstand von 40 Ω haben. Wie groß ist der Strom I, der aus der Batterie kommt? Lösung: Den Strom ermitteln wir mit Hilfe des Ohmschen Gesetzes: I = V R. Dabei ist Somit wird der Strom zu: R = R Innen + R 1 R = 20 + R 1 + R = 40 Ω. I = 1, 5 40 A = 3 80 A =... [ = 3, A ]. 5. Feld einer Metallplatte Gegeben sei eine ebene, endlich dicke Metallplatte, deren Oberfläche die konstante Ladungdichte σ = / A habe. Berechnen Sie das Feld vor dem Metall, das durch diese Ladungsverteilung erzeugt wird. Lösung:... ist wie in der Vorlesung mit einer homogen geladenen, dünnen Platten. Diesmal laufen die Feldlinien allerdings nur in eine Richtung, weil im Metall die Feldlinien verboten sind. Siehe Skizze in Übung.) Wir wählen eine Gauss-Oberfläche in Form eines Kubus und platzieren sie so, dass die Metaloberfläche den Kubus halbiert und zwei Seiten des Kubus parallel zur Metalloberfläche sind. Mit dem Gauss- Satz ermitteln wir E d A = E innen A innen + E außen A außen = ein ɛ 0 mit A außen = A Kubus und E innen = 0 Die eingeschlossene Ladungen ist Somit ergibt sich die Feldstärke zu ein = σ A Kubus. E = σ ɛ Elektrische Feldenergie Berechnen Sie die Feldenergie, die innerhalb eines homogen geladenen Zylinders mit Radius r und Länge l beinhaltet ist; l r, sodass Streufelder an den Rändern vernachlässigt werden können. Die Gesamtladung sei. Lösung: Zunächst ermitteln wir die Feldstärke mit dem Satz von Gauss. Wegen der Symmetrie benutzen wir einen Zylinder als Gauss-Oberfläche: E d A = E A Seite = ein ɛ 0 mit A Seite = 2πr l und ein = ρ πr 2 l. Die Feldstärke im Inneren des Zylinders ergibt sich somit zu Er) = ρr 2ɛ 0. 3

4 Jetzt intergrieren wir die Feldenergiedichte über das Volumen des Zylinders: ɛ 0 Er) 2 dv, 2 um die Feldenergie zu bestimmen. Dabei benutzen wir dv = l 2πrdr und ρ = V πr 2 zyl l rzyl 0 ɛ 0 ρ 2 r 2 4ɛ 2 0 l 2πrdr = πρ2 l 4ɛ 0 rzyl 0 r 3 dr = πρ2 lr 4 zyl 16ɛ 0 = 2 16πɛ 0 l. 7. Ersatzschaltbild für ein reales Dielektrikum Ein Plattenkondensator besteht aus zwei planparallelen Platten, die jeweils eine Fläche von 4 cm 2 haben und die 0,885 mm voneinander entfernt sind. Zwischen den beiden Platten sei ein Dielektrikum mit Dielektrizitätskonstante ɛ r = 20 und Leitfähigkeit σ = 10 8 Ω 1 m 1. a) Berechnen Sie die Kapazität des Kondensators. Lösung: Die Kapazität des Plattenkondensators ist [3 Punkte] A C = ɛ 0 ɛ r d = 8, = 80 pf. 8, b) Berechnen Sie den Widerstand des Dielektrikums. Lösung: Der Widerstand des Dielektrikums ist [3 Punkte] R = 1 σ d A = 1 8, = 2, Ω c) Entspricht das Ersatzschaltbild des Dielektrikums einer seriellen oder einer Parallelschaltung von Widerstand und Kondensator? Begründen Sie Ihre Antwort. [4 Punkte] Lösung: Die linke Seite des Dielektrikums ist an die linke Platte des Kondensators angeschlossen. Das gleiche gilt für die rechte Seite. Das Ersatzschaltbild des Dielektrikums entspricht demnach einer parallelen Schaltung. 8. Halb gefüllter Kondensator Ein Kondensator dessen Kondensatoroberflächen jeweils 5 cm 2 groß sind und einen Abstand von 0,885 mm haben sei zur Hälfte mit einem Dielektrikum mit ɛ r = 4 gefüllt, siehe Abbildung. Berechnen Sie die Gesamtkapazität des Kondensators. Lösung: Den Kondensator kann man als eine serielle Schaltung von zwei Kondensatoren C 1 und C 2 darstellen. Die Kapazitäten der Kondensatoren Die Gesamtkapazität ist dann 2A C 1 = ɛ 0 ɛ r1 d = 8, = 40 pf 8, A C 2 = ɛ 0 ɛ r2 d = 8, = 10 pf. 8, C = C 1C 2 C 1 + C 2 = = 8 pf.

5 Zusatzaufgaben 1. Einheitenanalyse Betrachten Sie einen als ideal zu nähernden Dipol im Ursprung des Koordinatensystems und ein ursprünglich kugelsymmetrisches Atom im Abstand r vom Dipol. In dem Atom werde ein Dipol induziert, der proportional zum lokal vorliegenden elektrischen Feld ist. Berechnen Sie anhand einer Einheitenanalyse mit welchem Potenzgesetz die Wechselwirkungsenergie zwischen Dipol und Atom mit zunehmenden r fällt. Der Vorfaktor des Gesetzes braucht nicht angegeben zu werden. Lösung: Der Vorfaktor 1/4πɛ 0 im Coulombgesetz ist eine Naturkonstante, die nicht vom Abstand abhängt und daher nicht weiter beachtet werden muss. Wir können ein Einheitensystem wählen, in dem 1/4πɛ 0 = 1 ist. Das E-Feld einer Ladung mit Einheit []=C) fällt mit 1/r 2, also E /r 2. Daher muss das Feld eines Dipols mit Einheit [d]=cm) gemäß 1/r 3 abfallen. Somit ist der induzierte Dipol proportional zu 1/r 3. Die potenzialle Energie U zweier Ladungen ist proportional zu 2 /r. Somit muss die potenzielle Energie zweier Dipole U d 1 d 2 /r 3 sein, also U d 2 1/r 6. Anmerkung: Wenn zwei Atome oder Moleküle jeweils mit abgeschlossener Elektronenschale), die keinen permanenten Dipol haben, weit voneinander entfernt sind, ziehen sie sich genau mit diesem 1/r 6 Gesetz an. Der Grund ist, dass durch quantenmechanische Fluktuationen die Atome doch spontan ein Dipolmoment entwickeln was allerdings wieder mit der Zeit zerfällt). Dieses spontane Dipolmoment induziert dann in dem anderen Teilchen auch ein Dipolmoment, das so gerichtet ist, dass die Gesamtenergie kleiner null wird. Vorausgesetzt die beiden Teilchen sind nicht so weit voneinander entfernt, dass die Fluktuation schon zerfallen ist, bevor Licht vom ersten zum zweiten Teilchen reisen kann und wieder zurück.) Daraus resultiert dann eine Anziehung, die man auch unter dem Namen van-der-waals Wechselwirkung kennt. Und was hat das mit Materialwissenschaft zu tun? Gegenfrage: Warum haftet dünne Plastikfolie so gut an sich selbst? 2. Ohmscher Energieverlust Betrachten Sie einen Kondensator mit Kapazität C, der von einer Batterie aufgeladen wird. Die Batterie liefere konstanten Strom I - also nicht konstante Spannung. Vor dem Kondensator sei ein Widerstand R geschaltet, der zu Wärmeverlusten führt. a) Berechnen Sie die Energie, die in dem Widerstand R verloren geht, wenn die Ladung auf den Kondensator aufgebracht wird. [6 Punkte] Lösung: Ladung und Strom stehen über = I t in Verbindung, wobei t die Zeit ist, die man benötigt, um den Kondensator zu laden. Die Wärmeleistung sie Vorlesung) ist P = V I =... = R I 2. Leistung ist Energie pro Zeit, also ist die verloren gegangene Energie: W = R I 2 t =... = R 2 b) Diskutieren Sie, ob es bzgl. der Ohmschen Verluste besser ist, den Kondensator schnell oder langsam aufzuladen. Welche Implikationen gibt es für das Bestreben Computer mit immer höheren Taktfrequenzen zu betreiben? [4 Punkte] 5 1 t.

6 Lösung: Die Wärmeverluste nehmen pro Schalteinheit mit 1/ t zu. Bei Verdoppelung der Taktfrequenz ergibt sich bei gleichbleibend großen Bauteilen also eine Vervierfachung der pro Zeiteinheit produzierten Wärmedichte). Dies stellt hohe Anforderungen an die thermischen Eigenschaften der Materialien. Weitere Anmerkungen: Wir sehen, dass bei langsamen Aufladen eines Kondensators weniger Energie in Wärme verloren geht als bei schneller Prozessführung. Wenn man den Kondensator so langsam auflädt, dass die Wärmeverluste sehr klein sind gegenüber der gespeicherten Feldenergie, kann man von einem adiabatischen Aufladen des Kondensators sprechen. Das Wort adiabatischer Prozess spielt eine wichtige Rolle in der Thermodynamik. Ähnliche Betrachtungen wie die eben angestellten gelten übrigens auch für die verlorene Energie in mechanischen Systemen. Je kleiner die Drehzahl eines Motors ist, desto weniger Energie geht als Reibungsenergie je zurück gelegter Strecke verloren. Eine genaue Rechnung ist allerdings sehr aufwendig: Bei sehr hohen Geschwindigkeiten kommt Turbulenz hinzu, bei sehr kleinen Drehzahlen kann sich Reibung dadurch erhöhen, weil das Schmiermitteln aus den Kontakten fließt. Aber pi mal Daumen ist die Analogie mit den Widerständen OK. ɛ 0 = 8, C 2 /Nm 2 ) 6

Übungsblatt 3 - Lösungen

Übungsblatt 3 - Lösungen Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.

Mehr

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen

Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Übung 1 - Angabe Technische Universität München 1 Fakultät für Physik 1 Kupfermünze Die alte, von 1793 bis 1837 geprägte Pennymünze in den USA bestand aus reinem

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 26/8/13 Technische Universität München Abbildung 1: Punktladungen 1 Aufgaben zur Elektrostatik Aufgabe 1 Gegeben seien drei

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Aufgaben

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Aufgaben Physik-Department Ferienkurs zur Experimentalphysik 2 - Aufgaben Daniel Jost 26/08/13 Technische Universität München Aufgabe 1 Gegeben seien drei Ladungen q 1 = q, q 2 = q und q 3 = q, die sich an den

Mehr

Übungsblatt 03. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 03. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 03 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 29. 11. 2004 oder 6. 12. 2004 1 Aufgaben 1. In einer Metall-Hohlkugel (Innenradius

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt Dr.

Mehr

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld 11. Elektrodynamik Physik für ETechniker 11. Elektrodynamik 11.1 Das Gaußsche Gesetz 11.2 Kraft auf Ladungen 11.2.1 Punktladung im elektrischen Feld 11.2.2 Dipol im elektrischen Feld 11. Elektrodynamik

Mehr

Übungsblatt 4 ( )

Übungsblatt 4 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 0 Übungsblatt 4 (08.06.0) ) Geladene Kugeln Zwei homogen geladene Eisenkugeln mit den Ladungen Q = q = q = 0, 0µC haben einen

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 4 - letzte Übung in

Mehr

TU München, Musterlösung. Ferienkurs Experimentalphysik II: Elektrostatik und elektrischer Strom. Rolf Ripszam. x + a. L = q.

TU München, Musterlösung. Ferienkurs Experimentalphysik II: Elektrostatik und elektrischer Strom. Rolf Ripszam. x + a. L = q. TU München, 9.08.2009 Musterlösung Geladener Stab Ferienkurs Experimentalphysik II: Elektrostatik und elektrischer Strom Rolf Ripszam (a) Der Stab ist homogen geladen, also gilt einfach λ = L. (b) Das

Mehr

Polarisierung und Magnetisierung

Polarisierung und Magnetisierung Übung 2 Abgabe: 10.03. bzw. 14.03.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisierung und Magnetisierung 1 Mathematische

Mehr

6 Methoden zur Lösung des elektrostatischen Randwertproblems

6 Methoden zur Lösung des elektrostatischen Randwertproblems 6 Methoden zur Lösung des elektrostatischen Randwertproblems Die generelle Strategie zur Lösung des elektrostatischen Randwertproblems umfaßt zwei Schritte: 1. Finde eine spezielle Lösung der Poisson-Gleichung

Mehr

Lösung für Blatt 7,,Elektrodynamik

Lösung für Blatt 7,,Elektrodynamik Institut für Theoretische Physik, Universität Zürich Lösung für Blatt 7,,Elektrodynamik Prof. Dr. T. Gehrmann Blatt 7 FS 213 Aufgabe 1 Induktion im Magnetfeld Nach dem Faraday schen Induktionsgesetz induziert

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 1 Thema: Elektrostatik Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Ladungen und Coulomb-Gesetz...................

Mehr

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld Inhalt 11. Elektrodynamik 11.1 Das Gaußsche Gesetz 11.2 Kraft auf Ladungen 11.2.1 Punktladung im elektrischen Feld 11. Elektromagnetische Kraft 11 Elektrodynamik 11. Elektrodynamik (nur Vakuum = Ladung

Mehr

Übungsblatt 03 Grundkurs IIIb für Physiker

Übungsblatt 03 Grundkurs IIIb für Physiker Übungsblatt 03 Grundkurs IIIb für Physiker Othmar Marti, (othmar.marti@physik.uni-ulm.de) 8.. 2002 oder 25.. 2002 Aufgaben für die Übungsstunden Elektrostatisches Potential,. Zwei identische, ungeladene,

Mehr

= Dimension: = (Farad)

= Dimension: = (Farad) Kapazität / Kondensator Ein Kondensator dient zur Speicherung elektrischer Ladung Die Speicherkapazität eines Kondensators wird mit der Größe 'Kapazität' bezeichnet Die Kapazität C ist definiert als: Dimension:

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 27. 04. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 27. 04. 2009

Mehr

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12

Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 3 Bearbeitung: 25.11.2011

Mehr

Physik für Naturwissenschaften (HS 2016) Lösungen

Physik für Naturwissenschaften (HS 2016) Lösungen Physik für Naturwissenschaften (HS 2016) Lösungen students4students info@students4students.ch 1 Inhaltsverzeichnis 1 Serie 1 1 1.1 Elektrostatisches Pendel....................... 1 1.1.1 Aufgabe............................

Mehr

K l a u s u r N r. 2 Gk Ph 12

K l a u s u r N r. 2 Gk Ph 12 0.2.2009 K l a u s u r N r. 2 Gk Ph 2 ) Leiten Sie die Formel für die Gesamtkapazität von drei in Serie geschalteten Kondensatoren her. (Zeichnung, Formeln, begründender Text) 2) Berechnen Sie die Gesamtkapazität

Mehr

Rechenübungen zum Physik Grundkurs 2 im SS 2010

Rechenübungen zum Physik Grundkurs 2 im SS 2010 Rechenübungen zum Physik Grundkurs 2 im SS 2010 1. Klausur (Abgabe Mi 2.6.2010, 12.00 Uhr N7) Name, Vorname: Geburtstag: Ihre Identifizierungs-Nr. (ID1) ist: 122 Hinweise: Studentenausweis: Hilfsmittel:

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 19. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 05.

Mehr

Übungsaufgaben z. Th. Plattenkondensator

Übungsaufgaben z. Th. Plattenkondensator Übungsaufgaben z. Th. Plattenkondensator Aufgabe 1 Die Platten eines Kondensators haben den Radius r 18 cm. Der Abstand zwischen den Platten beträgt d 1,5 cm. An den Kondensator wird die Spannung U 8,

Mehr

Aufgaben zur Elektrizitätslehre

Aufgaben zur Elektrizitätslehre Aufgaben zur Elektrizitätslehre Elektrischer Strom, elektrische Ladung 1. In einem Metalldraht bei Zimmertemperatur übernehmen folgende Ladungsträger den Stromtransport (A) nur negative Ionen (B) negative

Mehr

2 Das elektrostatische Feld

2 Das elektrostatische Feld Das elektrostatische Feld Das elektrostatische Feld wird durch ruhende elektrische Ladungen verursacht, d.h. es fließt kein Strom. Auf die ruhenden Ladungen wirken Coulomb-Kräfte, die über das Coulombsche

Mehr

Moderne Theoretische Physik WS 2013/2014

Moderne Theoretische Physik WS 2013/2014 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik WS 23/24 Prof. Dr. A. Shnirman Blatt 2:Lösungen Dr. B. Narozhny Besprechung 8..23. Gauß scher

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

Lk Physik in 12/1 1. Klausur aus der Physik Blatt 1 (von 2) C = 4πε o r

Lk Physik in 12/1 1. Klausur aus der Physik Blatt 1 (von 2) C = 4πε o r Blatt 1 (von 2) 1. Ladung der Erde 6 BE a) Leite aus dem oulombpotential die Beziehung = 4πε o r für die Kapazität einer leitenden Kugel mit Radius r her. In der Atmosphäre herrscht nahe der Erdoberfläche

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Elektronen im elektrischen Querfeld. Die nebenstehende Skizze

Mehr

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz

5.5 Elektrisches Zentralfeld, Coulombsches Gesetz 5 Elektrizität und Magnetismus 5.5 Elektrisches Zentralfeld, Coulombsches Gesetz Elektrisches Zentralfeld Kugel mit Radius r um eine Punktladung = ǫ 0 Ed A = ǫ 0 E E d A Kugel da = ǫ 0 E(4πr 2 ) (5.26)

Mehr

Ferienkurs der Experimentalphysik II Musterlösung Übung 3

Ferienkurs der Experimentalphysik II Musterlösung Übung 3 Ferienkurs der Experimentalphysik II Musterlösung Übung 3 Michael Mittermair 29. August 213 1 Aufgabe 1 Wie groß ist die Leistung, die von einem geladenen Teilchen mit der Ladung q abgestrahlt wird, das

Mehr

PS III - Rechentest

PS III - Rechentest Grundlagen der Elektrotechnik PS III - Rechentest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 Summe Punkte 3 15 10 12 11 9 60 erreicht Hinweise: Schreiben Sie auf das Deckblatt Ihren Namen und

Mehr

Probeklausur. Bitte schreiben Sie Ihren Namen auf jede Seite und legen Sie Ihren Lichtbildausweis bereit.

Probeklausur. Bitte schreiben Sie Ihren Namen auf jede Seite und legen Sie Ihren Lichtbildausweis bereit. PN2 Einführung in die Physik für Chemiker 2 Prof. J. Lipfert SS 2016 Probeklausur Probeklausur Name: Matrikelnummer: Bitte schreiben Sie Ihren Namen auf jede Seite und legen Sie Ihren Lichtbildausweis

Mehr

Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung:

Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung: 3.11 Der Kondensator In den vorangegangenen Kapiteln wurden die physikalischen Eigenschaften von elektrischen Ladungen und Feldern näher untersucht. In vielen Experimenten kamen dabei bereits Kondensatoren

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Probeklausur Technische Universität München 1 Fakultät für Physik Aufgabe 1: Punktförmige Ladungsverteilung 1. Ein Elektron in der Nähe der Erdoberfläche wird durch ein

Mehr

Alte Physik III. 10. Februar 2011

Alte Physik III. 10. Februar 2011 D-MATH/D-PHYS Prof. R. Monnier Studienjahr HS11 ETH Zürich Alte Physik III 10. Februar 2011 Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus, und kreuzen Sie Ihre Studienrichtung

Mehr

Aufgabenblatt zum Seminar 12 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 12 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 2 PHYS7357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmar.marti@uni-ulm.de) 8. 7. 29 Aufgaben. In der Vorlesung

Mehr

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern

Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern Elektromagnetische Felder und Wellen Klausur Herbst 2000 Aufgabe 1 (5 Punkte) Ein magnetischer Dipol hat das Moment m = m e z. Wie groß ist Feld B auf der z- Achse bei z = a, wenn sich der Dipol auf der

Mehr

Inhalt. 10. Elektrostatik. 10. Elektrostatik

Inhalt. 10. Elektrostatik. 10. Elektrostatik Inhalt 10. Elektrostatik 10.1 Elektrische Ladung 10.2 Coulombsches Gesetz 10.3 Elektrisches Feld 10.4 Kraft auf Ladungen 10.5 Elektrisches Potential 10.6 Elektrische Kapazität 1.1 Der Raum 10.1 Elektrische

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 19/11/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Elektrizitätslehre Teil 2 Kondensator Kondensator Im einfachsten Fall besteht ein Kondensator aus

Mehr

2 Grundgrößen und -gesetze der Elektrodynamik

2 Grundgrößen und -gesetze der Elektrodynamik Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:

Mehr

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.)

Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) 1 Grieskörner schwimmen in Rhizinusöl. Weil sie kleine Dipole werden, richten sie sich entlang der Feldlinien

Mehr

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2015-1 1 Aufgabe 1 ( 5 Punkte) Ein Elektronenstrahl ist entlang der z-achse gerichtet. Bei z = 0 und bei z = L befindet sich jeweils eine Lochblende, welche

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur

Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2014-2 1 Aufgabe 1 ( 7 Punkte) Eine ebene Welle der Form E = (E x, ie x, 0) exp{i(kz + ωt)} trifft aus dem Vakuum bei z = 0 auf ein Medium mit ε = 6 und

Mehr

Übung 1 - Musterlösung

Übung 1 - Musterlösung Experimentalphysik für Lehramtskandidaten und Meteorologen 8. April 00 Übungsgruppenleiter: Heiko Dumlich Übung - Musterlösung Aufgabe Wir beginnen die Aufgabe mit der Auflistung der benötigten Formeln

Mehr

3. Die Divergenz und die Quellen des elektrischen Feldes

3. Die Divergenz und die Quellen des elektrischen Feldes 3. Die Divergenz und die Quellen des elektrischen Feldes Das Gauß sche Gesetz V E d f = ɛ Q in = ɛ V ρ el dv stellte eine beachtliche Verbindung her zwischen dem elektrischen Feld E und seinen Quellen,

Mehr

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS03/04. Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:...

Name:...Vorname:... Seite 1 von 8. FH München, FB 03 Grundlagen der Elektrotechnik WS03/04. Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:... Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik WS03/04 Studiengruppe:... Matrikelnr.:... Hörsaal:... Platz:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N

Mehr

2. Klausur in K1 am

2. Klausur in K1 am Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Klausur in K am 7.. 00 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur

Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:

Mehr

9. Elektrostatik Physik für Informatiker. 9. Elektrostatik

9. Elektrostatik Physik für Informatiker. 9. Elektrostatik 9. Elektrostatik 9.1 Elektrische Ladung 9.2 Coulombsches Gesetz 9.3 Elektrisches Feld 9.4 Kraft auf Ladungen 9.5 Elektrisches Potential 9.6 Elektrische Kapazität 9.1 Elektrische Ladung Es gibt (genau)

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Übung 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Kupfermünze Die alte, von 1793 bis 1837 geprägte Pennymünze in den USA bestand aus reinem

Mehr

1. Klausur in K1 am

1. Klausur in K1 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 4. 0. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

Physik Klausur

Physik Klausur Physik Klausur 1.1 1 6. November 00 Aufgaben Aufgabe 1 a) Eine Kugel mit der Ladung q 3 nc und der Masse m 1 g hängt an einem Faden der Länge l 1 m. Der Kondersator hat den Plattenabstand d 0 10 cm und

Mehr

2. Teilprüfung im Fach TET I. Name:... Vorname:... Matr.-Nr.:... Studiengang:... bitte in Druckbuchstaben ausfüllen

2. Teilprüfung im Fach TET I. Name:... Vorname:... Matr.-Nr.:... Studiengang:... bitte in Druckbuchstaben ausfüllen Technische Universität Berlin Fachgebiet Theoretische Elektrotechnik Prüfungen in Theoretischer Elektrotechnik Semester: WS 2006/07 Tag der Prüfung: 11.01.2007 2. Teilprüfung im Fach TET I Name:........................

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

Diplomvorprüfung für Maschinenwesen SS Technische Elektrizitätslehre I. Prof. Dr.-Ing. H.-G. Herzog

Diplomvorprüfung für Maschinenwesen SS Technische Elektrizitätslehre I. Prof. Dr.-Ing. H.-G. Herzog Diplomvorprüfung für Maschinenwesen SS 2009 Technische Elektrizitätslehre I Prof. Dr.-Ing. H.-G. Herzog am 07.09.2009 Name:.. Vorname: Matrikelnummer:... 1. Korrektur 2. Korrektur 3. Korrektur Seite 1

Mehr

Übungsblatt 03 (Hausaufgaben)

Übungsblatt 03 (Hausaufgaben) Übungsblatt 03 Hausaufgaben Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 0.05.008 Aufgaben. Gegeben sind Ladungen + am Orte a; 0; 0 und a; 0; 0: a Berechnen

Mehr

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV. Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu

Mehr

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16

Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 2015/16 Lösungsvorschlag zu Blatt3 Theoretische Physik III: Elektrodynamik WS 215/16 Abgabetermin: keine Abgabe, sondern Wertung als Präsenzübung Prof. Dr. Claudius Gros, Institut für Theoretische Physik, Goethe-Universität

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2015-1 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Gesamtpunktzahl: Ergebnis: Bemerkungen: Elektromagnetische

Mehr

Ferienkurs Elektrodynamik WS 11/12 Übungsblatt 1

Ferienkurs Elektrodynamik WS 11/12 Übungsblatt 1 Ferienkurs Elektrodynamik WS / Übungsblatt Tutoren: Isabell Groß, Markus Krottenmüller, Martin Ibrügger 9.3. Aufgabe - Geladene Hohlkugel In einer Hohlkugel befindet sich zwischen den Radien r und r eine

Mehr

Im folgenden Schaltkreis beobachtet man eigenartige Phänomene: = > Beim Einschalten leuchtet die Glühbirne für

Im folgenden Schaltkreis beobachtet man eigenartige Phänomene: = > Beim Einschalten leuchtet die Glühbirne für + Kapitel 4 KAPAZITÄT und ENERGIE 4. Kondensator Ein Kondensator besteht typischerweise aus zwei Leiterplatten, die sich in einem kleinen Abstand voneinander befinden. Meist liegt zwischen den Elektroden

Mehr

E q q 4. Die elektrische Feldstärke ist eigentlich ein Vektor der in Richtung der Coulombkraft zeigt falls eine (positive) Ladung q vorhanden wäre.

E q q 4. Die elektrische Feldstärke ist eigentlich ein Vektor der in Richtung der Coulombkraft zeigt falls eine (positive) Ladung q vorhanden wäre. 11.3 Elektrische Feldstärke Hat man eine Ladung Q und bringt in deren Nähe eine zweite Ladung q so erfährt die zweite Ladung eine abstoßende bzw. anziehende Kraft F C. Da diese Kraft an jeder Stelle in

Mehr

Elektrodynamik. 1. Elektrostatik

Elektrodynamik. 1. Elektrostatik Elektrodynamik 1. Elektrostatik 1.1 Elektrische Ladung Es gibt positive und negative Ladungen. Sie ist quantisiert, d.h. jede beobachtete Ladung ist ein ganzes Vielfaches der Elementarladung: In jedem

Mehr

Inhaltsverzeichnis Elektrostatik

Inhaltsverzeichnis Elektrostatik Inhaltsverzeichnis 1 Elektrostatik 1 1.1 Grundbegriffe...................................... 1 1.1.1 Elektrische Ladung, Coulomb-Gesetz..................... 1 1.1.2 Das elektrische Feld..............................

Mehr

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz

Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz KRG NW, Physik Klasse 10, Kräfte auf Ladungen, Kondensator, Fachlehrer Stahl Seite 1 Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz Kraft auf eine Probeladung q im elektrischen Feld (homogen,

Mehr

Das elektrische Feld

Das elektrische Feld Das elektrische Feld 1. In Muskel- und Nervenzellen besteht eine elektrische Spannung quer durch die Zellmembran. Die Größe der Spannung beträgt 90mV im Ruhezustand, die Dicke der Membran beträgt 4 5nm.

Mehr

2. Elektrostatik und Ströme

2. Elektrostatik und Ströme 2. Elektrostatik und Ströme 2.1. elektrische Ladung, ionische Lösungen Wir haben letztes Semester angeschnitten, dass die meisten Wechselwirkungen elektrischer Natur sind. Jetzt wollen wir elektrische

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2011-1 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

Übungsblatt 2. zur Vorlesung EP2 (Prof. Grüner) im SS Mai Aufgabe 1: Feldlinien. Aufgabe 2: Elektrisches Feld einer geladenen Linie

Übungsblatt 2. zur Vorlesung EP2 (Prof. Grüner) im SS Mai Aufgabe 1: Feldlinien. Aufgabe 2: Elektrisches Feld einer geladenen Linie Übungsblatt zur Vorlesung EP (Prof. Grüner) im SS 0 0. Mai 00 Aufgabe : Feldlinien a) Richtig oder falsch? Das elektrische Feld einer Punktladung zeigt immer von der Ladung weg. Falsch! Bei negativen Ladungen

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Übung 2 - Angabe Technische Universität München 1 Fakultät für Physik 1 Draht Strom fließt durch einen unendlich langen Draht mit Radius a. Dabei ist die elektrische

Mehr

10. Elektrostatik Elektrische Ladung 10.2 Coulomb sches Gesetz Kraft auf Ladungen 10.5 Elektrisches Potential 10.6 Elektrische Kapazität

10. Elektrostatik Elektrische Ladung 10.2 Coulomb sches Gesetz Kraft auf Ladungen 10.5 Elektrisches Potential 10.6 Elektrische Kapazität 10. Elektrostatik 10.11 Elektrische Ladung 10.2 Coulomb sches Gesetz 10.3 Elektrisches Feld 10.4 Kraft auf Ladungen 10.5 Elektrisches Potential 10.6 Elektrische Kapazität 10.1 Elektrische Ladung Es gibt

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name: Vorname: Matrikelnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12:

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Technische Universität München Physik Department Ferienkurs Experimentalphysik 2 Vorlesung 1: Elektrostatik Tutoren: Elena Kaiser Matthias Golibrzuch Nach dem Skript Konzepte der Experimentalphysik 2:

Mehr

Übungsblatt 07. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 07. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 07 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 7.. 005 oder 14.. 005 1 Aufgaben 1. Wir berechnen Elektromotoren. Nehmen

Mehr

Felder und Wellen WS 2016/2017

Felder und Wellen WS 2016/2017 Felder und Wellen WS 216/217 Musterlösung zum 2. Tutorium 1. Aufgabe (**) Berechnen Sie das el. Feld einer in z-richtung unendlich lang ausgedehnten unendlich dünnen Linienladung der Ladungsdichte η pro

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2012-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

Ph4I Zusammenfassung

Ph4I Zusammenfassung Physik 4 für Informatiker Ph4I Zusammenfassung Stand: 2013-08-12 https://github.com/hsr-stud/ph4i/ Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Ladung..................................... 3 1.2

Mehr

Zusammenfassung v06 vom 2. Mai 2013

Zusammenfassung v06 vom 2. Mai 2013 Zusammenfassung v06 vom 2. Mai 2013 Ausflug in die Kernphysik: Atomkerne des Elements Sym werden durch Angabe der Massenzahl A und Kernladungszahl Z spezifiziert: A = Z + N, wobei N die Neutronenzahl ist.

Mehr

Vorlesung 2: Elektrostatik II

Vorlesung 2: Elektrostatik II Einheit der elektrischen Ladung: Das Millikan-Experiment (1910, Nobelpreis 1923) Vorlesung 2: Elektrostatik II Sehr feine Öltröpfchen (

Mehr

Inhalt. Kapitel 3: Elektrisches Feld

Inhalt. Kapitel 3: Elektrisches Feld Inhalt Kapitel 3: Ladung Elektrische Feldstärke Elektrischer Fluss Elektrostatische Felder Kapazität Kugel- und Plattenkondensator Energie im elektrostatischen Feld Ladung und Feldstärke Ladung Q = n e,

Mehr

Abbildung 1: Zu Aufgabe 1. (a) Geben Sie das Potential der Ladungsverteilung im Punkt P mit dem Ortsvektor r an.

Abbildung 1: Zu Aufgabe 1. (a) Geben Sie das Potential der Ladungsverteilung im Punkt P mit dem Ortsvektor r an. Aufgabe 1 (6 Pkt.) Vier positive Punktladungen im Vakuum gleicher Größe Q sitzen in der Ebenze z = 0 eines kartesischen Koordinatensystems auf den Ecken eines Quadrats, nämlich in den Punkten a x = a e

Mehr

1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität

1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität 1.1.2 Aufladen und Entladen eines Kondensators; elektrische Ladung; Definition der Kapazität Ladung und Stromstärke Die Einheit der Stromstärke wurde früher durch einen chemischen Prozess definiert; heute

Mehr

Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5

Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Klausur 15.08.2011 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Vorname: Matr.-Nr.: Nachname: Aufgabe 1 (6 Punkte) Gegeben ist folgende Schaltung aus Kondensatoren. Die Kapazitäten der

Mehr

Grundlagen der Elektrotechnik II Übungsaufgaben

Grundlagen der Elektrotechnik II Übungsaufgaben Grundlagen der Elektrotechnik II Übungsaufgaben Mag. Manfred Smolik Wien, 2. Juni 2016 Inhaltsverzeichnis 1 Kondensator 1 2 Magnetische Feldstärke 4 3 Magnetischer Fluss, magnetische Flussdichte 6 4 Induktivität

Mehr

Potential und Spannung

Potential und Spannung Potential und Spannung Arbeit bei Ladungsverschiebung: Beim Verschieben einer Ladung q im elektrischen Feld E( r) entlang dem Weg C wird Arbeit geleistet: W el = F C d s = q E d s Vorzeichen: W el > 0

Mehr

Physik. Abiturwiederholung. Das Elektrische Feld

Physik. Abiturwiederholung. Das Elektrische Feld Das Elektrische Feld Strom Strom ist bewegte Ladung, die Stromstärke ergibt sich also als Veränderung der Ladung nach der Zeit, also durch die Ableitung. Somit kann man die Ladung als Fläche betrachten,

Mehr

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle

1 = z = y + e. Nabla ist ein Vektor, der als Komponenten keine Zahlen sondern Differentiationsbefehle Anmerkung zur Notation Im folgenden werden folgende Ausdrücke äquivalent benutzt: r = x y = x 1 x 2 z x 3 1 Der Vektoroperator Definition: := e x x + e y y + e z z = x y z. Nabla ist ein Vektor, der als

Mehr

Das statische elektrische Feld

Das statische elektrische Feld Das statische elektrische Feld M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis 1 Darstellung eines elektrischen Feldes (6 Std.) Wiederholung Die elektrische Ladung Das elektrische Feld

Mehr

Physik II Übung 9 - Lösungshinweise

Physik II Übung 9 - Lösungshinweise Physik II Übung 9 - Lösungshinweise Stefan Reutter SoSe 202 Moritz Kütt Stand: 04.07.202 Franz Fujara Aufgabe Diskussion: Faraday Käfig Was bewirkt ein Faraday-Käfig? Wie genau funktioniert er noch mal?

Mehr

Aufgaben zum Kondensator - ausgegeben am

Aufgaben zum Kondensator - ausgegeben am Aufgaben zum Kondensator - ausgegeben am 17.09.2012 konden2_17_09_2012.doc 1.Aufgabe: Ein Kondensator hat die Plattenfläche A 1,2 10-2 m 2, den Plattenabstand d 0,5 mm und die Ladung Q 2,6 10-7 C. Berechnen

Mehr

Friedrich-Alexander Universität Erlangen-Nürnberg Klausur in Grundlagen der Elektrotechnik für Maschinenbauer 19. September 2005

Friedrich-Alexander Universität Erlangen-Nürnberg Klausur in Grundlagen der Elektrotechnik für Maschinenbauer 19. September 2005 Lehrstuhl für Elektromagnetische Felder Prof Dr-Ing T Dürbaum Friedrich-Alexander niversität Erlangen-Nürnberg Klausur in Grundlagen der Elektrotechnik für Maschinenbauer 9 September 2005 Bearbeitungszeit:

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

Übungsblatt 12 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Übungsblatt 12 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Übungsblatt 2 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik.7.28 Aufgaben. Ein Transformator mit Primärwindungen und 3 Sekundärwindungen wird mit einem Wechselstrom

Mehr

Strom und Magnetismus. Musterlösungen. Andreas Waeber Ohmsche Widerstände I: Der Widerstand von Draht A beträgt mit r A = 0, 5mm

Strom und Magnetismus. Musterlösungen. Andreas Waeber Ohmsche Widerstände I: Der Widerstand von Draht A beträgt mit r A = 0, 5mm Strom und Magnetismus Musterlösungen Andreas Waeber 5. 0. 009 Elektrischer Strom. Strahlungsheizer: U=5V, P=50W a) P = U = P = 0, 9A U b) R = U = 0, 6Ω c) Mit t=3600s: E = P t = 4, 5MJ. Ohmsche Widerstände

Mehr

Experimentalphysik II: Elektrostatik I

Experimentalphysik II: Elektrostatik I Experimentalphysik II: Elektrostatik I Zweitversuch-Ferienkurs Sommersemester 09 William Hefter 07/09/09 Inhaltsverzeichnis Elektrische Ladung, Coulomb-Kraft 2 2 Das elektrische Feld 2 3 Der Satz von Gauß

Mehr

Aufgabe 1 Kondensatorformel

Aufgabe 1 Kondensatorformel Physikklausur Elektrische Felder Tarmstedt, 02.10.2009 erhöhtes Niveau (Folker Steinkamp) Ph_eN_2011 Name: Punkte: von Notenp. Zensur Aufgabe 1 Kondensatorformel Versuchsbeschreibung: Lädt man einen Kondensator

Mehr