Teilchenbahnen im Magnetfeld

Größe: px
Ab Seite anzeigen:

Download "Teilchenbahnen im Magnetfeld"

Transkript

1 Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im B Feld Kopetschke Teilchenbahnen im Magnetfeld 1) Protonen im Kreisverkehr: Protonen bewegen sich von unten kommend in einem Magnetfeld, das in die Papierebene hinein zeigt. a) Erkläre eindeutig, warum eine Kreisbahn entsteht und in welche Richtung sie gekrümmt ist. b) Welche Geschwindigkeit müssen Protonen haben, damit die Kreisbahn in einem Feld der Flussdichte 300 mt einen Radius von 90 cm besitzt? c) Welche Energie besitzen die Protonen aus b)? d) Wie lange benötigen sie für einen Umlauf? e) Wie wird sich die Umlaufdauer ändern, wenn man schnellere Protonen einschießt? 2) Die Masse kleiner Teilchen. a) Ein Proton wurde mit 20 kv beschleunigt und fliegt zunächst durch den feldfreien Raum. Im grau gefärbten Bereich tritt es in ein homogenes magnetisches Feld ein, das in die Papierebene zeigt. Zeichne einige mögliche Bahnformen ein. b) Das graue Quadrat hat eine Kantenlänge von 90 cm. Berechne genau, an welcher Stelle es wieder aus dem Feld austritt, wenn dieses die Flussdichte 200 mt besitzt. c) Welche quantitativen Aussagen kannst du über ein Teilchen machen, das ebenfalls mit 20 kv beschleunigt und im gleichen Feld abgelenkt wurde, dessen Austrittsstelle aber doppelt so weit von der Eintrittsstelle entfernt ist, wie die des Protons und das in die entgegengesetzte Richtung abgelenkt wird? Bitte gründlich begründen! 3) Schraubenbahn a) Unter welchen Bedingungen durchlaufen Elektronen Schraubenbahnen? b) Die Schraubenbahn soll im Uhrzeigersinn aus der Papierebene heraus kommen. Zeichne die Richtungen von v 0, B und F L ein. c) Was müsste man tun, um den Durchmesser der Schraubenbahn zu verkleinern? d) Wodurch könnte man die Ganghöhe (= Abstand zweier Windungen) vergrößern? 4) Die magnetische Linse Betrachte die Animation "Magnetische Linse" (EBG Homepage / Projekte /Oberstufe ) a) Stelle eine Ablenkspannung von 0,4 kv ein. Beschreibe eindeutig den gesamten Kurvenverlauf. Begründe den Verlauf der beobachteten Bahn in allen Einzelheiten. b) Welche wichtigen Unterschiede ergeben sich für negative Ablenkspannungen? c) Ist dir klar, dass das rechte Bild nicht zwei, sondern nur einen Schnittpunkt der verschiedenen Teilchenbahnen zeigt? Erläutere diese Aussage! d) Alle Bahnen schneiden sich in einem Punkt auf der rechten Bildschirmseite. Begründe diese Tatsache! Begründen heißt: Die benötigten Grundlagen darlegen und eine nachvollziehbare Argumentationskette aufstellen!) e) Wozu könnte man den beobachteten Effekt nutzen? 5) Das Geschwindigkeitsfilter Welche Geschwindigkeit besitzen geladene Teilchen, die bei B = 25mT und E = 50 kv / m das Geschwindigkeitsfilter geradlinig passieren.

2 Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im B Feld Kopetschke Teilchenbahnen im elektrischen Querfeld Lösungen 1) Protonen im Kreisver kehr: Protonen bewegen sich von unten kommend in einem Magnetfeld, das in die Papierebene hinein zeigt. a) Erkläre eindeutig, warum eine Kreisbahn entsteht und in welche Richtung sie gekrümmt ist. Warum Kreisbahn? Die Lorentzkraft steht immer senkrecht auf der momentanen Geschwindigkeit. Daher wirkt sie als Zentripetalkraft, die die Protonen auf die Kreisbahn zwingt. Krümmungsrichtung? Da es sich um positive Protonen handelt, findet man mit der RHR heraus, dass sie im beschriebenen Fall zunächst eine Kraft nach links erfahren. => Krümmung nach links b) Welche Geschwindigkeit müssen Protonen haben, damit die Kreisbahn in einem Feld der Flussdichte 300 mt einen Radius von 90 cm besitzt? Geg.: B = 300 mt, r = 0,90 m, m P = 1, kg, e Ges.: v Lsg.: Für die Kreisbahn gilt: F L B v e = B e = B e r m = F Z m v 2 r m v r = v = 25, m/s v = 2, m/s c) Welche Energie besitzen die Protonen aus b)? E kin = ½ m v 2 E kin = 5, J = 3,5 MeV

3 Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im B Feld Kopetschke d) Wie lange benötigen sie für einen Umlauf? Geg.: v aus b, r = 90 cm Ges.: T = Zeit für einen Umlauf Lsg.: Der Betrag der Geschwindigkeit bleibt gleich. Bei einem Umlauf legt es die Strecke U = 2 π r zurück Mit v = s / t = U / T folgt: T = U / v = 2 π r / v T = 0,20 μs = 0, s e) Wie wird sich die Umlaufdauer ändern, wenn man schnellere Protonen einschießt? Hier kann man zwei gegensätzliche Argumente anführen: 1. Schnellere Protonen legen die gleiche Strecke in kürzerer Zeit zurück. => T müsste sich verkürzen, da T = U / v 2. Schnellere Protonen legen eine Bahn mit größerem Radius zurück, da gilt. r = v B m e Da der Radius und damit der Umfang prop. mit v zunimmt, andererseits die Umlaufdauer umgekehrt proportional mir v abnimmt, heben sich beide Effekte gegenseitig auf. => Die Umlaufdauer hängt also nicht von v ab!

4 Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im B Feld Kopetschke ) Die Masse kleiner Teilchen. a) Ein Proton wurde mit 20 kv beschleunigt und fliegt zunächst durch den feldfreien Raum. Im grau gefärbten Bereich tritt es in ein homogenes magnetisches Feld ein, das in die Papierebene zeigt. Zeichne einige mögliche Bahnformen ein. b) Das graue Quadrat hat eine Kantenlänge von 90 cm. Berechne genau, an welcher Stelle es wieder aus dem Feld austritt, wenn dieses die Flussdichte 200 mt besitzt. Geg.: B = 200 mt, l = 0,90 m, m P = 1, kg, e Ges.: r Lsg.: Für die Kreisbahn gilt: F L = F Z B v e = m v 2 r r = m v B e (1) v erhält man aus dem EES_ ½ m v 2 v = = e U A 2 e U A m 2 m U in (1) r = A = 0,102 m B 2 e r = 10 cm => Es verlässt das B Feld nach links und zwar 20 cm ober halb der Einschussstelle. c) Welche quantitativen Aussagen kannst du über ein Teilchen machen, das ebenfalls mit 20 kv beschleunigt und im gleichen Feld abgelenkt wurde, dessen Austrittsstelle aber doppelt so weit von der Eintrittsstelle entfernt ist, wie die des Protons und das in die entgegengesetzte Richtung abgelenkt wird? Bitte gründlich begründen! Da r nun doppelt so groß ist, wie beim Proton und da r ~ zur Wur zel aus m zunimmt, muss das Teilchen die Masse 4 u besitzen, falls es gleich star k geladen ist. Da es in die andere Richtung abgelenkt wur de, muss es negativ geladen sein. Es könnte also z.b. ein negatives He Ion sein

5 Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im B Feld Kopetschke ) Schraubenbahn a) Unter welchen Bedingungen durchlaufen Elektronen Schraubenbahnen? Bedingungen: homogenes Magnetfeld v steht nicht senkrecht auf B v steht nicht parallel zu B b) Die Schraubenbahn soll im Uhrzeigersinn aus der Papierebene heraus kommen. Zeichne die Richtungen von v 0, B und F L ein. Für Elektronen verwende ich die Linke Hand Regel: v 0 F L B c) Was müsste man tun, um den Durchmesser der Schraubenbahn zu verkleinern? Aus Afg. 2 ist bekannt: r = 2 m U A B 2 e => um r zu verkleinern kann man B vergrößern U A verkleinern d) Wodurch könnte man die Ganghöhe (=Abstand zweier Windungen) vergrößern? Durch einen kleineren Winkel zwischen v und B. Durch eine kleinere Flussdichte, da dann bei gleichem v x der Radius zunimmt und die Elektronen mehr Zeit für einen Umlauf benötigen.

6 Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im B Feld Kopetschke ) Die magnetische Linse Betrachte die Animation "Magnetische Linse" (EBG Homepage / Projekte /Oberstufe ) a) Stelle eine Ablenkspannung von 0,4 kv ein. Beschreibe eindeutig den gesamten Kurvenverlauf. Begründe den Verlauf der beobachteten Bahn in allen Einzelheiten. Die Bewegung erfolgt auf einer Schraubenbahn, die zunächst nach links unten erfolgt, sich dann aus der Bildschirmebene heraus schwingt, vor der Bildebene schräg nach rechts oben verläuft und nach einer Umdrehung wieder die Bildschirmebene tangiert, u.s.w. b) Welche wichtigen Unterschiede ergeben sich für negative Ablenkspannungen? Für negative Ablenkspannungen verläuft die gesamte Bewegung hinter der Bildschirmfläche. c) Ist dir klar, dass das Bild nicht zwei, sondern nur einen Schnittpunkt der verschiedenen Teilchenbahnen zeigt? Erläutere diese Aussage! Bei dem scheinbaren Schnittpunkt in der Bildmitte verlaufen alle Bahnen in unterschiedlichen Abständen vom Bildschirm. Die Bahnen schneiden sich also nicht wirklich. Nach einem Umlauf liegen alle Bahnen wieder auf der Bildschirmebene und schneiden sich im gleichen Punkt. c) Alle Bahnen schneiden sich in einem Punkt auf der rechen Bildschirmseite. Begründe diese Tatsache! (Begründen heißt: Die benötigten Grundlagen darlegen und eine nachvollziehbare Argumentationskette aufstellen!) v x ist durch die Bescheunigungsspannung vorgegeben und für alle Bahnen gleich groß. Der Radius der Schraubenbahn hängt von v y ab und wir durch die Ablenkspannung bestimmt. Da für die Umlaufdauer T = U / v y = 2 π r / v y und r prop. mit v y gilt zunimmt, hängt T nicht von r bzw. v y ab. Das heißt: Alle Elektronen brauchen für einen Umlauf die gleiche Zeit und legen während dieser Zeit die gleiche Strecke in x Richtung zurück. Dort schneiden sich dann im gleichen Punkt auf der Bildschirmebene.

7 Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im B Feld Kopetschke e) Wozu könnte man den beobachteten Effekt nutzen? So wie Licht, das an einem Punkt gestreut wird, durch eine Linse wieder auf einen Punkt gebündelt werden kann, kann man gestreute oder abgelenkte Elektronen durch das Magnetfeld wieder auf einen Punkt zusammenführen. Daher kommt der Name "Magnetische Linse", die viele Anwendungen hat, z.b. im Elektronenmikroskopen. 5) Das Geschwindigkeitsfilter Welche Geschwindigkeit besitzen geladene Teilchen, die bei B = 25mT und E = 50 kv / m das Geschwindigkeitsfilter geradlinig passieren. Geg.: B = 25 mt, E = 50 kv/m Ges.: v Lsg.: Bei einem Geschwindigkeitsfilter stehen ein el. und ein magn. Feld so senkrecht aufeinander, dass die Lorentzkraft der el. Kraft die Waage hält. F L = F el B e v = e E => v = E / B = 2, m/s v = 2, m/s

1. Klausur in K2 am

1. Klausur in K2 am Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Klausur in K am. 3. 0 Achte auf die Darstellung und vergiss nicht: Geg., Ges., Ansatz, Formeln, Einheiten, Rundung...! Angaben:

Mehr

Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 2011 Teilchenbahnen im elektrischen Querfeld

Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 2011 Teilchenbahnen im elektrischen Querfeld Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 011 Teilchenbahnen im elektrischen Querfeld 1) Elektronen starten an der negativen Platte eines Kondensators (d = 5 mm, U = 300 V) und

Mehr

Name: Punkte: Note: Ø: 3. Musterklausur

Name: Punkte: Note: Ø: 3. Musterklausur ame: Punkte: ote: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Musterklausur Achte auf die Darstellung und vergiss nicht: Geg., Ges., Ansatz, Formeln, Einheiten, Rundung...! Angaben: e =,602 0-9

Mehr

Übungen: Kraftwirkung in magnetischen Feldern

Übungen: Kraftwirkung in magnetischen Feldern Übungen: Kraftwirkung in magnetischen Feldern Aufgabe 1: Zwei metallische Leiter werden durch einen runden, beweglichen Kohlestift verbunden. Welche Beobachtung macht ein(e) Schüler(in), wenn der Stromkreis

Mehr

3.3. Prüfungsaufgaben zur Magnetostatik

3.3. Prüfungsaufgaben zur Magnetostatik 3.3. Prüfungsaufgaben zur Magnetostatik Aufgabe 1a: Magnetisches Feld a) Zeichne jeweils eine kleine Magnetnadel mit ord- und üdpol an den Orten A und b des rechts skizzierten Magnetfeldes ein. b) Wie

Mehr

Physik Klausur

Physik Klausur Physik Klausur 12.1 2 15. Januar 2003 Aufgaben Aufgabe 1 Ein Elektron wird mit der Geschwindigkeit v = 10 7 m s 1 von A aus unter 45 in ein begrenztes Magnetfeld geschossen. Der Geschwindigkeitsvektor

Mehr

Aufgaben zu elektrischen und magnetischen Feldern (aus dem WWW) a) Feldstärke E b) magnetische Flussdichte B

Aufgaben zu elektrischen und magnetischen Feldern (aus dem WWW) a) Feldstärke E b) magnetische Flussdichte B Aufgabe 73 (Elektrizitätslehre, Lorentzkraft) Elektronen treten mit der Geschwindigkeit 2,0 10 5 m in ein homogenes elektrisches Feld ein s und durchlaufen es auf einer Strecke von s = 20 cm. Die Polung

Mehr

Reihen- und Parallelschaltung von Kondensatoren

Reihen- und Parallelschaltung von Kondensatoren Ladung Spannung Kapazität Skizze wir-sind-klasse.jimdo.com Das elektrische Feld Energie des Kondensators Die Energie sitzt nach Faradays Feldvorstellung nicht bei den Ladungen auf den Platten sondern zwischen

Mehr

Physik Kursstufe Aufgaben / ÜA 03 Elektromagnete, Kraft auf Leiter B. Kopetschke 2010 Aufgaben zu Elektromagneten, Kraft auf Leiter

Physik Kursstufe Aufgaben / ÜA 03 Elektromagnete, Kraft auf Leiter B. Kopetschke 2010 Aufgaben zu Elektromagneten, Kraft auf Leiter Aufgaben zu Elektromagneten, Kraft auf Leiter Aufgabe 1) Der Lehrer hat hnen die Funktionsweise eines Drehspulinstrumentes erklärt. Welche Kraft erfahren die 100 Drahtstücke der Länge s = 3,0 cm die sich

Mehr

3. Klausur in K1 am

3. Klausur in K1 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung: 3. Klausur in K am.. 0 Achte auf gute Darstellung und vergiss nicht Geg., Ges., Formeln herleiten, Einheiten, Rundung...! 9 Elementarladung:

Mehr

d = 1, 5cm ) liegt eine Spannung von

d = 1, 5cm ) liegt eine Spannung von Aufgabe E-Feld Blau 1: Elektronen werden in einem Plattenkondensator von der Geschwindigkeit m v 0 s 0 auf die Geschwindigkeit beschleunigt. An den Platten (Abstand U 120V an. Wie groß ist v? = 1 d = 1,

Mehr

2. Stegreifaufgabe aus der Physik Lösungshinweise

2. Stegreifaufgabe aus der Physik Lösungshinweise 2. tegreifaufgabe aus der Physik Lösungshinweise Gruppe A (a) Im ersten Fall wirkt keine Kraft, da die tromrichtung parallel zu den Magnetfeldlinien ist. Aufgabe 1 In den anderen beiden Fällen sind tromrichtung

Mehr

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV. Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu

Mehr

Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995

Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 1) Ein Elektron (e = 1,6.10-19 C ; m e = 9,1.10-31 kg) mit der Anfangsgeschwindigkeit v o = 2.10 6 m/s durchläuft

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Seite 1 von 6 Abiturprüfung 2012 Physik, Grundkurs Aufgabenstellung: Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Ein homogenes Magnetfeld in einem

Mehr

Klausur 2 Kurs 12Ph3g Physik

Klausur 2 Kurs 12Ph3g Physik 2009-11-16 Klausur 2 Kurs 12Ph3g Physik Lösung (Rechnungen teilweise ohne Einheiten, Antworten mit Einheiten) Die auf Seite 3 stehenden Formeln dürfen benutzt werden. Alle anderen Formeln müssen hergeleitet

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Feld Unterschiede: Beschreibung Ursache Kräfte auf elektrisches Feld Das elektrische Feld ist der besondere Zustand des

Mehr

Lösungen I km/h. 2. (a) Energieerhaltung (b) Impulserhaltung

Lösungen I km/h. 2. (a) Energieerhaltung (b) Impulserhaltung Lösungen I.1 1. 33 km/h. (a) Energieerhaltung (b) Impulserhaltung Lösungen II.1 1.1 T ~ a 3 T nimmt mit a streng monoton zu; wenn a zwischen den Werten für Mars und Jupiter liegt, dann muss also auch T

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

Aufgaben zur Wechselspannung

Aufgaben zur Wechselspannung Aufgaben zur Wechselspannung Aufgabe 1) Ein 30 cm langer Stab rotiert um eine horizontale, senkrecht zum Stab verlaufende Achse, wobei er in 10 s 2,5 Umdrehungen ausführt. Von der Seite scheint paralleles

Mehr

Überblick Physik 4-stündig - kurz vor dem Abi

Überblick Physik 4-stündig - kurz vor dem Abi Überblick Physik 4-stündig - kurz vor dem Abi Teil I: E- und B-Felder März 2004 / Februar 2010 Inhalt Elektrisches Feld Magnetisches Feld Teilchen in E- und B-Feldern + - E-Feld (1) Einführung des E-Feldes

Mehr

2. Musterklausur in K1

2. Musterklausur in K1 Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Musterklausur in K Die Klausur stellt nur eine kleine Auswahl der möglichen Themen dar. Inhalt der Klausur kann aber der gesamte

Mehr

Das Magnetfeld. Das elektrische Feld

Das Magnetfeld. Das elektrische Feld Seite 1 von 5 Magnetisches und elektrisches Feld Das Magnetfeld beschreibt Eigenschaften der Umgebung eines Magneten. Auch bewegte Ladungen rufen Magnetfelder hervor. Mithilfe von Feldlinienbilder können

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Elektronen im elektrischen Querfeld. Die nebenstehende Skizze

Mehr

Vorkurs Physik des MINT-Kollegs

Vorkurs Physik des MINT-Kollegs Vorkurs Physik des MINT-Kollegs Elektrizitätslehre MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales Forschungszentrum

Mehr

Grundkurs Physik (2ph2) Klausur

Grundkurs Physik (2ph2) Klausur 1. Ernest O. Lawrence entwickelte in den Jahren 1929-1931 den ersten ringförmigen Teilchenbeschleuniger, das Zyklotron. Dieses Zyklotron konnte Protonen auf eine kinetische Energie von 80 kev beschleunigen.

Mehr

10. Spezielle Relativitätstheorie

10. Spezielle Relativitätstheorie 10. Spezielle Relativitätstheorie Die Masse eines Teilchens ist abhängig von seiner Geschwindigkeit. m = m = γ m γ = 1, 1 v c 0 = 1 1 β 1 m 0 v β = c v c c: Lichtgeschwindigkeit im Vakuum mo: Ruhemasse

Mehr

Lösungen der Klausur CSB/Mathe/Info. vom

Lösungen der Klausur CSB/Mathe/Info. vom Lösungen der Klausur CSB/Mathe/Info vom 07.08.09 1. Aufgabe: Lichtgeschwindigkeit im Vakuum: c = v = 3 10 8 m s a) s = 1, 5 10 8 km s c = t = 500 s b) t = 1 a = 31557600 s t c = s = 9, 47 10 15 m c) Ausbreitungsgeschwindigkeit

Mehr

v B Cusanus-Gymnasium Wittlich Die Lorentzkraft Die Lorentzkraft auf ein einzelnes Elektron im Magnetfeld B ist gegeben durch: L(e)

v B Cusanus-Gymnasium Wittlich Die Lorentzkraft Die Lorentzkraft auf ein einzelnes Elektron im Magnetfeld B ist gegeben durch: L(e) Die Lorentzkraft Die Lorentzkraft auf ein einzelnes Elektron im Magnetfeld B ist gegeben durch: FL(e) = e ( v B) F = e v B sin (v, B) L(e) F L v B Die Fadenstrahlröhre Glasröhre, gefüllt mit Wasserstoffgas

Mehr

O. Sternal, V. Hankele. 4. Magnetismus

O. Sternal, V. Hankele. 4. Magnetismus 4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt

Mehr

Spezifische Ladung des Elektrons

Spezifische Ladung des Elektrons Spezifische Ladung des Elektrons 1. Aufgaben 1. Die von einer Spule (a) und von einer Helmholtz-Spulenanordnung (b) erzeugte magnetische Flußdichte ist längs der Rotationssymmetrieachse zu messen und grafisch

Mehr

Das magnetische Feld

Das magnetische Feld Das Magnetfeld wird durch Objekte erzeugt und wirkt gleichzeitig auf Objekte repräsentiert die Kraftwirkung aufgrund des physikalischen Phänomens Magnetismus ist gerichtet und wirkt vom Nordpol zum Südpol

Mehr

Übungsblatt 06. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 06. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 06 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 24. 1. 2005 31. 1. 2005 1 Aufgaben 1. Berechnen Sie für das Vektorpotential

Mehr

Physik GK ph1, 2. Kursarbeit Elektromagnetismus Lösung =10V ein Strom von =2mA. Berechne R 0.

Physik GK ph1, 2. Kursarbeit Elektromagnetismus Lösung =10V ein Strom von =2mA. Berechne R 0. Physik GK ph,. Kursarbeit Elektromagnetismus Lösung.04.05 Aufgabe : Stromkreise / Ohmsches Gesetz. Durch einen Widerstand R 0 fließt bei einer Spannung von U 0 =0V ein Strom von I 0 =ma. Berechne R 0.

Mehr

Klausur. zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science

Klausur. zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science Klausur zur Vorlesung Experimentalphysik für Studierende der Biologie, Gartenbauwissenschaften, Pflanzenbiotechnologie und Life Science Leibniz Universität Hannover 03.02.2010 Barthold Name, Vorname: Matrikelnummer:

Mehr

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 3 G8_Physik_2011_Ph11_Loe Seite 1 von 7 Ph 11-1 Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 1) a) b) - - + + + c) In einem Homogenen elektrischen Feld nimmt das Potential in etwa linear. D.h. Es sinkt

Mehr

Zulassungstest zur Physik II für Chemiker

Zulassungstest zur Physik II für Chemiker SoSe 2016 Zulassungstest zur Physik II für Chemiker 03.08.16 Name: Matrikelnummer: T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T TOT.../4.../4.../4.../4.../4.../4.../4.../4.../4.../4.../40 R1 R2 R3 R4 R TOT.../6.../6.../6.../6.../24

Mehr

Schriftliche Prüfung zur Feststellung der Hochschuleignung

Schriftliche Prüfung zur Feststellung der Hochschuleignung Freie Universität Berlin Schriftliche Prüfung zur Feststellung der Hochschuleignung T-Kurs Fach Physik (Musterklausur) Von den vier Aufgabenvorschlägen sind drei vollständig zu bearbeiten. Bearbeitungszeit:

Mehr

Physik-eA-2011 Klausur Nr

Physik-eA-2011 Klausur Nr Physik-eA-2011 Klausur Nr. 2 12.11.2009 1. Aufgabe Mit einem Simulationsprogramm wird ein Massenspektrogramm von 1-fach ionisierten Neon-Atomen erstellt. Abbildung 1 (siehe Materialseite) dokumentiert

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #23 am 06.06.2007 Vladimir Dyakonov (Klausur-)Frage des Tages Zeigen Sie mithilfe des Ampere

Mehr

Klausur 2 Kurs 11Ph1e Physik

Klausur 2 Kurs 11Ph1e Physik 2-2-06 Klausur 2 Kurs Phe Physik Lösung Ein stromdurchflossener Leiter ist so in einem Magnetfeld mit konstanter Feldstärke B aufgehängt, dass der Strom überall senkrecht zu den magnetischen Feldlinien

Mehr

Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach)

Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach) Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach) Klasse 7Na (Daniel Oehry) Name: Diese Arbeit umfasst vier Aufgaben Hilfsmittel: Dauer: Hinweise: Formelsammlung, Taschenrechner (nicht

Mehr

Physik I. Frühling 2006 D-MATL, D-ITET. Prof. Battlog. (nicht Originalblatt aber die Aufgaben sind eins zu eins übernommen)

Physik I. Frühling 2006 D-MATL, D-ITET. Prof. Battlog. (nicht Originalblatt aber die Aufgaben sind eins zu eins übernommen) Physik I D-MATL, D-ITET Frühling 2006 Prof. Battlog (nicht Originalblatt aber die Aufgaben sind eins zu eins übernommen) Aufgabe 1: Stoss (5 Punkte) Eine Masse (m=10g) kann reibungsfrei auf einer geraden

Mehr

2. Klausur in K1 am

2. Klausur in K1 am Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Klausur in K am 7.. 00 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

Physik Klausur

Physik Klausur Physik Klausur 1.1 1 6. November 00 Aufgaben Aufgabe 1 a) Eine Kugel mit der Ladung q 3 nc und der Masse m 1 g hängt an einem Faden der Länge l 1 m. Der Kondersator hat den Plattenabstand d 0 10 cm und

Mehr

Geladene Teilchen im E- und B-Feld: Von der Lorentzkraft zum MAC-E Filter

Geladene Teilchen im E- und B-Feld: Von der Lorentzkraft zum MAC-E Filter Geladene Teilchen im E- und B-Feld: Von der Lorentzkraft zum MAC-E Filter Marcus Beck Institut für Kernphysik, Westfälische Wilhelms-Universität Münster marcusb@uni-muenster.de Überblick: Einführung Die

Mehr

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen!

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen! Physik 1 / Klausur Anfang SS 0 Heift / Kurtz Name: Vorname: Matrikel-Nr.: Unterschrift: Formeln siehe letzte Rückseite! Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen!

Mehr

Klausur Experimentalphysik II

Klausur Experimentalphysik II Universität Siegen Naturwissenschaftlich-Technische Fakultät Department Physik Sommer Semester 2018 Prof. Dr. Mario Agio Klausur Experimentalphysik II Datum: 10.9.2018-10 Uhr Name: Matrikelnummer: Einleitung

Mehr

Blatt Musterlösung Seite 1. Aufgabe 1: Plasmaanalyse

Blatt Musterlösung Seite 1. Aufgabe 1: Plasmaanalyse Blatt 0 09.0.2008 Physik Departent E8 Seite Aufgabe : Plasaanalyse Nebenstehende Skizze zeigt eine Anordnung zur Plasaanalyse. Ein Zähler Z erzeugt bei Durchgang eines ionisierenden Teilchens (Masse, Ladung

Mehr

1. Klausur in K1 am

1. Klausur in K1 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 4. 0. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

Lösungsblätter. V y v x. v y

Lösungsblätter. V y v x. v y Aufgabe 1 Vergleichen Sie die Ablenkung eines Elektronenstrahls in eine Magnetfeld it der Ablenkung in eine elektrischen Feld. Fertigen Sie jeweils eine Skizze an. Ablenkung i Magnetfeld Elektronen befinden

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Lösung Übungsblatt 2 Tutoren: Elena Kaiser und Matthias Golibrzuch 2 Elektrischer Strom 2.1 Elektrischer Widerstand Ein Bügeleisen von 235 V / 300 W hat eine Heizwicklung

Mehr

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld. Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,

Mehr

Examensaufgaben RELATIVITÄTSTHEORIE

Examensaufgaben RELATIVITÄTSTHEORIE Examensaufgaben RELATIVITÄTSTHEORIE Aufgabe 1 (Juni 2006) Ein Proton besitzt eine Gesamtenergie von 1800 MeV. a) Wie groß ist seine dynamische Masse? b) Berechne seine Geschwindigkeit in km/s. c) Welcher

Mehr

Formelsammlung Physik

Formelsammlung Physik Energie, Arbeit, Leistung: Arbeit [J] W = F s Wärme [J] Q = c m Δθ Elektrische Energie [J] E = U I t Spannenergie [J] E = 1 2 Ds Kinetische Energie [J] E "# = 1 2 mv Potentielle Energie [J] E "# = mgh

Mehr

Name: Bearbeitungszeitraum:

Name: Bearbeitungszeitraum: Meine Geomappe Name: Bearbeitungszeitraum: vom bis zum Aufgabe 1 Zeichne einen Kreis mit a) Radius 2 cm. b) Radius 3,5 cm. c) Radius 1,7 cm. Aufgabe 2 Zeichne einen Kreis mit einem Durchmesser von 5 cm

Mehr

Physik III Übung 1 - Lösungshinweise

Physik III Übung 1 - Lösungshinweise Physik III Übung 1 - Lösungshinweise Stefan Reutter WiSe 212 Moritz Kütt Stand: 16.11.212 Franz Fujara Aufgabe 1 [P] ermanentmagnete (Diskussion) Benötigt man, um ein Magnetfeld zu erhalten, immer einen

Mehr

Schriftliche Lernerfolgskontrolle

Schriftliche Lernerfolgskontrolle Schriftliche Lernerfolgskontrolle Name: Datum: Thema: Grundlagen der Elektrizitätslehre, Reihen- und Parallelschaltung, Lorentz-Kraft, Hinweise: Elektro-Motor, Kathodenstrahlröhre Für die Bearbeitung der

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie

Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie Aufgaben 12 Magnetisches Feld Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen

Mehr

1. Klausur in K1 am

1. Klausur in K1 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung: 1. Klausur in K1 am 19. 10. 010 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben:

Mehr

Name: Bearbeitungszeitraum:

Name: Bearbeitungszeitraum: Meine Geomappe Name: Bearbeitungszeitraum: vom bis zum Aufgabe 1 Zeichne einen Kreis mit a) Radius 2 cm. b) Radius 3,5 cm. c) Radius 1,7 cm. Aufgabe 2 a.) Zeichne einen Kreis mit einem Durchmesser von

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 31.Juli 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich

Mehr

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Tutorium Physik 2. Elektrizität

Tutorium Physik 2. Elektrizität 1 Tutorium Physik 2. Elektrizität SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 10. ELEKTRIZITÄT 4 10.1 Coulombkraft:

Mehr

Lorentzkräfte bei einzelnen geladenen Teilchen

Lorentzkräfte bei einzelnen geladenen Teilchen Kapitel 10 Lorentzkräfte bei einzelnen geladenen Teilchen 10.1 Lernziele zum Kapitel 10 Sie wissen, dass geladene Teilchen Lorentzkräfte F L erfahren, wenn sie sich durch ein magnetisches Feld bewegen.

Mehr

Übungsblatt 08. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Übungsblatt 08. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Übungsblatt 08 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 2.06.2008 Aufgaben. Das folgende Diagramm zeigt die Kollektor-Kennlinien eines Transistors bei

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Ideale und reale Spannungsquellen Kirchhoffsche Regeln Parallelschaltung und Reihenschaltungen von Widerständen Amperemeter

Mehr

Das Magnetfeld eines stromdurchflossenen Leiters (Schularbeiten bis Oktober 1995)

Das Magnetfeld eines stromdurchflossenen Leiters (Schularbeiten bis Oktober 1995) Das Magnetfeld eines stromdurchflossenen Leiters (Schularbeiten bis Oktober 1995) 1) Drei Drähte liegen parallel in werden von Strömen in den I 1 = 2 A I 2 = 5 A I 3 = 6 A angegebenen Richtungen durchflossen.

Mehr

Sofern der Stromdurchflossene Leiter Senkrecht zu den Feldlinien steht gilt: B ist die magnetische Flussdichte, sie hat die Einheit Tesla

Sofern der Stromdurchflossene Leiter Senkrecht zu den Feldlinien steht gilt: B ist die magnetische Flussdichte, sie hat die Einheit Tesla Magnetfelder und orentz-kraft Magnetfelder & magnetische Flussdichte a. Jeder stromdurchflossene eiter erzeugt ein Magnetfeld, die Richtung dieses Magnetfeldes hängt von der Fließrichtung des Stromes ab.

Mehr

Lk Physik in 12/1 1. Klausur aus der Physik Blatt 1 (von 2) C = 4πε o r

Lk Physik in 12/1 1. Klausur aus der Physik Blatt 1 (von 2) C = 4πε o r Blatt 1 (von 2) 1. Ladung der Erde 6 BE a) Leite aus dem oulombpotential die Beziehung = 4πε o r für die Kapazität einer leitenden Kugel mit Radius r her. In der Atmosphäre herrscht nahe der Erdoberfläche

Mehr

Bewegung im elektrischen und magnetischen Feld

Bewegung im elektrischen und magnetischen Feld Bewegung im elektrischen und magnetischen Feld M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis Bewegung geladener Teilchen elektrischen Feldern Bewegung geladener Teilchen in Magnetfeldern

Mehr

1.Klausur LK Physik 12/2 - Sporenberg Datum:

1.Klausur LK Physik 12/2 - Sporenberg Datum: 1.Klausur LK Physik 12/2 - Sporenberg Datum: 28.03.2011 1.Aufgabe: I. Eine flache Spule (n 500, b 5 cm, l 7 cm, R 280 Ω) wird mit v 4 mm in der Abbildung aus der Lage I durch das scharf begrenzte Magnetfeld

Mehr

Ferienkurs Experimentalphysik Übung 4 - Musterlösung

Ferienkurs Experimentalphysik Übung 4 - Musterlösung Ferienkurs Experimentalphysik Übung 4 - Musterlösung a) Berechnung mit dem Ampèreschen Gesetz: Mit der Rechten-Hand-Regel ermittelt man die Richtung des Magnetfeldes. Also entlang den Strecken und 4 (s.

Mehr

Prüfungsvorbereitung Physik: Lorentzkraft, Induktion, Schwingungen

Prüfungsvorbereitung Physik: Lorentzkraft, Induktion, Schwingungen Prüfungsvorbereitung Physik: Lorentzkraft, Induktion, Schwingungen Theoriefragen: Diese Begriffe müssen Sie auswendig in ein bis zwei Sätzen erklären können. 1) Vektor/Skalar 2) Geschwindigkeit 3) Gleichförmige

Mehr

Ein Idealer Generator - Variante

Ein Idealer Generator - Variante Ein Idealer Generator - Variante Dein Freund Luis möchte bei einem schulischen Wettbewerb mit folgender genialer antreten: Er hat einen Wechselspannungsgenerator entworfen, der, einmal angeworfen, für

Mehr

Ministerium für Kultus, Jugend und Sport Baden-Württemberg Abiturprüfung an den allgemein bildenden Gymnasien

Ministerium für Kultus, Jugend und Sport Baden-Württemberg Abiturprüfung an den allgemein bildenden Gymnasien Aufgabe I Ministerium für Kultus, Jugend und Sport BadenWürttemberg Abiturprüfung an den allgemein bildenden Gymnasien Prüfungsfach : Physik Haupttermin : 2005 Aufgabe : I a) Im Experiment kann man das

Mehr

Grundwissen 8 - Aufgaben Seite 1

Grundwissen 8 - Aufgaben Seite 1 Grundwissen 8 - Aufgaben 22.01.2016 Seite 1 1. Ergänze jede der folgenden Aussagen zum Rechnen mit Potenzen mathematisch sinnvoll und grammatikalisch korrekt. a) Zwei Potenzen mit gleicher Basis werden

Mehr

Leistungskurs Physik A40/Q1. Dienstag, den , 3. Block

Leistungskurs Physik A40/Q1. Dienstag, den , 3. Block Stundenprotokoll Fach: Fachlehrer: Zeit: Protokollant: Thema der Stunde: Leistungskurs Physik A40/Q1 Herr Winkowski Dienstag, den 13.09.11, 3. Block Christian Täge Vertiefung der Kreisbewegung Gliederung

Mehr

Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, :00 Uhr für den Studiengang: Mb, Inft, Geol, Ciw

Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, :00 Uhr für den Studiengang: Mb, Inft, Geol, Ciw Institut für Physik und Physikalische Technologien 23.02.2005 der TU Clausthal Prof. Dr. W. Daum Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, 09.00-11:00 Uhr für den Studiengang: Mb, Inft, Geol,

Mehr

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit

Mehr

Abschlussprüfung an Fachoberschulen im Schuljahr 2002/2003

Abschlussprüfung an Fachoberschulen im Schuljahr 2002/2003 Abschlussprüfung an Fachoberschulen im Schuljahr 00/00 Haupttermin: Nach- bzw. Wiederholtermin: 0.06.00 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 10 Minuten Hilfsmittel: - Formelsammlung/Tafelwerk

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Übung 2 - Angabe Technische Universität München 1 Fakultät für Physik 1 Draht Strom fließt durch einen unendlich langen Draht mit Radius a. Dabei ist die elektrische

Mehr

Physik Klausur

Physik Klausur Physik Klausur 12.2 1 19. Februar 23 Aufgaben Aufgabe 1 In einer magnetfelderzeugenden Spule fließt ein periodisch sich ändernder Strom I (siehe nebenstehendes Schaubild) mit der für jede Periode geltenden

Mehr

Prüfungsähnliche Klausur Leistungskurs Physik

Prüfungsähnliche Klausur Leistungskurs Physik Pestalozzi-Gymnasium Heidenau Hauptstr. 37 10. Februar 2011 Schuljahr 2010/2011 Prüfungsähnliche Klausur Leistungskurs Physik Allgemeine Arbeitshinweise Ihre Arbeitszeit (einschließlich Zeit für Lesen

Mehr

Elektrostaitische Felder

Elektrostaitische Felder Elektrostaitische Felder Grundlagen zu den elektrischen Felder 1 homogenes Feld des Plattenkondensators inhomogenes Feld einer Punktladung Bei einem Plattenkondensator verlaufen die Feldlinien parallel

Mehr

12. Jahrgangsstufe Abiturvorberitung Musterprüfungsaufgaben. Elektrische und magnetische Felder

12. Jahrgangsstufe Abiturvorberitung Musterprüfungsaufgaben. Elektrische und magnetische Felder Elektrische und magnetische Felder 1. Die urspründlicheste Form des Milikanversuchs war die Idee, dass zwischen zwei Platten eines Kondensators mit dem Abstand d ein Öltröpfchen der Masse m und der Ladung

Mehr

4 V. c) 7 Messgrößen sind E (bzw. U und d), B und r. ebr m= v

4 V. c) 7 Messgrößen sind E (bzw. U und d), B und r. ebr m= v Physik Aufgabe Ph Aufgabe BE Hinweise a) 6 Siehe Lehrbuch, Geschwindigkeitsfilter Die Magnetfeldrichtung ist senkrecht in die Zeichenebene hinein orientiert; die Polung der Platten ist oben positiv und

Mehr

Spezifische Ladung eines Elektrons

Spezifische Ladung eines Elektrons A12 Spezifische Ladung eines Elektrons Die spezifische Elektronenladung e/m e soll aus der Bahnkurve eines Elektronenstrahls im homogenen magnetischen Feld bestimmt werden. 1. Theoretische Grundlagen 1.1

Mehr

Lösung der Problemstellung 1

Lösung der Problemstellung 1 Lösung der Problemstellung 1 1. Zunächst untersuchen wir die Wechselwirkung nach dem Thomson-Modell: Da das α Teilchen sehr viel kleiner als das Goldatom ist, sehen wir es als punktförmig an. Das Goldatom

Mehr

Grundlagen der Elektrotechnik 1 am

Grundlagen der Elektrotechnik 1 am Name: Matrikelnummer: Studienfach: Grundlagen der Elektrotechnik 1 am 19.7.2017 Fachbereich Elektrotechnik und Informatik Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur Vorlesung Grundlagen

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

Elektrostatik. Freie Ladungen im elektrischen Feld. Was passiert mit einem Elektron in einer Vakuumröhre? Elektron

Elektrostatik. Freie Ladungen im elektrischen Feld. Was passiert mit einem Elektron in einer Vakuumröhre? Elektron Elektrostatik 1. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Kräfte zwischen Ladungen, quantitativ 4. Elektrisches Feld 5. Der Satz von Gauß 6. Das elektrische Potenzial und Potenzialdifferenz

Mehr

Abitur 2009 Physik 2. Klausur Hannover, arei LK 1. Semester Bearbeitungszeit: 90 min

Abitur 2009 Physik 2. Klausur Hannover, arei LK 1. Semester Bearbeitungszeit: 90 min bitur 9 hysik lausur Hannoer, 37 arei L Seester earbeitungszeit: 9 in Thea: Geladene Teilchen i elektrischen und agnetische Feld ufgabe rotonen werden i Vakuu aus der Ruhelage durch die Spannung = 8V auf

Mehr

Abitur 2004: Physik - Aufgabe I

Abitur 2004: Physik - Aufgabe I Abitur 2004: Physik - Aufgabe I Ministerium für Kultus, Jugend und Sport Baden-Württemberg Abiturprüfung an den allgemein bildenden Gymnasien Prüfungsfach : Physik Haupttermin : 2004 Aufgabe : I a) Zum

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr