Spezifische Ladung des Elektrons

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Spezifische Ladung des Elektrons"

Transkript

1 Spezifische Ladung des Elektrons 1. Aufgaben 1. Die von einer Spule (a) und von einer Helmholtz-Spulenanordnung (b) erzeugte magnetische Flußdichte ist längs der Rotationssymmetrieachse zu messen und grafisch darzustellen. 2. Aus dem Krümmungsradius eines Elektronenstrahles in einem homogenen Magnetfeld ist die spezifische Ladung e/m e des Elektrons einschließlich des zufälligen Größtfehlers zu bestimmen. 3. Der Einfluß des Erdmagnetfeldes auf die bei Aufgabe 2 berechneten B-Werte ist zu diskutieren. 2. Grundlagen 2.1 Literatur: [1], Abschnitte O.6.0. und O Allgemeine Grundlagen Bewegt sich eine Ladung Q in einem homogenen Magnetfeld der Flußdichte der Geschwindigkeit, so wirkt auf die Ladung senkrecht zu und die Lorentz- Kraft (1) Der Betrag dieser Kraft ist (2) Das Wirken der Lorentz-Kraft auf freie geladene Teilchen wird in vielen physikalischen Geräten ausgenutzt, z. B. Teilchenbeschleuniger, Elektronenmikroskop, Massenspektrometer, Bildröhren. Schießt man z. B. Elektronen (Masse m, Ladung e) mit konstanter Geschwindig- e mit 1

2 Spezifische Ladung d. Elektrons keit senkrecht zu den Feldlinien in ein homogenes Magnetfeld, so wirkt die Lorentz-Kraft als Zentripetalkraft mit dem Betrag (3) Die Teilchen beschreiben eine Kreisbahn, wobei gilt (4) Die Elektronengeschwindigkeit v wird bestimmt durch die Spannung U, mit der diese beschleunigt wurden, und ergibt sich aus dem Energiesatz: (5) Mit (4) und (5) besteht die Möglichkeit, die spezifische Ladung e/m e des Elektrons zu bestimmen: (6) Dazu geeignet ist die Fadenstrahlröhre: In einem kugelförmigen Glaskolben befindet sich eine indirekt heizbare Oxidkatode, eine mit Loch versehene Anode und ein Wehnelt-Zylinder. Durch Anlegen einer Heizspannung sendet die Katode Elektronen aus, die durch eine positive Anodenspannung beschleunigt werden, wobei der Wehnelt-Zylinder mit der Lochscheibenanode als elektrostatische Linse für den Elektronenstrahl fungiert. Der Glaskolben enthält außerdem das Edelgas Neon (Restgasdruck 1,3 Pa). Die Elektronen stoßen mit den Edelgasatomen zusammen. Die dabei entstehenden positiven Ionen bilden um die sich ausbreitenden Elektronen einen Kanal, in dem diese zu einem feinen Strahl gebündelt werden. Dieser Fadenstrahl ist sichtbar, da die Elektronen durch Zusammenstöße mit den Gasatomen diese zum Leuchten anregen. Der Fadenstrahl breitet sich im feldfreien Raum geradlinig aus. Bringt man die Röhre in ein homogenes Magnetfeld, so daß der Elektronenstrahl senkrecht zu den Feldlinien verläuft, so wird dieser zu einem Kreis abgelenkt. Dessen Durchmesser ist von der magnetischen Induktion B und von der Elektronengeschwindigkeit v (bzw. Beschleunigungsspannung U) abhängig. 2

3 Spezifische Ladung d. Elektrons A 4 Das homogene Magnetfeld wird mit einer Helmholtz-Spulenanordnung erzeugt. Sie besteht aus zwei kreisförmigen Spulen (Radius R, Windungszahl N), die im Abstand R parallel zueinander angeordnet sind (s. Abb. 1). Im Inneren der Kreisspulen entsteht ein homogenes Magnetfeld, dessen Stärke von R, N und vom fließenden Strom I abhängig ist. Abb. 1: Helmholtz-Spulenpaar 3. Hinweise zur Versuchsdurchführung und -auswertung zu Aufgabe 1: Die Fadenstrahlröhre ist - ohne die Steckverbindungen zu lösen - vorsichtig aus der Helmholtz-Spulenanordnung herauszunehmen und standsicher beiseite zu stellen. Für Aufgabe 1a) ist nur eine Spule der Spulenanordnung an das Stromversorgungsgerät anzuschließen und ein Strom I = 2 A einzustellen. Zur Messung des Magnetfeldes dient eine Hall-Sonde, die mit einem Teslameter verbunden ist (die Anzeige des Gerätes ist in T (Tesla) kalibriert). Mit der Hall-Sonde ist das B-Feld der Spule abzutasten, indem die Sonde längs der Führung auf der Rotationssymmetrieachse (x-richtung) bewegt wird. Die Messung ist vom Spulenzentrum jeweils bis zum Abstand R (R - Spulenradius, s. Platzanleitung) durchzuführen. Für Aufgabe 1b) sind beide Spulen der Helmholtz-Spulenanordnung in Reihe an das Stromversorgungsgerät anzuschließen (Schaltskizze am Versuchsplatz) und der Strom wie bei 1a) zu belassen. Die B-Messung erfolgt wie bei 1a) jeweils bis zum Abstand R beidseits über die Spulen hinaus. Die Ergebnisse von a) und b) sind grafisch in einem Diagramm B(x) darzustellen und zu diskutieren. 3

4 Spezifische Ladung d. Elektrons zu Aufgabe 2: Abb. 2: Prinzipschaltskizze zur e/m -Bestimmung e Die konkrete Meßschaltung liegt am Versuchsplatz vor und entspricht der Schaltung in Abb. 2. Die Fadenstrahlröhre wird vorsichtig so in die Helmholtz-Spule gestellt, daß der Elektronenstrahl senkrecht zur Richtung der magnetischen Induktion B (s. Abb. 1) austritt. Die Werte für Heizspannung, Wehneltspannung und Anodenspannung sind der Platzanleitung zu entnehmen. Die maximale Stromstärke für die Helmholtz-Spule sollte 6 A nicht für längere Zeit überschreiten. Die spezifische Ladung des Elektrons berechnet sich nach (6). Experimentell zu bestimmen sind die Anodenspannung U A, der Kreisdurchmesser 2r und die magnetische Flußdichte B, letztere berechnet sich aus (7) (I - Spulenstrom, o - magnetische Feldkonstante, N - Windungszahl einer Spule, R - mittlerer Spulenradius. (N und R s. Platzanleitung). Zur Bestimmung des Elektronenstrahldurchmessers 2r nutzt man die in der Röhre im Abstand von 20 mm angebrachten Meßmarken. Für die Ermittlung von e/m e gibt es zwei Möglichkeiten. Der Fadenstrahldurchmesser wird entweder bei konstanter Anodenspannung durch die Flußdichte variiert oder umgekehrt bei konstanter Flußdichte durch die Anodenspannung. Im Versuch wird die erste Variante genutzt. Bei einer festen Anodenspannung U A wird die magnetische Flußdichte B variiert und die zugehörigen Elektronenstrahl- 4

5 Spezifische Ladung d. Elektrons A 4 durchmesser bestimmt. Zur Auswertung trägt man entsprechend der aus (6) folgenden Beziehung (8) den Radius r über 1/B auf. Mit Hilfe des Anstieges b dieser Regressionsgeraden wird e/m e errechnet: (9) Für die Größtfehlerberechnung nutzt man die bei der linearen Regression erhaltene Standardabweichung des Anstieges ( ). Für u (U ) kann man 5 Digits der letzten angezeigten Stelle setzen. z A zu Aufgabe 3: Das B-Feld der Helmholtz-Spule verläuft horizontal und wird demzufolge auch nur von der Horizontalkomponente des erdmagnetischen Feldes beeinflußt. Man überlege, welche Richtungen das B-Feld der Helmholtzspule und die Horizontalkomponente des Erdfeldes haben und gebe den prozentualen Anteil der Horizontalkomponente des erdmagnetischen Feldes in Bezug auf die berechneten B-Werte an. -1 Horizontalkomponente des erdmagnetischen Feldes: H H =15,4 A m (magnetische Feldstärke für Freiberg) 4. Schwerpunkte für die Vorbereitung auf das Praktikum - Kräfte auf Ladungen im magnetischen Feld - Lorentz-Kraft - Kräfte auf Ladungen im elektrostatischen Feld - Bestimmung der Elementarladung - Magnetfelder stromdurchflossener Leiter 5

Spezifische Ladung eines Elektrons

Spezifische Ladung eines Elektrons A12 Spezifische Ladung eines Elektrons Die spezifische Elektronenladung e/m e soll aus der Bahnkurve eines Elektronenstrahls im homogenen magnetischen Feld bestimmt werden. 1. Theoretische Grundlagen 1.1

Mehr

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2 LK Lorentzkraft Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfeld dünner Leiter und Spulen......... 2 2.2 Lorentzkraft........................

Mehr

Physikalisches Grundpraktikum für Physiker/innen Teil III. Bestimmung der spezifischen Elementarladung e/m

Physikalisches Grundpraktikum für Physiker/innen Teil III. Bestimmung der spezifischen Elementarladung e/m Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum für Physiker/innen Teil III Bestimmung der spezifischen Elementarladung e/m WWW-Adresse Grundpraktikum Physik: 0http://grundpraktikum.physik.uni-saarland.de/

Mehr

Bestimmung der spezifischen Ladung e/m

Bestimmung der spezifischen Ladung e/m -B08.1- Versuch B8: Bestimmung der spezifischen Ladung e/m 1. Literatur: Demtröder, Experimentalphysik 2: Elektrizität und Optik Pohl, Einführung in die Physik, Bd. 2 Dobrinski/Krakau/Vogel, Physik für

Mehr

Physikalisches Praktikum I Bachelor Chemieingenieurwesen, Wirtschaftsingenieurwesen Chemietechnik MSc. M. Gilbert

Physikalisches Praktikum I Bachelor Chemieingenieurwesen, Wirtschaftsingenieurwesen Chemietechnik MSc. M. Gilbert Physikalisches Praktikum I Bachelor Chemieingenieurwesen, Wirtschaftsingenieurwesen Chemietechnik MSc. M. Gilbert E 07 Elektronen im Magnetfeld (Pr_EX_E07_Elektronenröhre_6, 6.09.014) 1.. Name Matr. Nr.

Mehr

Im ersten Teil dieses Versuchs wird ein Elektronenstrahl im homogenen Magnetfeld untersucht.

Im ersten Teil dieses Versuchs wird ein Elektronenstrahl im homogenen Magnetfeld untersucht. 1. Problem n diesem Versuch lernen Sie die Kraftwirkung eines -Feldes auf eine bewegte Ladung kennen. ies untersuchen sie an zwei Beispielen: unächst untersuchen sie die Auslenkung eines Elektronenstrahls

Mehr

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Feld Unterschiede: Beschreibung Ursache Kräfte auf elektrisches Feld Das elektrische Feld ist der besondere Zustand des

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Seite 1 von 6 Abiturprüfung 2012 Physik, Grundkurs Aufgabenstellung: Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Ein homogenes Magnetfeld in einem

Mehr

Das magnetische Feld

Das magnetische Feld Das Magnetfeld wird durch Objekte erzeugt und wirkt gleichzeitig auf Objekte repräsentiert die Kraftwirkung aufgrund des physikalischen Phänomens Magnetismus ist gerichtet und wirkt vom Nordpol zum Südpol

Mehr

Laborversuche zur Physik 2 II - 4 FB Physik Eigenschaften von Elektronen Reyher, Bestimmung der spezifischen Ladung e/m des Elektrons

Laborversuche zur Physik 2 II - 4 FB Physik Eigenschaften von Elektronen Reyher, Bestimmung der spezifischen Ladung e/m des Elektrons Laborversuche zur Physik 2 II - 4 FB Physik Eigenschaften von Elektronen Reyher, 16.01.14 Bestimmung der spezifischen Ladung e/m des Elektrons Ziele Beobachtung von Elektronenbahnen im magnetischen und

Mehr

Reihen- und Parallelschaltung von Kondensatoren

Reihen- und Parallelschaltung von Kondensatoren Ladung Spannung Kapazität Skizze wir-sind-klasse.jimdo.com Das elektrische Feld Energie des Kondensators Die Energie sitzt nach Faradays Feldvorstellung nicht bei den Ladungen auf den Platten sondern zwischen

Mehr

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS B SCIENTIFIC PHYSICS Elektronenstrahlblenkröhre D 6 Bedienungsanleitung / LF 9 8 7 6 7 6 Leuchtschirm Untere blenkplatte Halter mit mmsteckerstift zum nschluss der Kondensatorplatte Elektronenkanone mmbuchsen

Mehr

Sofern der Stromdurchflossene Leiter Senkrecht zu den Feldlinien steht gilt: B ist die magnetische Flussdichte, sie hat die Einheit Tesla

Sofern der Stromdurchflossene Leiter Senkrecht zu den Feldlinien steht gilt: B ist die magnetische Flussdichte, sie hat die Einheit Tesla Magnetfelder und orentz-kraft Magnetfelder & magnetische Flussdichte a. Jeder stromdurchflossene eiter erzeugt ein Magnetfeld, die Richtung dieses Magnetfeldes hängt von der Fließrichtung des Stromes ab.

Mehr

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum B

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum B U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum B Versuch em : Spezifische Ladung e/m des Elektrons 5. Auflage 2012 Dr. Stephan Giglberger

Mehr

Das magnetische Feld

Das magnetische Feld Dorn-Bader S. 33-54 Das magnetische Feld 1. Magnetische Grunderscheinungen Arbeitsauftrag: vgl. Dorn-Bader S. 34/35 2. Stärke des Magnetfeldes 2.1. Lorentzkraft auf bewegte Ladung Versuch B1 Nähern wir

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

d = 1, 5cm ) liegt eine Spannung von

d = 1, 5cm ) liegt eine Spannung von Aufgabe E-Feld Blau 1: Elektronen werden in einem Plattenkondensator von der Geschwindigkeit m v 0 s 0 auf die Geschwindigkeit beschleunigt. An den Platten (Abstand U 120V an. Wie groß ist v? = 1 d = 1,

Mehr

Praktikum EE2 Grundlagen der Elektrotechnik Teil 2

Praktikum EE2 Grundlagen der Elektrotechnik Teil 2 Praktikum EE2 Grundlagen der Elektrotechnik Teil 2 Name: Studienrichtung: Versuch 6 Messen der magnetischen Flussdichte Versuch 7 Transformator Versuch 8 Helmholtzspulen Versuch 9 Leistungsmessung Testat

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Elektronen im elektrischen Querfeld. Die nebenstehende Skizze

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Messung von c und e/m Autor: Noé Lutz Assistent:

Mehr

Bestimmung von e e. mit dem Fadenstrahlrohr m Gruppe 8

Bestimmung von e e. mit dem Fadenstrahlrohr m Gruppe 8 Bestimmung von e e mit dem Fadenstrahlrohr m Gruppe 8 m -- Einführung Dieser Versuch beschäftigt sich mit der Bestimmung der spezifischen Ladung e m eines Elektrons. Dies wird mit folgendem Versuchsaufbau

Mehr

Physik. Abiturwiederholung. Das Elektrische Feld

Physik. Abiturwiederholung. Das Elektrische Feld Das Elektrische Feld Strom Strom ist bewegte Ladung, die Stromstärke ergibt sich also als Veränderung der Ladung nach der Zeit, also durch die Ableitung. Somit kann man die Ladung als Fläche betrachten,

Mehr

Versuch P4: Ladungen in elektrischen und magnetischen Feldern

Versuch P4: Ladungen in elektrischen und magnetischen Feldern Physikalisches Praktikum für Pharmazeuten Gruppennummer Name Vortestat Endtestat Name Versuch A. Vorbereitungsteil (VOR der Versuchsdurchführung lesen!) 1. Kurzbeschreibung In diesem Versuch werden die

Mehr

Schulinterner Lehrplan Qualifikationsphase Q1. Präambel

Schulinterner Lehrplan Qualifikationsphase Q1. Präambel Präambel Dieses Curriculum stellt keinen Maximallehrplan dar, sondern will als offenes Curriculum die Möglichkeit bieten, auf die didaktischen und pädagogischen Notwendigkeiten der Qualifikationsphase

Mehr

Übungen: Kraftwirkung in magnetischen Feldern

Übungen: Kraftwirkung in magnetischen Feldern Übungen: Kraftwirkung in magnetischen Feldern Aufgabe 1: Zwei metallische Leiter werden durch einen runden, beweglichen Kohlestift verbunden. Welche Beobachtung macht ein(e) Schüler(in), wenn der Stromkreis

Mehr

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker 12. Elektrodynamik 12.11 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Teilchenbahnen im Magnetfeld

Teilchenbahnen im Magnetfeld Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im B Feld Kopetschke 2011 1 Teilchenbahnen im Magnetfeld 1) Protonen im Kreisverkehr: Protonen bewegen sich von unten kommend in einem Magnetfeld, das in

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Protokoll zum Anfängerpraktikum Messung von Magnetfeldern Gruppe 2, Team 5 Sebastian Korff Frerich Max 8.6.6 Inhaltsverzeichnis 1. Einleitung -3-1.1 Allgemeines -3-1.2 IOT-SAVART Gesetz -4-1.3 Messung

Mehr

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2 IK Induktion Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfelder....................... 2 2.2 Spule............................ 2

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #23 am 06.06.2007 Vladimir Dyakonov (Klausur-)Frage des Tages Zeigen Sie mithilfe des Ampere

Mehr

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV. Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu

Mehr

Magnetismus. Vorlesung 5: Magnetismus I

Magnetismus. Vorlesung 5: Magnetismus I Magnetismus Erzeugung eines Magnetfelds möglich durch: Kreisende Elektronen: Permanentmagnet Bewegte Ladung: Strom: Elektromagnet (Zeitlich veränderliches elektrisches Feld) Vorlesung 5: Magnetismus I

Mehr

Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995

Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 1) Ein Elektron (e = 1,6.10-19 C ; m e = 9,1.10-31 kg) mit der Anfangsgeschwindigkeit v o = 2.10 6 m/s durchläuft

Mehr

Bestimmung der spezifischen Elektronenladung (SEL)

Bestimmung der spezifischen Elektronenladung (SEL) Technische Universität München TUM School of Education TUM Science Labs Gefördert durch die Bestimmung der spezifischen Elektronenladung (SEL) Versuch im Physikalischen Anfängerpraktikum Bearbeitet von:

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters 4.7 Magnetfelder von Strömen Aus den vorherigen Kapiteln ist bekannt, dass auf stromdurchflossene Leiter im Magnetfeld eine Kraft wirkt. Die betrachteten magnetischen Felder waren bisher homogene Felder

Mehr

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt?

Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? Was hast Du zum Unterrichtsthema Versorgung mit elektrischer Energie gelernt? elektrischer Strom Stromstärke elektrische Spannung Spannungsquelle Gerichtete Bewegung von Ladungsträgern in einem elektrischen

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Ideale und reale Spannungsquellen Kirchhoffsche Regeln Parallelschaltung und Reihenschaltungen von Widerständen Amperemeter

Mehr

Das statische magnetische Feld

Das statische magnetische Feld Das statische magnetische Feld M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis 1 Magnetisches Feld (2 Std.) 2 (6 Std.) Lorentzkraft E Magnetfeld (B-Feld) eines Stabmagneten LV: Eisenfeil-

Mehr

V5 - Spezifische Ladung des Elektrons

V5 - Spezifische Ladung des Elektrons Aufgabenstellung: 1. Untersuchen Sie die Abhängigkeit des Bahnradius eines Elektrons im Fadenstrahlrohr von der Beschleunigungsspannung und der Stärke des äußerem Magnetfeldes. 2. Bestimmen Sie die spezifische

Mehr

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 9 PHYS7357 Elektrizitätslehre und Magnetismus Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, othmar.marti@uni-ulm.de) 7. 6. 9 Aufgaben. Durch eine

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

Bewegung im elektrischen und magnetischen Feld

Bewegung im elektrischen und magnetischen Feld Bewegung im elektrischen und magnetischen Feld M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis Bewegung geladener Teilchen elektrischen Feldern Bewegung geladener Teilchen in Magnetfeldern

Mehr

Aufgaben zu elektrischen und magnetischen Feldern (aus dem WWW) a) Feldstärke E b) magnetische Flussdichte B

Aufgaben zu elektrischen und magnetischen Feldern (aus dem WWW) a) Feldstärke E b) magnetische Flussdichte B Aufgabe 73 (Elektrizitätslehre, Lorentzkraft) Elektronen treten mit der Geschwindigkeit 2,0 10 5 m in ein homogenes elektrisches Feld ein s und durchlaufen es auf einer Strecke von s = 20 cm. Die Polung

Mehr

E12 Elektronen in Feldern

E12 Elektronen in Feldern Physikalische Grundlagen Grundbegriffe Oszillograf spezifische Ladung elektrisches und magnetisches Feld Lorentzkraft Coulombkraft DiespezifischeLadung e/m geladenerteilchenmitdermasse m undderladung e

Mehr

Schulversuchspraktikum WS2000/2001 Redl Günther 9655337. Elektromagnet. 7.Klasse

Schulversuchspraktikum WS2000/2001 Redl Günther 9655337. Elektromagnet. 7.Klasse Schulversuchspraktikum WS2000/2001 Redl Günther 9655337 Elektromagnet 7.Klasse Inhaltsverzeichnis: 1) Lernziele 2) Verwendete Quellen 3) Versuch nach Oersted 4) Magnetfeld eines stromdurchflossenen Leiter

Mehr

Demonstrations-Planar-Triode

Demonstrations-Planar-Triode Demonstrations-Planar-Triode 1. Anode 2. Gitter 3. Halter mit 4-mm-Steckerstift zum Anschluss des Gitters 4. Heizwendel 5. Katodenplatte 6. Verbindung der Heizfadenzuführung mit der inneren Beschichtung

Mehr

1. Theorie: Kondensator:

1. Theorie: Kondensator: 1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und

Mehr

Die spezifische Ladung eines Elektrons - beschreibt dessen elektrische Ladung im Verhältnis zu seiner Masse und ist eine physikalische Größe.

Die spezifische Ladung eines Elektrons - beschreibt dessen elektrische Ladung im Verhältnis zu seiner Masse und ist eine physikalische Größe. 1 Fadenstrahlrohr Fadenstrahlrohr 1. Versuchszweck Der Versuchsaufbau aus Fadenstrahlrohr und den beiden Helmholtzspulen dient zur Untersuchung der Ablenkung von Elektronenstrahlen in elektrischen und

Mehr

Magnetische Phänomene

Magnetische Phänomene Magnetische Phänomene Bekannte magnetische Phänomene: Permanentmagnete; Das Erdmagnetfeld (Magnetkompass!); Elektromagnetismus (Erzeugung magnetischer Kraftwirkungen durch Stromfluss) Alle magnetischen

Mehr

Magnetische Induktion Φ = Der magnetische Fluss Φ durch eine Fläche A ist definiert als

Magnetische Induktion Φ = Der magnetische Fluss Φ durch eine Fläche A ist definiert als E8 Magnetische Induktion Die Induktionsspannung wird in Abhängigkeit von Magnetfeldgrößen und Induktionsspulenarten untersucht und die Messergebnisse mit den theoretischen Voraussagen verglichen.. heoretische

Mehr

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 3 G8_Physik_2011_Ph11_Loe Seite 1 von 7 Ph 11-1 Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 1) a) b) - - + + + c) In einem Homogenen elektrischen Feld nimmt das Potential in etwa linear. D.h. Es sinkt

Mehr

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld. Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,

Mehr

Hall-Effekt und Magnetfeldmessung

Hall-Effekt und Magnetfeldmessung Hall-Effekt und Magnetfeldmessung erweitert aus Studiengebühren Vorbereitung: Halbleiter, Bändermodell: n-leitung, p-leitung, Kraft auf Ladungsträger in elektrischen und magnetischen Feldern, Hall-Effekt,

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

Versuch: Wir messen die Kraft auf einen stromdurchflossenen Leiter im Magnetfeld eines Hufeisenmagneten mit Hilfe einer Stromwaage.

Versuch: Wir messen die Kraft auf einen stromdurchflossenen Leiter im Magnetfeld eines Hufeisenmagneten mit Hilfe einer Stromwaage. 12.6 Magnetische lussdichte Die Gravitationsfeldstärke g und die elektrische eldstärke E sind Größen, die die Stärke eines eldes beschreiben. Denkt man sich einen Probekörper bekannter Masse bzw. Ladung

Mehr

1.Schulaufgabe aus der Physik Lösungshinweise

1.Schulaufgabe aus der Physik Lösungshinweise 1.Schulaufgabe aus der Physik Lösungshinweise Gruppe A Aufgabe 1 (Grundwissen) Größe Energie Stromstärke Widerstand Ladung Kraft Buchstabe E I R Q F Einheit Joule: J Ampere: A Ohm: Ω Coulomb: C Newton:

Mehr

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER. E 5 - Magnetfeld

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER. E 5 - Magnetfeld Universität - GH Essen Fachbereich 7 - Physik PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER Versuch: E 5 - Magnetfeld 1. Grundlagen Magnetfeld einer Kreisspule (magnetische Feldstärke, magnetische Induktion, Biot-Savartsches

Mehr

Magnetfeld in Leitern

Magnetfeld in Leitern 08-1 Magnetfeld in Leitern Vorbereitung: Maxwell-Gleichungen, magnetischer Fluss, Induktion, Stromdichte, Drehmoment, Helmholtz- Spule. Potentiometer für Leiterschleifenstrom max 5 A Stufentrafo für Leiterschleife

Mehr

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft Inhalt 10. Elektrodynamik 10.3 Das elektrische Potential 10.4 Elektrisches Feld und Potential ti 10.5 Magnetische Kraft und Felder 1051M 10.5.1 Magnetische Kraft 10.3 Das elektrische Potential ti Wir hatten

Mehr

Klausur 2 Kurs 12Ph3g Physik

Klausur 2 Kurs 12Ph3g Physik 2009-11-16 Klausur 2 Kurs 12Ph3g Physik Lösung (Rechnungen teilweise ohne Einheiten, Antworten mit Einheiten) Die auf Seite 3 stehenden Formeln dürfen benutzt werden. Alle anderen Formeln müssen hergeleitet

Mehr

Magnetfeld von Spulen

Magnetfeld von Spulen c Doris Samm 2014 1 Magnetfeld von Spulen 1 Der Versuch im Überblick Magnetfelder spielen überall eine große Rolle, sei es in der Natur oder der Technik. So schützt uns das natürliche Erdmagnetfeld vor

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 14/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Laden eines Kondensators Aufladen erfolgt durch eine Spannungsquelle, z.b. Batterie, die dabei

Mehr

Stromdurchossene Leiter im Magnetfeld, Halleekt

Stromdurchossene Leiter im Magnetfeld, Halleekt Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Jens Küchenmeister (1253810) Versuch: P1-73 Stromdurchossene Leiter im Magnetfeld, Halleekt - Vorbereitung - Inhaltsverzeichnis 1

Mehr

Elektrik. Inhaltsverzeichnis. M. Jakob. 6. November 2016

Elektrik. Inhaltsverzeichnis. M. Jakob. 6. November 2016 M. Jakob Gymnasium Pegnitz 6. November 2016 Inhaltsverzeichnis In diesem Abschnitt Magnete und ihre Eigenschaften Magnete sind Körper, die andere Körper aus Eisen, Nickel oder Cobald (ferromagnetische

Mehr

10. Spezielle Relativitätstheorie

10. Spezielle Relativitätstheorie 10. Spezielle Relativitätstheorie Die Masse eines Teilchens ist abhängig von seiner Geschwindigkeit. m = m = γ m γ = 1, 1 v c 0 = 1 1 β 1 m 0 v β = c v c c: Lichtgeschwindigkeit im Vakuum mo: Ruhemasse

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

Basiswissen Physik Jahrgangsstufe (G9)

Basiswissen Physik Jahrgangsstufe (G9) Wärmelehre (nur nspr. Zweig) siehe 9. Jahrgangsstufe (mat-nat.) Elektrizitätslehre Basiswissen Physik - 10. Jahrgangsstufe (G9) Ladung: Grundeigenschaft der Elektrizität, positive und negative Ladungen.

Mehr

Physik II für Bauingenieure. Vorlesung 03 (08. Mai 2007)

Physik II für Bauingenieure. Vorlesung 03 (08. Mai 2007) Physik II für Bauingenieure Vorlesung 03 (08. Mai 2007) http://homepage.rub.de/daniel.haegele Prof. D. Hägele Vorlesung Stoff umfangreich, Zeit knapp. Probleme beim Verständnis der Vorlesung Übungen. Schulgrundlagen

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

Dennis S. Weiß & Christian Niederhöfer. Versuchsprotokoll. (Fortgeschrittenen-Praktikum) zu Versuch 18. Magnetische Quadrupole

Dennis S. Weiß & Christian Niederhöfer. Versuchsprotokoll. (Fortgeschrittenen-Praktikum) zu Versuch 18. Magnetische Quadrupole Montag, 26.4.1999 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Fortgeschrittenen-Praktikum) zu Versuch 18 Magnetische Quadrupole 1 Inhaltsverzeichnis 1 Problemstellung 3 2 Physikalische Grundlagen

Mehr

Ein von einem elektrischen Strom durchflossener Leiter erfährt in einem Magnetfeld eine Kraft. Wir bezeichnen sie als Lorentzkraft F L.

Ein von einem elektrischen Strom durchflossener Leiter erfährt in einem Magnetfeld eine Kraft. Wir bezeichnen sie als Lorentzkraft F L. Kapitel 9 Die Lorentzkraft F L Im Kapitel 8 wurde gezeigt, wie ein elektrischer Strom in seiner Umgebung ein Magnetfeld erzeugt (Oersted, RHR). Dabei scheint es sich um eine Grundgesetzmässigkeit der Natur

Mehr

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete Magnetisches Feld Grunderscheinungen Magnetismus - Dauermagnete jeder drehbar gelagerte Magnet richtet sich in Nord-Süd-Richtung aus; Pol nach Norden heißt Nordpol jeder Magnet hat Nord- und Südpol; untrennbar

Mehr

Experiment I: Pappstreifen in Bewegungsrichtung. Experiment II: Pappstreifen quer zur Bewegungsrichtung

Experiment I: Pappstreifen in Bewegungsrichtung. Experiment II: Pappstreifen quer zur Bewegungsrichtung Abitur 2002 Physik Lk Seite 3 Pflichtaufgaben (30 BE) Aufgabe P1 Bewegungen auf der Luftkissenbahn 1. Auf einer Luftkissenbahn wird in zwei Experimenten die Bewegung eines Gleiters untersucht. Die Anfangsgeschwindigkeit

Mehr

Magnetfeld von Spulen

Magnetfeld von Spulen c Doris Samm 2012 1 Magnetfeld von Spulen 1 Der Versuch im Überblick Magnetfelder spielen überall eine große Rolle, sei es in der Natur oder der Technik. So schützt uns das natürliche Erdmagnetfeld vor

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

E19 Magnetische Suszeptibilität

E19 Magnetische Suszeptibilität Aufgabenstellung: 1. Untersuchen Sie die räumliche Verteilung des Magnetfeldes eines Elektromagneten und dessen Abhängigkeit vom Spulenstrom. 2. Bestimmen Sie die magnetische Suszeptibilität vorgegebener

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Verhalten von Teilchen im E- und B-Feld

Verhalten von Teilchen im E- und B-Feld Teilchen in Feldern Verhalten von Teilchen im E und BFeld Verhalten von Teilchen im E und BFeld Übersicht 1 Einführung 1 2 Verhalten im EFeld 3 2.1 RuhendesgeladenesTeilchen.................................

Mehr

Eigenschaften des Elektrons (ELE)

Eigenschaften des Elektrons (ELE) Seite 1 Themengebiet: Elektrodynamik und Magnetismus Über den Versuch Dieser Praktikumsversuch besteht aus zwei Teilen, in denen die verschiedene Eigenschaften des Elektrons untersucht werden. Im ersten

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe 1: Kräfte auf bewegte Ladungen in Leitern im Magnetfeld

Abiturprüfung Physik, Grundkurs. Aufgabe 1: Kräfte auf bewegte Ladungen in Leitern im Magnetfeld Seite 1 von 10 Abiturprüfung 2009 Physik, Grundkurs Aufgabenstellung: Aufgabe 1: Kräfte auf bewegte Ladungen in Leitern im Magnetfeld Eine bewegte elektrische Ladung erfährt in Magnetfeldern bei geeigneten

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

Grundlagen der Elektrotechnik II Übungsaufgaben

Grundlagen der Elektrotechnik II Übungsaufgaben 1) Lorentz-Kraft Grundlagen der Elektrotechnik II Übungsaufgaben Ein Elektron q = e = 1.602 10 19 As iegt mit der Geschwindigkeit v = (v x, v y, v z ) = (0, 35, 50) km/s durch ein Magnetfeld mit der Flussdichte

Mehr

Die zwei Stellen, von denen die stärkste Anziehungskraft ausgeht, heißen die Pole des Magneten und heißen Nord- und Südpol.

Die zwei Stellen, von denen die stärkste Anziehungskraft ausgeht, heißen die Pole des Magneten und heißen Nord- und Südpol. I. Felder ================================================================== 1. Das magnetische Feld 1.1 Magnetismus Ein Körper, der andere Körper aus Eisen, Kobalt und Nickel ( ferromagnetische Stoffe)

Mehr

Theory German (Germany)

Theory German (Germany) Q3-1 Large Hadron Collider (10 Punkte) Lies die allgemeinem Hinweise im separaten Umschlag bevor Du mit der Aufgabe beginnst. Thema dieser Aufgabe ist der Teilchenbeschleuniger LHC (Large Hadron Collider)

Mehr

Aufgabe I. 1.1 Betrachten Sie die Bewegung des Federpendels vor dem Eindringen des Geschosses.

Aufgabe I. 1.1 Betrachten Sie die Bewegung des Federpendels vor dem Eindringen des Geschosses. Schriftliche Abiturprüfung 2005 Seite 1 Hinweise: Zugelassene Hilfsmittel: Taschenrechner Die Aufgaben umfassen 5 Seiten. Die Zahlenwerte benötigter Konstanten sind nach der Aufgabe III zusammengefasst.

Mehr

316 - Magnetfeldmessungen

316 - Magnetfeldmessungen 316 - Magnetfeldmessungen 1. Aufgaben 1.1 Die magnetische Induktion B eines Elektromagneten auf der Polschuhachse ist mit einer Hall- Sonde in Abhängigkeit vom Magnetisierungsstrom für unterschiedliche

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 28. 05. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 28. 05. 2009

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Übung 2 - Angabe Technische Universität München 1 Fakultät für Physik 1 Draht Strom fließt durch einen unendlich langen Draht mit Radius a. Dabei ist die elektrische

Mehr

E 3 Elektromagnetische Induktion

E 3 Elektromagnetische Induktion E 3 1. Aufgaben 1. Man mache sich mit der Handhabung von Oszilloskop und Funktionsgenerator vertraut. 2. Der zeitliche Verlauf der Induktionsspannung U i = f(t) an der Sekundärspule eines Lufttransformators

Mehr

Physik III - Anfängerpraktikum- Versuch 501/2 - Korrektur

Physik III - Anfängerpraktikum- Versuch 501/2 - Korrektur Physik III - Anfängerpraktikum- Versuch 501/2 - Korrektur Sebastian Rollke (103095) und Daniel Brenner (105292) 21. September 2005 Inhaltsverzeichnis 1 Theorie 2 1.1 Die Kathodenstrahlröhre........................

Mehr

Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 2011 Teilchenbahnen im elektrischen Querfeld

Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 2011 Teilchenbahnen im elektrischen Querfeld Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 011 Teilchenbahnen im elektrischen Querfeld 1) Elektronen starten an der negativen Platte eines Kondensators (d = 5 mm, U = 300 V) und

Mehr

Oersteds Erkenntnis: Ströme erzeugen Magnetfelder

Oersteds Erkenntnis: Ströme erzeugen Magnetfelder Kapitel 8 Oersteds Erkenntnis: Ströme erzeugen Magnetfelder Im Jahre 1819 beobachtete der dänische Physiker Hans Christian Oersted (vgl. Abb. 8.1), dass sich Kompassnadeln ausrichten, wenn in ihrer Nähe

Mehr

Magnetismus - Einführung

Magnetismus - Einführung Magnetismus Magnetismus - Einführung Bedeutung: Technik:Generator, Elektromotor, Transformator, Radiowellen... Geologie: Erdmagnetfeld Biologie: Tiere sensitiv auf Erdmagnetfeld (z.b. Meeresschildkröten)

Mehr

Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung.

Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung. 7. Die elektromagnetische Induktion ------------------------------------------------------------------------------------------------------------------ A Die Induktion im bewegten Leiter Bewegt man einen

Mehr

Grundkurs Physik (2ph2) Klausur

Grundkurs Physik (2ph2) Klausur 1. Ernest O. Lawrence entwickelte in den Jahren 1929-1931 den ersten ringförmigen Teilchenbeschleuniger, das Zyklotron. Dieses Zyklotron konnte Protonen auf eine kinetische Energie von 80 kev beschleunigen.

Mehr

Elektronenstrahlröhren

Elektronenstrahlröhren Elektronenstrahlröhren Lernziele: - Umgang mit Hochspannung - Darstellung von Kennlinien - Helmholtzspulen - Umgang mit Regeltransformatoren - Demonstrationsoszillograph Versuche: Anschluss verschiedener

Mehr

5 Zeitabhängige Felder

5 Zeitabhängige Felder Carl Hanser Verlag München 5 Zeitabhängige Felder Aufgabe 5.13 Die spannungsabhängige Kapazität eines Kondensators kann für den Bereich 0... 60 V durch folgende Gleichung angenähert werden: Geben Sie allgemein

Mehr