Protokoll zum Anfängerpraktikum

Größe: px
Ab Seite anzeigen:

Download "Protokoll zum Anfängerpraktikum"

Transkript

1 Protokoll zum Anfängerpraktikum Messung von Magnetfeldern Gruppe 2, Team 5 Sebastian Korff Frerich Max 8.6.6

2 Inhaltsverzeichnis 1. Einleitung Allgemeines IOT-SAVART Gesetz Messung von Magnetfeldern mit Induktionsspulen Versuchsdurchführung Magnetfeld von HELMHOLTZ-Spulen Messung der Horizontalkomponente des örtlichen -8- Magnetfeldes 2.3 Messung eines stationären Magnetfeldes mit der -9- Induktionsspule 3. eantwortung der Fragen -1- Literaturverzeichnis Anhang 2

3 1. Einleitung 1.1 Allgemeines Magnetische Felder werden durch die ewegung elektrischer Ladung erzeugt. Die Geschwindigkeit (in etrag und Richtung), sowie die Größe (etrag und Vorzeichen) der bewegten Ladung bestimmen die Stärke und Richtung der magnetischen Kräfte. Abb.1: Stromdurchflossener Leiter mit erzeugtem Magnetfeld 1 Ein Strom I, der durch einen geradlinigen Leiter fließt, erzeugt ein Magnetfeld, dessen Feldlinien kreisförmig um den Leiter herum verlaufen. Die Stärke eines Magnetfeldes kann durch zwei verschiedene physikalische Größen ausgedrückt werden: die magnetische Feldstärke H mit [ H ] = A / m und die magnetische Flussdichte mit [ ] = T (sprich: Tesla). Während die magnetische Feldstärke bei erechnungen mit elektrischen Strömen von Vorteil ist, verwendet man die magnetische Flussdichte zum erechnen von induzierten Spannungen oder der Lorentzkraft. Die beiden Feldgrößen sind über die magnetische Feldkonstante µ miteinander verknüpft. Es gilt: 7 Vs µ = = 4 π 1 H Am Ein Magnetfeld übt eine Kraft auf bewegte Ladungen aus, die so genannte LORENTZKRAFT. Sie wirkt senkrecht zu den Feldlinien des Magnetfeldes sowie senkrecht zur ewegungsrichtung der Ladung. eim klassischen magnetischen Kompass zum eispiel wird dieser Effekt ausgenutzt indem das vom Magnetfeld r erzeugte Drehmoment T r die Kompassnadel, mit dem magnetischen Dipolmoment M r, nach dem Erdmagnetfeld ausrichtet. Es gilt: r r r (1) T = M und M sinθ T =, mit [ M ] A m² = (siehe Anhang) 1 (4.6.6) 3

4 Lenkt man die Magnetnadel um einen kleinen Winkel θ aus, so vollführt sie eine harmonische Oszillation. Ist J das Trägheitsmoment der Nadel, so gilt ohne erücksichtigung der Reibung für diese Rotationsbewegung die bekannte ewegungsgleichung d² θ (2) J = M θ dt² Durch lösen dieser Differentialgleichung erhalten wir die Periodendauer τ mit (3) τ = 2 π J M θ Abb.2: Magnetnadel im Magnetfeld 1.2 iot Savart Gesetz Das IOT-SAVART-Gesetz beschreibt das Magnetfeld, das durch bewegte elektrische Ladungen erzeugt wird. enannt wurde es nach den beiden französischen Mathematikern JEAN APTISTE IOT ( ) und FELIX SAVART ( ). Es stellt neben dem Ampèrschen Gesetz über die Kraftwirkung magnetischer Felder auf bewegte elektrische Ladung eines der beiden Grundgesetze der Magnetostatik dar. Danach erzeugt ein Strom I in einem Leiter, die sich am Ort r r im Leitersegment ds bewegt, ein Magnetfeld r nach r r r µ ds (4) ( ) = I 3 4 π r Eine häufig verwendete, einfache Geometrie zur Erzeugung eines allseitig zugänglichen homogenen Magnetfeldes ist das HELMHOLTZ-Spulenpaar. Die Anordnung besteht aus zwei sich koaxial im Abstand R gleich dem ihres Radius R gegenüberstehenden Spulen mit gleicher Windungszahl n. Wenn die Einzelspulen gleichsinnig stromdurchflossen werden, erhält man einen großen ereich mit konstanter Feldstärke. Werden die Spulen gegensinnig durchflossen, erhält man im Inneren einen konstanten Feldgradienten. Hierbei gilt für das Magnetfeld r 4

5 (5) z = µ n I R Messung von Magnetfeldern mit Induktionsspulen Eine andere Methode zur Messung der Feldstärke ist die Messung der induzierten Spannung einer in das Feld eingebrachten Induktionsspule. nter elektromagnetischer Induktion versteht man das Entstehen einer elektrischen Spannung, die durch Veränderung des Magnetflusses φ verursacht wird. Die Induktion wurde von Michael FARADAY entdeckt bei dem emühen, die Funktionsweise eines Elektromagneten ("Strom erzeugt Magnetfeld") umzukehren ("Magnetfeld erzeugt Strom"). ei einer Spule mit der Querschnittsfläche A und n Windungen gilt für die induzierte Spannung in Abhängigkeit der Zeit t : dφ (6) ( t) = n & φ = n dt, wobei der magnetische Fluss φ definiert ist als (7) = A ( ω t) φ cos. S Durch Ableiten von (7) ergibt sich also für die Induktionsspannung (8) t) = n ω A sin( ω t) = sin( ω t) (, mit = n ωs A s S S 2. Versuchsdurchführung 2.1 Magnetfeld von HELMHOLTZ-Spulen Es soll das Magnetfeld von einem HELMHOLTZ-Spulenpaar mit dem Radius R = ( 7,54 ±,2) cm räumlich vermessen werden. Dazu wurde das Magnetfeld mittels einer Induktionsspule auf der z- und x-achse gemäß Abbildung 3 vermessen. Abb.3: HELMHOLTZ-Spulenpaar HS mit dem Radius R und der Induktionsspule IS auf den ewegungsachsen x, y, und z, sowie externe eschaltung mit Funktionsgenerator FG und Leistungstransistor D139 5

6 m ein homogenes Magnetfeld zu erzeugen, wurden eine sinusförmige Wechselspannung mit der Frequenz f = 2 Hz und der Amplitude FG = 84mV angelegt und über einen Operationsverstärker invertiert. Die Stärke des so erzeugten Magnetfeldes wird nun mittels einer Induktionsspule mit n =15 Windungen und einer Querschnittsfläche A = π ( r ² r ²) = (1,23,27) cm² mit dem außen innen ± Oszilloskop gemessen. Mit Gleichung (8) lässt sich nun die Feldstärke bestimmen (wobei ω S = 2 π 2Hz ). Wir erhielten für die vermessenen Achsen x und z folgende Messwerte (Abb.4-6): z R /[] / mv ±,5 mv /µt σ µt / 12 11,99 14,1 7,31,19,93 14,3 7,42,2,86 15,4 7,99,21,8 16,6 8,61,23,73 17,5 9,8,24,66 18,5 9,59,25,6 19,5 1,11,27,53 2,8 1,79,28,46 21,3 11,5,29,4 21,6 11,2,3,33 22, 11,41,3,27 22, 11,41,3,2 22, 11,41,3,13 22, 11,41,3,7 22, 11,41,3, 22,4 11,62,31 -,7 22, 11,41,3 -,13 22, 11,41,3 -,2 22, 11,41,3 -,27 22, 11,41,3 -,33 22, 11,41,3 -,4 22, 11,41,3 -,46 21,6 11,2,3 -,53 21, 1,89,29 -,6 21, 1,89,29 -,66 2,1 1,42,28 -,73 19,6 1,16,27 -,8 18,4 9,54,25 -,86 17,6 9,13,24 -,93 16,4 8,5,22 -,99 15, 7,78,21 / µt z/r / [] Abb.4: Messwerte mit berechnetem Magnetfeld, sowie grafischer Darstellung dieses Zusammenhangs für ( x =, y =, R z R) 6

7 x /[] R / mv ±,5 mv /µt σ / µt 12, 22,2 11,51,3, ,41,3,13 22,2 11,51,3, ,41,3, ,41,3, ,41,3, ,41,3, ,41,3,53 21,4 11,1,29,6 2,8 1,79,28,66 19,4 1,6,27,73 18,4 9,54,25,8 17 8,82,23,86 14,2 7,36,19 1,6 5,2 2,7,7 1,13 3,2 1,66,4 1,19 1,24,64,2 1,26-1,8 -,56,1 1,33-1,4 -,73,2 1,39-1,84 -,95,3 1,46-2,2-1,14,3 1,52-2,28-1,18,3 / µt ,,5 1, 1,5 x/r / [] Abb.5: Messwerte mit berechnetem Magnetfeld, sowie grafischer Darstellung dieses Zusammenhangs für ( x 1,5 R, y =, z = ) x R /[] / mv ±,5 mv /µt σ / µt 25, 2,8 1,79,28,7 2,8 1,79,28,13 2,8 1,79,28,2 22,2 11,51,3,27 21,6 11,2,3,33 21,6 11,2,3,4 22,4 11,62,31,46 23,4 12,13,32, ,45,33,6 25,2 13,7,34,66 27,2 14,11,37,73 3,4 15,77,42, ,15,48,86 41,6 21,57,57 1,6-22,4-11,62,31 1,13-19,6-1,16,27 1,19-12,4-6,43,17 1,26-9,2-4,77,13 1,33-6,8-3,53,9 1,39-5,2-2,7,7 1, ,7,5 1,52 -,8 -,41,1 / µt ,,5 1, 1,5 x/r / [] Abb.6: Messwerte mit berechnetem Magnetfeld, sowie grafischer Darstellung dieses Zusammenhangs für ( x 1,5 R, y =, z =,5R) 7

8 2.2 Messung der Horizontalkomponente des örtlichen Magnetfeldes Zur Messung der Horizontalkomponente des örtliches Magnetfeldes im Labor schalten wir das HELMHOLTZ-Spulenpaar in Reihe mit einem Ampère-Meter und einer Stromquelle. Wir positionieren nun eine Magnetnadel in der Mitte der noch stromlosen Spulen und richten die Spulen so aus, dass sie in die gleiche horizontale Richtung wie die Nadel zeigen. Dadurch können wir mit den Spulen ein Magnetfeld erzeugen, dass das örtliche Magnetfeld ausgleicht. Dazu messen wir mit einer Stoppuhr die Schwingungsdauer τ der Nadel bei kleiner Auslenkung in Abhängigkeit der Stromstärke,5A I, 5A. Es ergab sich: I / A / s τ 2 2 τ / s,6 -,48 1,645,37 -,38 1,92,271 -,28 2,46,173 -,18 3,419,86 -,8 7,33,19,2 3,43,85,12 2,39,175,22 1,829,299,32 1,577,42,42 1,346,552 τ -2 / s -2,4,2, -,2 -,4 -,6 -,4 -,2,,2,4 I / A Abb.7: Messwerte τ in Abhängigkeit der Stromstärke I mit graphischer Darstellung und 2 linearer Regression mit τ = (,983 ±,11) I + (,93 ±,32) Durch die lineare Regression erhalten wir durch Einsetzen an der Stelle τ 2 = einen Wert für den Strom I, bei dem die Schwingungsdauer τ gegen unendlich geht von: I = (-,95,3) A ± Eingesetzt in Gleichung (5) erhalten wir für die horizontale Komponente des Magnetfeldes ( n = 1, R = 7, 54 cm ): I 3 n h S µ = = = (56,62 ± 1,79) µt R 5 Dabei ist zu beachten, dass die Standartabweichung ohne die menschliche Reaktionszeit der Messung von τ berechnet wurde. 8

9 2.3 Messung eines stationären Magnetfeldes mit der Induktionsspule Es soll nun die Feldstärke eines Hufeisenmagnetes bestimmt werden. Dazu lassen wir 3 verschiedene Induktionsspulen nacheinander in seinem Magnetfeld mit v = 5Hz rotieren und messen mit dem Oszilloskop die Induktionsspannung. Aus der Querschnittsfläche einer Windung von Gleichung (8) die Stärke des Magnetfeldes = n 2 π v A n = 2 π v A A / mm² n A A = und der Windungszahl n lässt sich mit Hilfe n / V ±,2V bestimmen. Es gilt in diesem Fall / T 56,24 ±,43 2 2,3,13 151,93 ±,47 5 9, ,23 ±, ,75,16 Mittelwert,159 ±,24 Abb.8: Messwerte zur estimmung der Feldstärke eines Hufeisenmagnetes Die Standartabweichung der Einzelmessungen bewegt sich im mt -ereich und ist deshalb nicht mit angegeben. Es ergibt sich für die gemittelte Feldstärke des Hufeisenmagnetfeldes mit statistischer Standartabweichung = (,159 ±,24)T. 9

10 3. eantwortung der Fragen Frage 1: Vs Nm = [ M ] m² Nm m² [ M ] = = Vs A Vs m² = A m² Vs Frage 2: Die zu Gleichung (2) analoge Gleichung im Fall des Federpendels der Masse m und der Federkonstanten k lautet: d² x m = k x dt² Frage 3: Die deutliche Abweichung der Magnetfelder ist durch die ngenauigkeit bei der Mittelung der Windungsfläche zu erklären, denn die reite der Spulen ist jeweils gleich. Da die Spulen bei größerer Windungszahl einen größeren Außendurchmesser haben, fällt diese Abeichung bei größeren Windungszahlen natürlich stärker ins Gewicht. 1

11 Literaturverzeichnis reuer, Hans, dtv-atlas Physik, 6. Auflage, Deutscher Taschenbuch Verlag GmbH & Co. KG München, September 25 Helmers, Dr. Heinz, Skript zum Anfängerpraktikum Physik II, CvO niversität Oldenburg, Institut für Physik, April 26 Halliday, David, Physik, Wiley VCH GmbH, Weinheim, 23 11

O. Sternal, V. Hankele. 4. Magnetismus

O. Sternal, V. Hankele. 4. Magnetismus 4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt

Mehr

Magnetfeld in Leitern

Magnetfeld in Leitern 08-1 Magnetfeld in Leitern Vorbereitung: Maxwell-Gleichungen, magnetischer Fluss, Induktion, Stromdichte, Drehmoment, Helmholtz- Spule. Potentiometer für Leiterschleifenstrom max 5 A Stufentrafo für Leiterschleife

Mehr

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld. Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,

Mehr

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Aufgaben 13 Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2 IK Induktion Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfelder....................... 2 2.2 Spule............................ 2

Mehr

Magnetische Induktion Φ = Der magnetische Fluss Φ durch eine Fläche A ist definiert als

Magnetische Induktion Φ = Der magnetische Fluss Φ durch eine Fläche A ist definiert als E8 Magnetische Induktion Die Induktionsspannung wird in Abhängigkeit von Magnetfeldgrößen und Induktionsspulenarten untersucht und die Messergebnisse mit den theoretischen Voraussagen verglichen.. heoretische

Mehr

4.10 Induktion. [23] Michael Faraday. Gedankenexperiment:

4.10 Induktion. [23] Michael Faraday. Gedankenexperiment: 4.10 Induktion Die elektromagnetische Induktion wurde im Jahre 1831 vom englischen Physiker Michael Faraday entdeckt, bei dem Bemühen die Funktions-weise eines Elektromagneten ( Strom erzeugt Magnetfeld

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum Fachbereich El Gruppe : Namen, Matrikel Nr.: Versuchstag: Vorgelegt: Hochschule Düsseldorf Testat : V 401 : Induktion Zusammenfassung: 01.04.16 Versuch: Induktion Seite 1 von 6 Gruppe : Korrigiert am:

Mehr

Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.

Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben. Wechsel- und Drehstrom - KOMPAKT 1. Spannungserzeugung durch Induktion Das magnetische Feld Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2 LK Lorentzkraft Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfeld dünner Leiter und Spulen......... 2 2.2 Lorentzkraft........................

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #23 am 06.06.2007 Vladimir Dyakonov (Klausur-)Frage des Tages Zeigen Sie mithilfe des Ampere

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Lösung Übungsblatt 2 Tutoren: Elena Kaiser und Matthias Golibrzuch 2 Elektrischer Strom 2.1 Elektrischer Widerstand Ein Bügeleisen von 235 V / 300 W hat eine Heizwicklung

Mehr

Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie

Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie Aufgaben 12 Magnetisches Feld Kraft, Hall-Effekt, Materie im magnetischen Feld, Flussdichte, Energie Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen

Mehr

Labornetzgerät, Digitalmultimeter, Teslameter mit digitaler axialer Feldsonde (Hallsonde), verschiedene

Labornetzgerät, Digitalmultimeter, Teslameter mit digitaler axialer Feldsonde (Hallsonde), verschiedene Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum E 7a Spulenfelder Aufgaben 1. Überprüfen Sie die Kalibrierung des Teslameters mit einer Kalibrierspule.. Nehmen Sie die Flussdichte

Mehr

Magnetische Phänomene

Magnetische Phänomene Magnetische Phänomene Bekannte magnetische Phänomene: Permanentmagnete; Das Erdmagnetfeld (Magnetkompass!); Elektromagnetismus (Erzeugung magnetischer Kraftwirkungen durch Stromfluss) Alle magnetischen

Mehr

Übungsblatt 06. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 06. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 06 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 24. 1. 2005 31. 1. 2005 1 Aufgaben 1. Berechnen Sie für das Vektorpotential

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Lösung für Blatt 7,,Elektrodynamik

Lösung für Blatt 7,,Elektrodynamik Institut für Theoretische Physik, Universität Zürich Lösung für Blatt 7,,Elektrodynamik Prof. Dr. T. Gehrmann Blatt 7 FS 213 Aufgabe 1 Induktion im Magnetfeld Nach dem Faraday schen Induktionsgesetz induziert

Mehr

Das magnetische Feld

Das magnetische Feld Das Magnetfeld wird durch Objekte erzeugt und wirkt gleichzeitig auf Objekte repräsentiert die Kraftwirkung aufgrund des physikalischen Phänomens Magnetismus ist gerichtet und wirkt vom Nordpol zum Südpol

Mehr

Grundkurs Physik (2ph2) Klausur

Grundkurs Physik (2ph2) Klausur 1. Ernest O. Lawrence entwickelte in den Jahren 1929-1931 den ersten ringförmigen Teilchenbeschleuniger, das Zyklotron. Dieses Zyklotron konnte Protonen auf eine kinetische Energie von 80 kev beschleunigen.

Mehr

Inhalt der Vorlesung B2

Inhalt der Vorlesung B2 Inhalt der Vorlesung B 4. Elektrizitätslehre, Elektrodynamik Einleitung Ladungen & Elektrostatische Felder Elektrischer Strom Magnetostatik Zeitlich veränderliche Felder - Elektrodynamik Wechselstromnetzwerke

Mehr

Im ersten Teil dieses Versuchs wird ein Elektronenstrahl im homogenen Magnetfeld untersucht.

Im ersten Teil dieses Versuchs wird ein Elektronenstrahl im homogenen Magnetfeld untersucht. 1. Problem n diesem Versuch lernen Sie die Kraftwirkung eines -Feldes auf eine bewegte Ladung kennen. ies untersuchen sie an zwei Beispielen: unächst untersuchen sie die Auslenkung eines Elektronenstrahls

Mehr

Spezifische Ladung des Elektrons

Spezifische Ladung des Elektrons Spezifische Ladung des Elektrons 1. Aufgaben 1. Die von einer Spule (a) und von einer Helmholtz-Spulenanordnung (b) erzeugte magnetische Flußdichte ist längs der Rotationssymmetrieachse zu messen und grafisch

Mehr

5 Zeitabhängige Felder

5 Zeitabhängige Felder Carl Hanser Verlag München 5 Zeitabhängige Felder Aufgabe 5.13 Die spannungsabhängige Kapazität eines Kondensators kann für den Bereich 0... 60 V durch folgende Gleichung angenähert werden: Geben Sie allgemein

Mehr

Magnetismus. Prof. DI Michael Steiner

Magnetismus. Prof. DI Michael Steiner Magnetismus Prof. DI Michael Steiner www.htl1-klagenfurt.at Magnetismus Natürlicher Künstlicher Magneteisenstein Magnetit Permanentmagnete Stabmagnet Ringmagnet Hufeisenmagnet Magnetnadel Temporäre Magnete

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Protokoll zum Anfängerpraktikum Signalübertragung auf LC-Ketten und Koaxialkabeln Teil 2 Gruppe 2, Team 5 Sebastian Korff Frerich Max 2.6.6 Inhaltsverzeichnis. Einleitung -3-. Allgemeines -3-2. Versuchsdurchführung

Mehr

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Vorlesung 5: Magnetische Induktion

Vorlesung 5: Magnetische Induktion Vorlesung 5: Magnetische Induktion, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2016/17 Magnetische Induktion Bisher:

Mehr

V11 - Messungen am Transformator

V11 - Messungen am Transformator V11 - Messungen am Transformator Michael Baron, Frank Scholz 21.12.2005 Inhaltsverzeichnis 1 Aufgabenstellung 1 2 Physikalischer Hintergrund 1 3 Versuchsaufbau 3 4 Versuchsdurchführung 3 4.1 Leerlauf-Spannungs-Übersetzung................

Mehr

Versuch: Wir messen die Kraft auf einen stromdurchflossenen Leiter im Magnetfeld eines Hufeisenmagneten mit Hilfe einer Stromwaage.

Versuch: Wir messen die Kraft auf einen stromdurchflossenen Leiter im Magnetfeld eines Hufeisenmagneten mit Hilfe einer Stromwaage. 12.6 Magnetische lussdichte Die Gravitationsfeldstärke g und die elektrische eldstärke E sind Größen, die die Stärke eines eldes beschreiben. Denkt man sich einen Probekörper bekannter Masse bzw. Ladung

Mehr

Messung von Magnetfeldern

Messung von Magnetfeldern 139 Carl von Ossietzky Universität Oldenburg - Fakultät V- Institut für Physik Praktikum im Modul Physik I für tudierende der Umweltwissenschaften Messung von Magnetfeldern tichworte: Magnetfeld, magnetische

Mehr

10.1 Ampère sches Gesetz und einfache Stromverteilungen

10.1 Ampère sches Gesetz und einfache Stromverteilungen 1 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld 37 3 Transformatoren 3. Magnetfeldgleichungen 3.. Das Durchflutungsgesetz Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: H I Abb. 3..- Verknüpfung von elektrischem Strom und Magnetfeld

Mehr

Ein von einem elektrischen Strom durchflossener Leiter erfährt in einem Magnetfeld eine Kraft. Wir bezeichnen sie als Lorentzkraft F L.

Ein von einem elektrischen Strom durchflossener Leiter erfährt in einem Magnetfeld eine Kraft. Wir bezeichnen sie als Lorentzkraft F L. Kapitel 9 Die Lorentzkraft F L Im Kapitel 8 wurde gezeigt, wie ein elektrischer Strom in seiner Umgebung ein Magnetfeld erzeugt (Oersted, RHR). Dabei scheint es sich um eine Grundgesetzmässigkeit der Natur

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

Grundlagen der Elektrotechnik II Übungsaufgaben

Grundlagen der Elektrotechnik II Übungsaufgaben 1) Lorentz-Kraft Grundlagen der Elektrotechnik II Übungsaufgaben Ein Elektron q = e = 1.602 10 19 As iegt mit der Geschwindigkeit v = (v x, v y, v z ) = (0, 35, 50) km/s durch ein Magnetfeld mit der Flussdichte

Mehr

Induktion. Bewegte Leiter

Induktion. Bewegte Leiter Induktion Bewegte Leiter durch die Kraft werden Ladungsträger bewegt auf bewegte Ladungsträger wirkt im Magnetfeld eine Kraft = Lorentzkraft Verschiebung der Ladungsträger ruft elektrisches Feld hervor

Mehr

3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B.

3.4 Magnetfelder. µ im Magnetfeld Æ B ein Drehmoment. M = Æ µ Æ B. - 151-3.4 Magnetfelder 3.4.1 Grundlagen Während die Wechselwirkungen zwischen statischen elektrischen Ladungen sich durch das Coulomb'sche Gesetz, resp. ein elektrisches Feld beschreiben lassen, treten

Mehr

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 0/00 7 Magnetismus 7. Grundlagen magnetischer Kreise Im folgenden wird die Vorgehensweise bei der Untersuchung eines magnetischen Kreises

Mehr

Elektromagnetische Induktion

Elektromagnetische Induktion Elektromagnetische M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis im bewegten und im ruhenden Leiter Magnetischer Fluss und sgesetz Erzeugung sinusförmiger Wechselspannung In diesem Abschnitt

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 28. 05. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 28. 05. 2009

Mehr

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 1

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 1 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 1 Magnetisches Feld Lernziel:

Mehr

Messung von Magnetfeldern

Messung von Magnetfeldern 107 Carl von Ossietzky Universität Oldenburg - Fakultät V- Institut für Physik Modul Grundpraktikum Physik Teil II Messung von Magnetfeldern tichworte: Magnetfeld, magnetische Feldstärke, magnetischer

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.

Mehr

Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, :00 Uhr für den Studiengang: Mb, Inft, Geol, Ciw

Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, :00 Uhr für den Studiengang: Mb, Inft, Geol, Ciw Institut für Physik und Physikalische Technologien 23.02.2005 der TU Clausthal Prof. Dr. W. Daum Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, 09.00-11:00 Uhr für den Studiengang: Mb, Inft, Geol,

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 09. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 09. 06.

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker 11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter

Mehr

Hall-Effekt und Magnetfeldmessung

Hall-Effekt und Magnetfeldmessung Hall-Effekt und Magnetfeldmessung erweitert aus Studiengebühren Vorbereitung: Halbleiter, Bändermodell: n-leitung, p-leitung, Kraft auf Ladungsträger in elektrischen und magnetischen Feldern, Hall-Effekt,

Mehr

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 9 PHYS7357 Elektrizitätslehre und Magnetismus Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, othmar.marti@uni-ulm.de) 7. 6. 9 Aufgaben. Durch eine

Mehr

Repetitionen Magnetismus

Repetitionen Magnetismus TECHNOLOGISCHE GRUNDLAGEN MAGNETISMUS Kapitel Repetitionen Magnetismus Θ = Θ l m = H I I N H µ µ = 0 r N B B = Φ A M agn. Fluss Φ Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1,

Mehr

Formelsammlung Physik

Formelsammlung Physik Energie, Arbeit, Leistung: Arbeit [J] W = F s Wärme [J] Q = c m Δθ Elektrische Energie [J] E = U I t Spannenergie [J] E = 1 2 Ds Kinetische Energie [J] E "# = 1 2 mv Potentielle Energie [J] E "# = mgh

Mehr

Elektromagnetische Felder und Wellen: Lösung zur Klausur

Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2014-2 1 Aufgabe 1 ( 7 Punkte) Eine ebene Welle der Form E = (E x, ie x, 0) exp{i(kz + ωt)} trifft aus dem Vakuum bei z = 0 auf ein Medium mit ε = 6 und

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Seite 1 von 6 Abiturprüfung 2012 Physik, Grundkurs Aufgabenstellung: Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Ein homogenes Magnetfeld in einem

Mehr

Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld

Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld (2013-06-07) P3.4.3.1 Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld Messung der Induktionsspannung in einer Leiterschleife bei veränderlichem Magnetfeld

Mehr

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker 11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter

Mehr

Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung.

Kehrt man die Bewegungsrichtung des Leiters um, dann ändert sich die Polung der Spannung. 7. Die elektromagnetische Induktion ------------------------------------------------------------------------------------------------------------------ A Die Induktion im bewegten Leiter Bewegt man einen

Mehr

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen)

Magnetismus. Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls = Spin der Elektronen) Magnetismus Magnetit (Fe 3 O 4 ) Sonne λ= 284Å Magnetare/ Kernspintomographie = Neutronensterne Magnetresonanztomographie Ein Magnetfeld wird erzeugt durch: Permanentmagnet (mikroskopische Ursache: Eigendrehimpuls

Mehr

Aufgabenblatt zum Seminar 10 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 10 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 0 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmar.marti@uni-ulm.de) 4. 06. 009 Aufgaben. Wie in

Mehr

d) Betrachten Sie nun die Situation einer einzelnen Ladung q 1 (vergessen Sie q 2 ). Geben Sie das Feld E(r) dieser Ladung an. E(r) dr (1) U(r )=

d) Betrachten Sie nun die Situation einer einzelnen Ladung q 1 (vergessen Sie q 2 ). Geben Sie das Feld E(r) dieser Ladung an. E(r) dr (1) U(r )= Übung zur Vorlesung PN II Physik für Chemiker Sommersemester 2012 Prof. Tim Liedl, Department für Physik, LMU München Lösung zur Probeklausur (Besprechungstermin 08.06.2012) Aufgabe 1: Elektrostatik Elektrische

Mehr

Schriftliche Prüfung zur Feststellung der Hochschuleignung

Schriftliche Prüfung zur Feststellung der Hochschuleignung Freie Universität Berlin Schriftliche Prüfung zur Feststellung der Hochschuleignung T-Kurs Fach Physik (Musterklausur) Von den vier Aufgabenvorschlägen sind drei vollständig zu bearbeiten. Bearbeitungszeit:

Mehr

Übungsblatt 06 Grundkurs IIIb für Physiker

Übungsblatt 06 Grundkurs IIIb für Physiker Übungsblatt 06 Grundkurs IIIb für Physiker Othmar Marti, (othmar.marti@physik.uni-ulm.de) 20. 1. 2003 oder 27. 1. 2003 1 Aufgaben für die Übungsstunden Quellenfreiheit 1, Hall-Effekt 2, Lorentztransformation

Mehr

Aufgaben zur Wechselspannung

Aufgaben zur Wechselspannung Aufgaben zur Wechselspannung Aufgabe 1) Ein 30 cm langer Stab rotiert um eine horizontale, senkrecht zum Stab verlaufende Achse, wobei er in 10 s 2,5 Umdrehungen ausführt. Von der Seite scheint paralleles

Mehr

Messung von Magnetfeldern

Messung von Magnetfeldern 10 Carl von Ossietzky Universität Oldenburg - Fakultät V- Institut für Physik Modul Grundpraktikum Physik Teil II Messung von Magnetfeldern Stichworte: Magnetfeld, magnetische Feldstärke, magnetischer

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach)

Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach) Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach) Klasse 7Na (Daniel Oehry) Name: Diese Arbeit umfasst vier Aufgaben Hilfsmittel: Dauer: Hinweise: Formelsammlung, Taschenrechner (nicht

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme

VIII.1.4 Magnetisches Feld induziert durch einfache Ladungsströme V. Grundbegriffe und -ergebnisse der Magnetostatik 5 V..4 Magnetisches Feld induziert durch einfache Ladungsströme m Fall eines Ladungsstroms durch einen dünnen Draht vereinfacht sich das ntegral im Biot

Mehr

E 3 Elektromagnetische Induktion

E 3 Elektromagnetische Induktion E 3 1. Aufgaben 1. Man mache sich mit der Handhabung von Oszilloskop und Funktionsgenerator vertraut. 2. Der zeitliche Verlauf der Induktionsspannung U i = f(t) an der Sekundärspule eines Lufttransformators

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel Anfänger-Praktikum I WS 11/1 Michael Seidling Timo Raab Praktikumsbericht: Gekoppelte Pendel 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Harmonische Schwingung 4. Gekoppelte

Mehr

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete Magnetisches Feld Grunderscheinungen Magnetismus - Dauermagnete jeder drehbar gelagerte Magnet richtet sich in Nord-Süd-Richtung aus; Pol nach Norden heißt Nordpol jeder Magnet hat Nord- und Südpol; untrennbar

Mehr

PS II - Verständnistest

PS II - Verständnistest Grundlagen der Elektrotechnik PS II - Verständnistest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 4 2 2 5 3 4 4 erreicht Aufgabe 8 9 10 11 Summe Punkte 3 3 3 2 35 erreicht Hinweise:

Mehr

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld

Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld 1 Wiederholung: Magnetfeld: Ursache eines Magnetfelds: bewegte elektrische Ladungen veränderliches Elektrisches Feld N S Magnetfeld um stromdurchflossenen Draht Magnetfeld um stromführenden Draht der zu

Mehr

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer TUM EM-Tutorübung SS 1 1.5.21 Formelsammlung EM SS 21 Diese Formelsammlung dient nur zur Orientierung und stellt keinen nspruch auf ollständigkeit. Zudem darf sie während der Prüfung nicht benutzt werden,

Mehr

Magnetisches Induktionsgesetz

Magnetisches Induktionsgesetz Magnetisches Induktionsgesetz Michael Faraday entdeckte, dass ein sich zeitlich veränderndes Magnetfeld eine elektrische Spannung in einer Schleife oder Spule aus leitendem Material erzeugt: die Induktionsspannung

Mehr

12. Jahrgangsstufe Abiturvorberitung Lehr- und Arbeits- Skript

12. Jahrgangsstufe Abiturvorberitung Lehr- und Arbeits- Skript 12. Jahrgangsstufe Abiturvorberitung Lehr- und Arbeits- Skript Der Hall- Effekt Der Hall- Effekt dient zur Messung der magnetischen Flussdichte und nützt eine direkte Proportion zwischen Hall- Spannung

Mehr

Q 2 - e/m Bestimmungen

Q 2 - e/m Bestimmungen 15.1.09 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe Versuch: Q - e/m Bestimmungen 1. Grundlagen Erzeugen von Elektronenstrahlen (Fadenstrahlrohr); Messung der spez. Ladung e/m durch Ablenkung eines Elektronenstrahles

Mehr

V9: Fadenstrahlrohr. Bestimmung der speziischen Ladung des Elektrons

V9: Fadenstrahlrohr. Bestimmung der speziischen Ladung des Elektrons V9: Fadenstrahlrohr Bestimmung der speziischen Ladung des Elektrons HaSP Halles Schülerlabor für Physik Institut für Physik Martin-Luther-Universität Halle-Wittenberg Inhaltsverzeichnis 1 Inhaltsverzeichnis

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2012-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe

Mehr

Versuch 245 Induktion

Versuch 245 Induktion Versuch 245 Induktion Windungszahl je Spule: 124 Daten der Induktionspule: Windungszahl: 4000 Fläche: 41,7 cm 2 II Literatur Standardwerke der Physik: Gerthsen, Bergmann-Schäfer, Tipler, Demtröder. III

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 22.Februar 2006, 9:00-11:00 Uhr für die Studiengänge Mb, Inft, Ciw, E+R/Bach. (bitte deutlich

Mehr

IE3. Modul Elektrizitätslehre. Induktion

IE3. Modul Elektrizitätslehre. Induktion IE3 Modul Elektrizitätslehre Induktion In diesem Experiment wird das Phänomen der Induktion untersucht. Bei der Induktion handelt es sich um einen der faszinierendsten Effekte der Elektrizitätslehre. Die

Mehr

Zusammenfassung EPII. Elektromagnetismus

Zusammenfassung EPII. Elektromagnetismus Zusammenfassung EPII Elektromagnetismus Elektrodynamik: Überblick Dynamik (Newton): Elektromagnetische Kräfte zw. Ladungen: Definition EFeld: Kraft auf ruhende Testladung Q: BFeld: Kraft auf bewegte Testladung:

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 19. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 06.

Mehr

Ladungsfluss durch geschlossene Fläche = zeitliche Änderung der Ladung im Volumen 4.2 Elektrischer Widerstand

Ladungsfluss durch geschlossene Fläche = zeitliche Änderung der Ladung im Volumen 4.2 Elektrischer Widerstand E-Dynamik Teil II IV Der elektrische Strom 4.1 Stromstärke, Stromdichte, Kontinuitätsgleichung Definition der Stromstärke: ist die durch eine Querschnittsfläche pro Zeitintervall fließende Ladungsmenge

Mehr

:= (Energieprdoukt b x h) m 3

:= (Energieprdoukt b x h) m 3 - Feder: l F := 55 0 3 m (Länge der Feder) b F := 4 0 3 m (Breite der Feder) h F := 0.7 0 3 m (Dicke der Feder) E F 80 0 9 kg := (E-Modul) (=Pa) (Stahl) m s R m_federstahl := 800 0 6 Pa (Zugfestigkeit)

Mehr

503 Spezifische Ladung e/m des Elektrons

503 Spezifische Ladung e/m des Elektrons 503 Spezifische Ladung e/m des Elektrons 1. Aufgaben 1.1 Bestimmen Sie mit Hilfe einer Fadenstrahlröhre die spezifische Ladung e/m des Elektrons! 1.2 (Zusatzaufgabe) Untersuchen Sie die Homogenität des

Mehr

6.4.8 Induktion von Helmholtzspulen ******

6.4.8 Induktion von Helmholtzspulen ****** V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment

Mehr

Schulinterner Lehrplan Qualifikationsphase Q1. Präambel

Schulinterner Lehrplan Qualifikationsphase Q1. Präambel Präambel Dieses Curriculum stellt keinen Maximallehrplan dar, sondern will als offenes Curriculum die Möglichkeit bieten, auf die didaktischen und pädagogischen Notwendigkeiten der Qualifikationsphase

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Übung 2 - Angabe Technische Universität München 1 Fakultät für Physik 1 Draht Strom fließt durch einen unendlich langen Draht mit Radius a. Dabei ist die elektrische

Mehr

Versuch 3 Das Trägheitsmoment

Versuch 3 Das Trägheitsmoment Physikalisches A-Praktikum Versuch 3 Das Trägheitsmoment Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 10.07.2012 Unterschrift: Inhaltsverzeichnis 1 Einleitung

Mehr