Hall-Effekt und Magnetfeldmessung

Größe: px
Ab Seite anzeigen:

Download "Hall-Effekt und Magnetfeldmessung"

Transkript

1 Hall-Effekt und Magnetfeldmessung erweitert aus Studiengebühren Vorbereitung: Halbleiter, Bändermodell: n-leitung, p-leitung, Kraft auf Ladungsträger in elektrischen und magnetischen Feldern, Hall-Effekt, Gesetz von Biot-Savart, Helmholtz-Spulen. Literatur: Standard-Lehrbücher der Experimentalphysik, z.b. Gerthsen, Vogel: Physik, Springer-Verlag 1 Einführung In diesem Versuch wird der Hall-Effekt an einem n- und p-dotierten Halbleiterplättchen untersucht, sowie als Anwendung das Magnetfeld eines Helmholtz-Spulenpaars mit Hilfe einer Hall-Sonde vermessen. Fließt durch ein Halbleiterplättchen, das sich in einem Magentfeld befindet (siehe Abb. 1) senkrecht zum Magnetfeld ein Strom, so bildet sich senkrecht zur Stromrichtung und zum Magnetfeld eine Querspannung aus, die sogenannte Hall-Spannung U H : U H = H I S B d (1) mit H = 1/(nq) Hallkonstante, n Ladungsträgerkonzentration (Zahl der Ladungsträger pro Volumen), q < 0 Elektronenleitung (n-leitung), q > 0 Löcherleitung (p-leitung). I S Strom durch das Plättchen, B Betrag des B-Feldes, d Dicke des Plättchens Führt man die Beweglichkeit µ der Ladungsträger ein (µ = v/e, v: Geschwindigkeit der Ladungsträger, E: elektrische Feldstärke), so kann U H geschrieben werden als: U H = BEbµ (2) mit b Breite des Plättchens. Da die resultierende Hall-Spannung direkt proportional zum B-Feld ist, das das Hall-Plättchen durchsetzt, kann der Hall-Effekt zur Magnetfeldmessung 1

2 Abbildung 1: Hall-Effekt verwendet werden, wenn die Proportionalitätskonstanten bekannt sind. Entsprechende Messsonden heissen Hall-Sonden. Exemplarisch wird das Magnetfeld eines Helmholtz-Spulenpaars mit einer Hall-Sonde vermessen: Ein Helmholtz-Spulenpaar besteht aus zwei kurzen stromdurchflossenen Zylinderspulen mit adius, die parallel und konzentrisch zueinander stehen (siehe auch Abb.2). Wird der Abstand a zwischen den Spulen so gewählt, dass a = gilt, so ergibt sich ein weitgehend homogener Feldverlauf zwischen den Spulen (bei gleichsinnigem Verlauf des Stroms durch die beiden Spulen). Abbildung 2: Schematische Darstellung eines Helmholtz-Spulenpaars Das erzeugte Magnetfeld kann mit Hilfe des Gesetzes von Biot-Savart 2

3 berechnet werden. Ein Stromleiter der infintesimalen Länge dl am Ort r, der von einem Strom I durchflossen wird, erzeugt am Ort r die magnetische Flussdichte db( r) = µ 0 4π I dl r r r r 3 (3) Zunächst soll das Biot-Svart-Gesetz zur Berchnung des B-Feldes einer stromdurchflossenen kreisförmigen Leiterschleife (Schleife mit adius parallel zur xy-ebene an der Stelle z 0, z-achse geht durch Mittelpunkt der Schleife) angewandt werden (vgl. Abb. 2). Dann gilt: l = dl dϕ = cos ϕ sinϕ z 0 = r sinϕ cos ϕ 0 Zur Vereinfachung der echnungen soll das B-Feld nur auf der z-achse betrachtet werden, also 0 r = 0 z mit und folgt aus (3) B = r r = cos ϕ sinϕ z z 0 r r = 2 + (z z 0 ) 2 dl ( r r ) = d B = µ 0 4π I (z z 0 ) 23 (z z 0 ) cos ϕ (z z 0 ) sinϕ 2 2π 0 dϕ dϕ (z z 0 ) cos ϕ (z z 0 ) sinϕ 2 Die Integration des Sinus bzw. Cosinus über den gesamten Winkelbereich ergibt Null, so dass nur die z-komponente von Null verschieden ist: B = µ 0 I (z z 0 ) 23 e z = 3 2 µ 0 I 1 + ( z z 0 ) 2 3 e z (4)

4 Das Magnetfeld eines Spulenpaars (auf der z-achse = Achse durch die Spulenmittelpunkte), bei dem sich die Spulen bei ±z 0 befinden, je N Windungen haben und gleichsinnig vom Strom I durchflossen werden, ergibt sich damit durch Superposition zu B = µ 0NI ( z z 0 ) ( z+z 0 ) 3 2 e z (5) Das Magnetfeld ist weitestgehend homogen, wenn der Abstand a der Spulen genau ihrem adius entspricht, d.h. a = bzw. z 0 = 2 (Wenn Sie Lust haben, können Sie dies zeigen, indem Sie Gleichung (5) um z = 0 Taylor entwickeln und nachweisen, dass dann abgesehen von der nullten Ordung erst die vierte Ordnung von Null verschieden ist.). Verzichtet man auf die Näherung, das Feld auf der Spulenachse zu berechnen, so kann kein einfacher geschlossener Ausdruck mehr angegeben werden. Näherungsweise kann der radiale Verlauf (r = Abstand von der z- Achse) der z-komponente des B-Feldes in der Mitte zwischen den Spulen (z=0) für den Fall z 0 = 2 beschrieben werden als B z (r) = ( 4 5)3 2 µ 0 NI ( ) 1 16r (6) Bearbeiten Sie folgende Aufgabe schriftlich in der Vorbereitung: 1. Leiten Sie die Gleichungen (1) und (2) her. 2 Versuchsdurchführung I. Hall-Effekt 2. Mit der in Abbildung 3 dargestellten Schaltung soll die Abhängigkeit der Hallspannung vom Sondenstrom I S (Strom durch das Hall-Plättchen) und vom Magnetfeld B gemessen werden: Messen Sie für die Sondenströme 10 ma, 20 ma, 30 ma, 40 ma und 50 ma jeweils die Hallspannung für verschiedene B-Felder, indem sie den Strom I M im Magnetstromkreis von 0-5 A in 1 A-Schritten durchfahren (beide Sonden!). Die Eichkurve, aus der Sie für die verschiedenen I M den Wert des B-Feldes erhalten, liegt aus (Abstand der Polschuhe a = 10mm). Der Konstanter für I S ist im Strom-Modus zu betreiben, wobei I S 50 ma nicht überschreiten darf. Prüfen Sie, ob für B = 0 (also I M = 0) das U H -Instrument die Spannung 0 anzeigt. Woran liegt es, wenn dies nicht der Fall ist? 4

5 Abbildung 3: Schaltung zur Messung des Hall-Effekts Auswertung: Tragen Sie alle U H -Werte für beide Sonden getrennt auf U H = f(b) mit I S als Parameter. Bestimmen Sie aus den Steigungen der resultierenden Geraden die Ladungsträgerkonzentration n für beide Sonden (d=1 mm, b=5 mm) sowie die Driftgeschwindigkeit der Ladnungsträger. Berechnen Sie für jede Sonde den Mittelwert und die Standardabweichung der Ladungsträgerkonzentration. Tragen Sie die Driftgeschwindigkeiten über den Sondenstrom I S auf. Diskussion! II. Magnetische Widerstandsänderung, nur Physiker/ Mathematiker Legt man an einen stromführenden Leiter senkrecht zum Strom ein B- Feld, so beobachtet man eine Erhöhung des elektrischen Widerstands. Bei nicht zu hohen Feldern gilt: mit 0 Widerstand für B=0, 0 0 = K 2 B 2 (7) K Konstante, die näherungsweise die Beweglichkeit µ der Ladungsträger darstellt. Die quantitative Erklärung dieses Effekts ist nicht elementar. Eine anschauliche Erklärung besteht darin, dass aufgrund des B-Feldes und der damit verbundenen Kraftwirkung auf die Ladungsträger die Stromrichtung im Leiter nicht mehr exakt in ichtung des E-Feldes (erzeugt durch die angelegte Spannung) übereinstimmt, sondern um den sogenannten Hall-Winkel davon abweicht. Dies führt zu einer Verlängerung 5

6 der Strombahnen im Leiter und effektiv zu einer Widerstandserhöhung. 3. Messen Sie die magnetische Widerstandsänderung / = f(b) für beide Sonden, wobei ein Sondestrom I S von 50mA zu wählen ist und I M von 0-5 A in 1 A-Schritten variiert wird. Die jeweils anliegende Spannung U S wird mit dem digitalen Voltmeter gemessen. Hinweis: Die zu messenden Änderungen sind sehr klein; notieren Sie sich alle Stellen des am digitalen Voltmeters angezeigten Wertes. Vermeiden Sie Störfelder, z.b. durch Mobiltelefone (Ausschalten!). Beginnen Sie die Messung bei I M = 0, warten Sie bis sich eine konstante Spannung eingestellt hat und führen Sie die Messung dann zügig durch. Auswertung: Prüfen Sie den Zusammenhang (7) durch Auftragen von / über B 2 für beide Sonden. Bestimmen Sie die Steigung der resultierenden Geraden und daraus die Konstante K. Fehlerabschätzung! III. Vermessung des B-Felds eines Helmholtz-Spulenpaars Die Messung des Magnetfelds erfolgt mit einer Hall-Sonde, die über Pocket-Cassy ausgelesen wird. Die Sonde enhält zwei Sensoren, einen zur Messung der axialen und einen zur Messung der transversalen Komponente des Magnetfelds. Überlegen Sie sich anhand des Feldverlaufs welchen Sie benötigen, Sie müssen diesen am Steuergerät aktivieren (Bt, Ba ein). Beachten Sie, dass der transversale Sensor sich an der Spitze der Sonde befindet, der axiale dagegen an der Verdickungsstelle des Stabes. Die beiden Spulen besitzen jeweils 320 Windungen und einen adius = 6.5cm. An die Spulen wird eine Spannung von 21 V angelegt, da sich die Spulen dabei langsam erwärmen, müssen Sie die Spannung mindestens 10 min bevor Sie die Messung starten wollen anlegen, damit der Strom während der Messung konstant bleibt. Notieren Sie sich den Strom durch die Spulen zum Beginn und Ende jeder Messreihe. Bei diesem Versuchsteil ist nur von Physikern und Mathematikern der erwartete Verlauf bei der Auswertung mit einzuzeichnen! 4. Messen Sie das B-Feld auf der Mittelachse (z-achse) der Spulen im Innenbereich zwischen den Spulen, sowie auf einer Seite bis zu einem z von 15 cm (z=0 entspricht der Stelle genau in der Mitte zwischen den Spulen) in 1cm-Schritten für einen Spulenabstand (a) a=13 cm (d.h. z 0 = 6.5cm in Gl. (5)), (b) a=6.5 cm (Helmholtz-Anordnung a=, z 0 = 3.25cm). 6

7 Korrigieren Sie am Steuergerät vor jeder Messreihe den möglichen Offset der Hall-Sonde, indem Sie die Sonde aus dem B-Feld nehmen (Eigenschaften Offset korrigieren 0). Auswertung: Tragen Sie beide Messreihen in ein Diagramm (B über z) und zeichnen Sie jeweils den erwarteten Verlauf nach Gleichung (5) ein. Diskutieren Sie mögliche Abweichungen zum erwarteten Verlauf und machen Sie sich Gedanken über den Fehler der einzelnen Messpunkte. Zeichnen Sie sinnvolle Fehlerbalken ein. 5. Messen Sie die radiale Abhängigkeit des B-Feld am Ort z=0 (Mitte zwischen den Spulen) von r=0 cm (Mittelachse) bis zum Spulenrand (r=6 cm) in 0.5cm-Schritten für die Helmholtz-Anordnung der Spulen (a=). Tragen Sie Ihre Messwerte graphisch auf (B über r) und zeichnen Sie den erwarteten Verlauf nach Gleichung (6) ein. Diskutieren Sie Gründe für mögliche Abweichungen vom erwarteten Verlauf. 7

Ziel: Kennenlernen von Feldverläufen und Methoden der Feldmessung. 1. Elektrisches Feld

Ziel: Kennenlernen von Feldverläufen und Methoden der Feldmessung. 1. Elektrisches Feld Ziel: Kennenlernen von Feldverläufen und Methoden der Feldmessung 1. Elektrisches Feld 1.1 Nehmen Sie den Potentialverlauf einer der folgenden Elektrodenanordnungen auf: - Plattenkondensator mit Störung

Mehr

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2 LK Lorentzkraft Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfeld dünner Leiter und Spulen......... 2 2.2 Lorentzkraft........................

Mehr

Magnetfeld in Leitern

Magnetfeld in Leitern 08-1 Magnetfeld in Leitern Vorbereitung: Maxwell-Gleichungen, magnetischer Fluss, Induktion, Stromdichte, Drehmoment, Helmholtz- Spule. Potentiometer für Leiterschleifenstrom max 5 A Stufentrafo für Leiterschleife

Mehr

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum Fachbereich El Gruppe : Namen, Matrikel Nr.: Versuchstag: Vorgelegt: Hochschule Düsseldorf Testat : V 401 : Induktion Zusammenfassung: 01.04.16 Versuch: Induktion Seite 1 von 6 Gruppe : Korrigiert am:

Mehr

Labornetzgerät, Digitalmultimeter, Teslameter mit digitaler axialer Feldsonde (Hallsonde), verschiedene

Labornetzgerät, Digitalmultimeter, Teslameter mit digitaler axialer Feldsonde (Hallsonde), verschiedene Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum E 7a Spulenfelder Aufgaben 1. Überprüfen Sie die Kalibrierung des Teslameters mit einer Kalibrierspule.. Nehmen Sie die Flussdichte

Mehr

Versuch 13: Magnetfeld von Spulen

Versuch 13: Magnetfeld von Spulen Versuch 13: Magnetfeld von Spulen Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Maxwell-Gleichungen.............................. 3 2.2 Biot-Savart-Gesetz............................... 3 3 Durchführung

Mehr

Abiturprüfung Physik, Leistungskurs

Abiturprüfung Physik, Leistungskurs Seite 1 von 8 Abiturprüfung 2013 Physik, Leistungskurs Aufgabenstellung: Aufgabe: Aspekte zur experimentellen Überprüfung des Induktionsgesetzes In der folgenden Aufgabe soll eine Teilaussage des allgemeinen

Mehr

VERSUCH 5: MAGNETFELDMESSUNGEN MIT HALLSONDEN

VERSUCH 5: MAGNETFELDMESSUNGEN MIT HALLSONDEN VERSUCH 5: MAGNETFELDMESSUNGEN MIT HALLSONDEN 37 Magnetische Felder verursachen Kräfte auf bewegte Ladungen. Die Definition der magnetischen Induktion B geschieht implizit mit Hilfe der Kraft F, die auf

Mehr

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER. E 5 - Magnetfeld

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER. E 5 - Magnetfeld Universität - GH Essen Fachbereich 7 - Physik PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER Versuch: E 5 - Magnetfeld 1. Grundlagen Magnetfeld einer Kreisspule (magnetische Feldstärke, magnetische Induktion, Biot-Savartsches

Mehr

Im ersten Teil dieses Versuchs wird ein Elektronenstrahl im homogenen Magnetfeld untersucht.

Im ersten Teil dieses Versuchs wird ein Elektronenstrahl im homogenen Magnetfeld untersucht. 1. Problem n diesem Versuch lernen Sie die Kraftwirkung eines -Feldes auf eine bewegte Ladung kennen. ies untersuchen sie an zwei Beispielen: unächst untersuchen sie die Auslenkung eines Elektronenstrahls

Mehr

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 09 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 9 PHYS7357 Elektrizitätslehre und Magnetismus Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, othmar.marti@uni-ulm.de) 7. 6. 9 Aufgaben. Durch eine

Mehr

Magnetische Induktion Φ = Der magnetische Fluss Φ durch eine Fläche A ist definiert als

Magnetische Induktion Φ = Der magnetische Fluss Φ durch eine Fläche A ist definiert als E8 Magnetische Induktion Die Induktionsspannung wird in Abhängigkeit von Magnetfeldgrößen und Induktionsspulenarten untersucht und die Messergebnisse mit den theoretischen Voraussagen verglichen.. heoretische

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 09. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 09. 06.

Mehr

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 1

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 1 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 1 Magnetisches Feld Lernziel:

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 3.November 004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Feldmessung - 1 Aufgaben: 1. Elektrisches Feld 1.1 Nehmen Sie den Potenziallinienverlauf einer der

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Lösung Übungsblatt 2 Tutoren: Elena Kaiser und Matthias Golibrzuch 2 Elektrischer Strom 2.1 Elektrischer Widerstand Ein Bügeleisen von 235 V / 300 W hat eine Heizwicklung

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

Elektronen auf dem Leuchtschirm. c) Ermittle den Auftreffwinkel gegenüber der Waagrechten.

Elektronen auf dem Leuchtschirm. c) Ermittle den Auftreffwinkel gegenüber der Waagrechten. Aufgabenbeispiel: In einer Hochvakuumröhre werden die aus der Heizwendel ausgelösten Elektronen mit einer Spannung von 600 V beschleunigt. Nach der Beschleunigungsstrecke treten sie in einen Kondensator

Mehr

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2 IK Induktion Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfelder....................... 2 2.2 Spule............................ 2

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

Physikalisches Anfängerpraktikum Teil 1 Versuch 1 73: Stromdurchflossene Leiter im Magnetfeld, Halleffekt Protokoll

Physikalisches Anfängerpraktikum Teil 1 Versuch 1 73: Stromdurchflossene Leiter im Magnetfeld, Halleffekt Protokoll Physikalisches Anfängerpraktikum eil 1 Versuch 1 73: Stromdurchflossene Leiter im Magnetfeld, Halleffekt Protokoll Gruppe 13: Marc A. Donges , 1060028 Michael Schüssler, 1228119 2004 09

Mehr

Physik 4 Praktikum Auswertung Hall-Effekt

Physik 4 Praktikum Auswertung Hall-Effekt Physik 4 Praktikum Auswertung Hall-Effekt Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Elektrischer Strom in Halbleitern..... 2 2.2. Hall-Effekt......... 3 3. Durchführung.........

Mehr

LernJob Naturwissenschaften - Physik Funktion einer Magnetfeldsensors

LernJob Naturwissenschaften - Physik Funktion einer Magnetfeldsensors LernJob Naturwissenschaften - Physik Funktion einer Magnetfeldsensors Lernbereich: 5. Felder als Modell zur Beschreibung elektromagnetischer Phänomene nutzen Zeitrichtwert: 90 Minuten Index: BGY PH 5.3.2c

Mehr

Magnetfeld von Spulen

Magnetfeld von Spulen c Doris Samm 2012 1 Magnetfeld von Spulen 1 Der Versuch im Überblick Magnetfelder spielen überall eine große Rolle, sei es in der Natur oder der Technik. So schützt uns das natürliche Erdmagnetfeld vor

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Vorlesung 4 Magnetostatik Andreas Brenneis, Marcus Jung, Ann-Kathrin Straub 16.09.2010 1 Allgemeines In der Magnetostatik gibt es viele Analogien zur Elektrostatik. Ein

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Übung 2 - Angabe Technische Universität München 1 Fakultät für Physik 1 Draht Strom fließt durch einen unendlich langen Draht mit Radius a. Dabei ist die elektrische

Mehr

Praktikum EE2 Grundlagen der Elektrotechnik Teil 2

Praktikum EE2 Grundlagen der Elektrotechnik Teil 2 Praktikum EE2 Grundlagen der Elektrotechnik Teil 2 Name: Studienrichtung: Versuch 6 Messen der magnetischen Flussdichte Versuch 7 Transformator Versuch 8 Helmholtzspulen Versuch 9 Leistungsmessung Testat

Mehr

Das stationäre Magnetfeld Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen.

Das stationäre Magnetfeld Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen. Das stationäre Magnetfeld 16 4 Stationäre Magnetfelder 4.1 Potentiale magnetischer Felder 4.1 Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen. a) Berechnen Sie mit

Mehr

Versuch 14 Magnetfeld von Spulen

Versuch 14 Magnetfeld von Spulen Physikalisches Praktikum Versuch 14 Magnetfeld von Spulen Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 5..7 Katharina Rabe Assistent: Tobias Liese kathinka1984@yahoo.de

Mehr

IE2. Modul Elektrizitätslehre. Magnetfeld und Permeabilität des Vakuums

IE2. Modul Elektrizitätslehre. Magnetfeld und Permeabilität des Vakuums IE2 Modul Elektrizitätslehre Magnetfeld und Permeabilität des Vakuums In diesem Experiment wird das magnetische Feld einer Spule ausgemessen. Aus den gewonnenen Daten kann die Permeabilität des Vakuums

Mehr

Physikalisches Grundlagenpraktikum Versuch Hall-Effekt

Physikalisches Grundlagenpraktikum Versuch Hall-Effekt Physikalisches Grundlagenpraktikum Versuch Hall-Effekt Name:... Matrikelnummer:... Gruppe:... Antestat Datum bestanden nicht Unterschrift Prüfer bestanden Termin Nachholtermin 1. Protokollabgabe Datum

Mehr

E19 Magnetische Suszeptibilität

E19 Magnetische Suszeptibilität Aufgabenstellung: 1. Untersuchen Sie die räumliche Verteilung des Magnetfeldes eines Elektromagneten und dessen Abhängigkeit vom Spulenstrom. 2. Bestimmen Sie die magnetische Suszeptibilität vorgegebener

Mehr

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker 11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter

Mehr

Spezifische Ladung des Elektrons

Spezifische Ladung des Elektrons Spezifische Ladung des Elektrons 1. Aufgaben 1. Die von einer Spule (a) und von einer Helmholtz-Spulenanordnung (b) erzeugte magnetische Flußdichte ist längs der Rotationssymmetrieachse zu messen und grafisch

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

Elektrostaitische Felder

Elektrostaitische Felder Elektrostaitische Felder Grundlagen zu den elektrischen Felder 1 homogenes Feld des Plattenkondensators inhomogenes Feld einer Punktladung Bei einem Plattenkondensator verlaufen die Feldlinien parallel

Mehr

O. Sternal, V. Hankele. 4. Magnetismus

O. Sternal, V. Hankele. 4. Magnetismus 4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt

Mehr

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld.

Induktion. Die in Rot eingezeichnete Größe Lorentzkraft ist die Folge des Stromflusses im Magnetfeld. Induktion Die elektromagnetische Induktion ist der Umkehrprozess zu dem stromdurchflossenen Leiter, der ein Magnetfeld erzeugt. Bei der Induktion wird in einem Leiter, der sich in einem Magnetfeld bewegt,

Mehr

10.1 Ampère sches Gesetz und einfache Stromverteilungen

10.1 Ampère sches Gesetz und einfache Stromverteilungen 1 Magnetostatik Solange keine Verwechslungen auftreten, werden wir in diesem und in den folgenden Kapiteln vom magnetischen Feld B an Stelle der magnetischen Induktion bzw. der magnetischen Flußdichte

Mehr

Auswertung. C16: elektrische Leitung in Halbleitern

Auswertung. C16: elektrische Leitung in Halbleitern Auswertung zum Versuch C16: elektrische Leitung in Halbleitern Alexander FufaeV Partner: Jule Heier Gruppe 434 Einleitung In diesem Versuch sollen wir die elektrische Leitung in Halbleitern untersuchen.

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 31.Juli 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich

Mehr

Praktikum - Hall Effekt Prof. A. Förster, Dipl. Ing. C. Grates

Praktikum - Hall Effekt Prof. A. Förster, Dipl. Ing. C. Grates Praktikum - Hall Effekt Prof. A. Förster, Dipl. Ing. C. Grates chris@university-material.de, Arthur Halama Inhaltsverzeichnis Theorie 2. Elektrische Leitfähigkeit in Halbleitern...........................

Mehr

Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik

Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik Versuch E9 - BIOT-SAVART-Gesetz & AMPÈREsches Gesetz Name: Mitarbeiter: Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung 1.1. Versuchsziel

Mehr

Physik GK ph1, 2. Kursarbeit Elektromagnetismus Lösung =10V ein Strom von =2mA. Berechne R 0.

Physik GK ph1, 2. Kursarbeit Elektromagnetismus Lösung =10V ein Strom von =2mA. Berechne R 0. Physik GK ph,. Kursarbeit Elektromagnetismus Lösung.04.05 Aufgabe : Stromkreise / Ohmsches Gesetz. Durch einen Widerstand R 0 fließt bei einer Spannung von U 0 =0V ein Strom von I 0 =ma. Berechne R 0.

Mehr

Handout zur Veranstaltung Demonstrationsexperimente: Hallsonde von Leybold

Handout zur Veranstaltung Demonstrationsexperimente: Hallsonde von Leybold Handout zur Veranstaltung Demonstrationsexperimente: Hallsonde von Leybold Valentin Conrad 22.12.2006 Didaktik der Physik Universität Bayreuth 1 1 Einführung Die Hallsonde ist ein Messgerät um Magnetfelder

Mehr

Ph12c: Praktikum Hall-Effekt und Magnetfeldmessungen

Ph12c: Praktikum Hall-Effekt und Magnetfeldmessungen Ph12c: Praktikum Hall-Effekt und Magnetfeldmessungen Zu jedem Versuch wird von jedem Gruppenmitglied ein Versuchsprotokoll angefertigt Material, Aufbau mit Skizze, Durchführung, Messwerte, Auswertung,

Mehr

Das Magnetfeld eines stromdurchflossenen Leiters (Schularbeiten bis Oktober 1995)

Das Magnetfeld eines stromdurchflossenen Leiters (Schularbeiten bis Oktober 1995) Das Magnetfeld eines stromdurchflossenen Leiters (Schularbeiten bis Oktober 1995) 1) Drei Drähte liegen parallel in werden von Strömen in den I 1 = 2 A I 2 = 5 A I 3 = 6 A angegebenen Richtungen durchflossen.

Mehr

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Aufgaben 13 Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters 4.7 Magnetfelder von Strömen Aus den vorherigen Kapiteln ist bekannt, dass auf stromdurchflossene Leiter im Magnetfeld eine Kraft wirkt. Die betrachteten magnetischen Felder waren bisher homogene Felder

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

Versuchsvorbereitung P1-80: Magnetfeldmessung

Versuchsvorbereitung P1-80: Magnetfeldmessung Versuchsvorbereitung P1-80: Magnetfeldmessung Kathrin Ender Gruppe 10 5. Januar 2008 Inhaltsverzeichnis 1 Induktivität einer Spule 2 1.1 Entmagnetisieren des Kerns............................ 2 1.2 Induktiver

Mehr

Die Momentspule (nach Helmholtz)

Die Momentspule (nach Helmholtz) Die Momentspule (nach Helmholtz) Bedienungsanleitung Die Momentspule nach Helmholtz besitzt, im Gegensatz zu einer üblichen Momentmessspule (Zylinderspule), einen großen und gut zugänglichen Messraum.

Mehr

Praktikumsprotokoll. Versuch Nr. 311 Hall-Effekt und Elektrizitätsleitung bei Metallen. Frank Hommes und Kilian Klug

Praktikumsprotokoll. Versuch Nr. 311 Hall-Effekt und Elektrizitätsleitung bei Metallen. Frank Hommes und Kilian Klug Praktikumsprotokoll Versuch Nr. 311 Hall-Effekt und Elektrizitätsleitung bei Metallen und Durchgeführt am: 13 Februar 2004 Inhaltsverzeichnis 1 Einleitung 3 2 Theoretische Hintergründe 3 2.1 Hall-Effekt.............................

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Elektronen im elektrischen Querfeld. Die nebenstehende Skizze

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte)

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Aufgabe 1: Ampère-Gesetz (2+2+2=6 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III (Theorie Elektrodynamik) WS 1-13 Prof. Dr. Alexander Mirlin Musterlösung:

Mehr

V9: Fadenstrahlrohr. Bestimmung der speziischen Ladung des Elektrons

V9: Fadenstrahlrohr. Bestimmung der speziischen Ladung des Elektrons V9: Fadenstrahlrohr Bestimmung der speziischen Ladung des Elektrons HaSP Halles Schülerlabor für Physik Institut für Physik Martin-Luther-Universität Halle-Wittenberg Inhaltsverzeichnis 1 Inhaltsverzeichnis

Mehr

Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld

Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld (2013-06-07) P3.4.3.1 Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld Messung der Induktionsspannung in einer Leiterschleife bei veränderlichem Magnetfeld

Mehr

Halleekt. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )

Halleekt. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Julian Merkert (1229929) Versuch: P1-73 Halleekt - Vorbereitung - Inhaltsverzeichnis 1 Messung des Magnetfeldes mit einer Feldplatte

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 2 Thema: Elektrischer Strom und Magnetostatik I Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 2 Elektrischer Strom 3 2.1

Mehr

Versuchsziele Messung des Magnetfeldes am geraden Leiter und an kreisförmigen Leiterschleifen in Abhängigkeit von der Stromstärke.

Versuchsziele Messung des Magnetfeldes am geraden Leiter und an kreisförmigen Leiterschleifen in Abhängigkeit von der Stromstärke. Elektrizitätslehre Magnetostatik iot-savart-gesetz LD Handblätter Physik P3.3.4.1 Magnetfeldmessung am geraden Leiter und an kreisförmigen Leiterschleifen Versuchsziele Messung des Magnetfeldes am geraden

Mehr

Induktion und Polarisation

Induktion und Polarisation Übung 2 Abgabe: 09.03. bzw. 13.03.2018 Elektromagnetische Felder & Wellen Frühjahrssemester 2018 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion und Polarisation 1 Magnetfelder in Spulen

Mehr

Stromdurchflossene Leiter im Magnetfeld, Halleffekt

Stromdurchflossene Leiter im Magnetfeld, Halleffekt Protokoll zum Versuch Stromdurchflossene Leiter im Magnetfeld, Halleffekt Kirstin Hübner (1348630) Armin Burgmeier (1347488) Gruppe 15 2. Dezember 2007 1 Messung des magnetischen Feldes mit einer Feldplatte

Mehr

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker

11. Elektrodynamik Magnetische Kraft auf Stromleiter Quellen von Magnetfeldern. 11. Elektrodynamik. Physik für E-Techniker 11. Elektrodynamik 11.5.2 Magnetische Kraft auf Stromleiter 11.5.3 Quellen von Magnetfeldern 11.5.2 Magnetische Kraft auf Stromleiter Wir hatten: Frage: Kraft auf einzelne Punktladung Kraft auf Stromleiter

Mehr

Bestimmung der spezifischen Elektronenladung (e/m)

Bestimmung der spezifischen Elektronenladung (e/m) Seite 1 Bestimmung der spezifischen Elektronenladung Themengebiet: Elektrodynamik und Magnetismus 1 Stichworte Elektron im elektrischen und magnetischen Feld, Lorentz-Kraft, Gesetz von Biot-Savart, Helmholtz-Spulen

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #23 am 06.06.2007 Vladimir Dyakonov (Klausur-)Frage des Tages Zeigen Sie mithilfe des Ampere

Mehr

IIE6. Modul Elektrizitätslehre II. Hall-Effekt

IIE6. Modul Elektrizitätslehre II. Hall-Effekt IIE Modul Elektrizitätslehre II Hall-Effekt In dem vorliegenden Versuch soll an Silber der Hall-Effekt und an Wolfram der anomale Hall-Effekt durch Messung der Hallspannung in Abhängigkeit vom Magnetfeld

Mehr

Schriftliche Prüfung zur Feststellung der Hochschuleignung

Schriftliche Prüfung zur Feststellung der Hochschuleignung Freie Universität Berlin Schriftliche Prüfung zur Feststellung der Hochschuleignung T-Kurs Fach Physik (Musterklausur) Von den vier Aufgabenvorschlägen sind drei vollständig zu bearbeiten. Bearbeitungszeit:

Mehr

Wichtig!!!! Nur klare, übersichtliche Lösungen werden gewertet!!!!

Wichtig!!!! Nur klare, übersichtliche Lösungen werden gewertet!!!! Experimentalphysik II SoSem 2009 Klausur 20.07.2009 Name:... Matrikelnummer:... Raum / Platznummer... nur für die Korrektoren: Studienrichtung, -ziel (bitte ankreuzen): Aufgabe Punkte Physik 1-10... Nanostrukturtechnik

Mehr

Die spezifische Elektronenladung e/m e

Die spezifische Elektronenladung e/m e Physikalisches Grundpraktikum Versuch 12 Die spezifische Elektronenladung e/m e Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de

Mehr

Versuch Magnetische Linsen

Versuch Magnetische Linsen Physikalisches Praktikum Jens Friedrich, Sven Förster 6. Januar 2004 Versuch Magnetische Linsen Aufgabenstellung. Messen Sie: (a) Die Homogenität (Konstanz) des Magnetfeldes in der Mittelebene zwischen

Mehr

Inhalt der Vorlesung B2

Inhalt der Vorlesung B2 Inhalt der Vorlesung B 4. Elektrizitätslehre, Elektrodynamik Einleitung Ladungen & Elektrostatische Felder Elektrischer Strom Magnetostatik Zeitlich veränderliche Felder - Elektrodynamik Wechselstromnetzwerke

Mehr

PS II - Verständnistest

PS II - Verständnistest Grundlagen der Elektrotechnik PS II - Verständnistest 31.03.2010 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 3 4 4 2 5 2 2 erreicht Aufgabe 8 9 10 11 Summe Punkte 2 4 3 4 35 erreicht Hinweise:

Mehr

Physik Klausur

Physik Klausur Physik Klausur 12.1 2 15. Januar 2003 Aufgaben Aufgabe 1 Ein Elektron wird mit der Geschwindigkeit v = 10 7 m s 1 von A aus unter 45 in ein begrenztes Magnetfeld geschossen. Der Geschwindigkeitsvektor

Mehr

PS II - Verständnistest

PS II - Verständnistest Grundlagen der Elektrotechnik PS II - Verständnistest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 4 2 2 5 3 4 4 erreicht Aufgabe 8 9 10 11 Summe Punkte 3 3 3 2 35 erreicht Hinweise:

Mehr

Versuch 13 Magnetfeld von Spulen

Versuch 13 Magnetfeld von Spulen Physikalisches A-Praktikum Versuch 3 Magnetfeld von Spulen Protokollant: Mitpraktikant: Gruppe: Niklas Bölter Julius Strake B6 Betreuer: Johannes Schmidt Durchgeführt: 7.9.22 Unterschrift: E-Mail: niklas.boelter@stud.uni-goettingen.de

Mehr

316 - Magnetfeldmessungen

316 - Magnetfeldmessungen 316 - Magnetfeldmessungen 1. Aufgaben 1.1 Die magnetische Induktion B eines Elektromagneten auf der Polschuhachse ist mit einer Hall- Sonde in Abhängigkeit vom Magnetisierungsstrom für unterschiedliche

Mehr

Prüfungsvorbereitung Physik: Elektrischer Strom und Elektromagnetismus

Prüfungsvorbereitung Physik: Elektrischer Strom und Elektromagnetismus Prüfungsvorbereitung Physik: Elektrischer Strom und Elektromagnetismus Alle Grundlagen aus den vorhergehenden Prüfungen werden vorausgesetzt. Das heisst: Gut repetieren! Theoriefragen: Diese Begriffe müssen

Mehr

5 Zeitabhängige Felder

5 Zeitabhängige Felder Carl Hanser Verlag München 5 Zeitabhängige Felder Aufgabe 5.13 Die spannungsabhängige Kapazität eines Kondensators kann für den Bereich 0... 60 V durch folgende Gleichung angenähert werden: Geben Sie allgemein

Mehr

Zulassungstest zur Physik II für Chemiker

Zulassungstest zur Physik II für Chemiker SoSe 2016 Zulassungstest zur Physik II für Chemiker 03.08.16 Name: Matrikelnummer: T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T TOT.../4.../4.../4.../4.../4.../4.../4.../4.../4.../4.../40 R1 R2 R3 R4 R TOT.../6.../6.../6.../6.../24

Mehr

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern TP2: Elektrodynamik WS 2017-2018 Arbeitsblatt 10 21/22.12. 2017 Dipole und Multipole in stationären Feldern Die Multipolentwicklung ist eine hilfreiche Näherung zur Lösung der Poisson Gleichung, wenn eine

Mehr

Illustrierende Aufgaben zum LehrplanPLUS. Induktion Diagramme

Illustrierende Aufgaben zum LehrplanPLUS. Induktion Diagramme Jahrgangsstufen FOS 12, BOS 12 Induktion Diagramme Stand: 04.03.2019 Fach Physik Übergreifende Bildungs- und Erziehungsziele Benötigtes Material Kompetenzerwartungen Lehrplan Physik FOS 12 (T) LB 4 Lehrplan

Mehr

Q 2 - e/m Bestimmungen

Q 2 - e/m Bestimmungen 15.1.09 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe Versuch: Q - e/m Bestimmungen 1. Grundlagen Erzeugen von Elektronenstrahlen (Fadenstrahlrohr); Messung der spez. Ladung e/m durch Ablenkung eines Elektronenstrahles

Mehr

IIE6. Modul Elektrizitätslehre II. Hall-Effekt

IIE6. Modul Elektrizitätslehre II. Hall-Effekt IIE6 Modul Elektrizitätslehre II Hall-Effekt In dem vorliegenden Versuch soll an Silber der Hall-Effekt und an Wolfram der anomale Hall-Effekt durch Messung der Hallspannung in Abhängigkeit vom Magnetfeld

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm PHYS3100 Grundkurs IIIb für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Leisi, Tipler, Gerthsen, Känzig, Alonso-Finn Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3b-2002-2003

Mehr

Physik Stand: September Seite 1 von 5

Physik Stand: September Seite 1 von 5 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Unterrichtliche Umsetzung Fachwissen grundlegendes Anforderungsniveau Zusatz für erhöhtes Anforderungsniveau Zusatz für erhöhtes Anforderungsniveau

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen Allgemeine Grundlagen. Gleichstromkreis.. Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j d d :Stromelement :Flächenelement.. Die Grundelemente

Mehr

Übungsblatt 09. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Übungsblatt 09. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Übungsblatt 9 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 9.6.8 Aufgaben. Durch eine Spule mit n Windungen, die einen Querschnitt A 7, 5cm hat, fliesst

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 05. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 05. 06.

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik2. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

Übungsblatt 8. = d(i 0 I) Nach Integration beider Seiten und beachtung der Anfangswerte t = 0, I = 0 erhält man:

Übungsblatt 8. = d(i 0 I) Nach Integration beider Seiten und beachtung der Anfangswerte t = 0, I = 0 erhält man: Aufgabe 29 Ein Stromkreis bestehe aus einer Spannungsquelle mit Spannung U 0 in Reihe mit einer Induktivität(Spule) L = 0.8H und einem Widerstand R = 10Ω. Zu dem Zeitpunkt t = 0 werde die Spannungsquelle

Mehr

Vorkurs Physik des MINT-Kollegs

Vorkurs Physik des MINT-Kollegs Vorkurs Physik des MINT-Kollegs Elektrizitätslehre MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales Forschungszentrum

Mehr

PS III - Rechentest

PS III - Rechentest Grundlagen der Elektrotechnik PS III - Rechentest 31.03.2010 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 Summe Punkte 12 15 9 9 15 60 erreicht Hinweise: Schreiben Sie auf das Deckblatt Ihren Namen und Matr.

Mehr

Übungsblatt 06 Grundkurs IIIb für Physiker

Übungsblatt 06 Grundkurs IIIb für Physiker Übungsblatt 06 Grundkurs IIIb für Physiker Othmar Marti, (othmar.marti@physik.uni-ulm.de) 20. 1. 2003 oder 27. 1. 2003 1 Aufgaben für die Übungsstunden Quellenfreiheit 1, Hall-Effekt 2, Lorentztransformation

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 16. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 16. 06.

Mehr

Magnetische Phänomene

Magnetische Phänomene Magnetische Phänomene Bekannte magnetische Phänomene: Permanentmagnete; Das Erdmagnetfeld (Magnetkompass!); Elektromagnetismus (Erzeugung magnetischer Kraftwirkungen durch Stromfluss) Alle magnetischen

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Protokoll zum Anfängerpraktikum Messung von Magnetfeldern Gruppe 2, Team 5 Sebastian Korff Frerich Max 8.6.6 Inhaltsverzeichnis 1. Einleitung -3-1.1 Allgemeines -3-1.2 IOT-SAVART Gesetz -4-1.3 Messung

Mehr