Experimentelle Grundlagen γ + N N + π

Größe: px
Ab Seite anzeigen:

Download "Experimentelle Grundlagen γ + N N + π"

Transkript

1 Experimentelle Grundlagen γ + N N + π Thomas Schwindt 28. November 2007

2 1 Relativistische Kinematik Grundlagen Lorentz-Transformation Erzeugung und Zerfall von Teilchen 2 Das Experiment Kinematik Aufbau 3 Zählratenabschätzung Wirkungsquerschnitt Luminosität Erwartete Zählrate

3 Grundlagen Grundlagen Teilchen mit Ruhemasse m 0 wird beschrieben durch Vierer-Vektor: ( ) E p = mit E = p p 2 + m0 2 Geschwindigkeit β = p E (in SI: v = c β) Boost-Faktor γ = 1 1 β 2 = E m 0 (Masse: m = γ m 0 ) E, p, β und γ abhängig von Bezugssystem, m 0 unabhängig

4 Grundlagen Bezugssysteme Labor-System (ls) Teilchen 2 in Ruhe p (ls) 2 = (ls) 0 E 2 = m 2 CM-System (cms) Schwerpunkt in Ruhe p 1 = p 2 Zusammenhang θ (ls) = f (θ (cms) )? Lorentz-Transformation

5 Lorentz-Transformation Lorentz-Transformation von System S in Bezugssystem S mit β : zerlege Impuls in Komponenten: ( ) p p = mit p = p ˆβ = p cos θ p transformiere nur Komponente parallel zum Boost: ( E ) ( γ β = γ ) ( E β γ γ p p = γ (p cos θ + β E) p )

6 Lorentz-Transformation Transformation des Winkels θ zwischen Impuls- und Boost-Richtung: tan θ = p sin θ γ (p cos θ + β E) = mit β = p : Geschwindigkeit des Teilchens in S E sin θ γ (cos θ + β /β)

7 Lorentz-Transformation Lorentz-Invarianten Minkowski-Skalarprodukt: (p 1 p 2 ) = E 1 E 2 p 1 p 2 per Denition invariant unter Lorentz-Transformationen Beispiel: (p p) = E 2 p 2 = m 2 0 (invariante Masse) alle weiteren Produkte von 4-Vektoren invariant besonders nützlich: Mandelstam-Variablen s, t, u

8 Lorentz-Transformation Mandelstam-Variablen s = (p 1 + p 2 ) 2 = (p 1 + p 2 )2 t = (p 1 p 1 )2 = (p 2 p 2 )2 u = (p 1 p 2 )2 = (p 2 p 1 )2 = (E 1 + E 2 ) 2 ( p 1 + p }{{} 2 ) 2 = ( E (cms)) 2 =0 s (cms)

9 Erzeugung und Zerfall von Teilchen Erzeugung eines Teilchens Teilchen der Masse M soll erzeugt werden Energie? im CM-System leicht zu berechnen (E 1 + E 2 = M) im Labor-System liefert Invarianz von s: s = M 2 = (E 1 +m 2 ) 2 (E 2 1 m 2 1) }{{} p 1 2 (ls) E1 = M2 m1 2 m2 2 2m 2 bei Kollision: E M bei festem Ziel: E M 2

10 Erzeugung und Zerfall von Teilchen Zerfall eines Teilchens Teilchen mit Masse M zerfällt in Teilchen mit Massen m 1, m 2 (cms): im Mittel nach Zeit t = τ : Lebensdauer (ls): mit Boost γ nach t = γ τ Strecke: L = cβγτ p 1 = p 2 E1 2 E 2 2 = m1 2 m 2 2 E 2 2 = (M E 1 ) 2 E (cms) 1 = M2 + m 2 1 m2 2 2M E (ls) 1 durch Lorentz-Transformation

11 Erzeugung und Zerfall von Teilchen Breit-Wigner-Resonanz Lebensdauer τ < keine scharf denierte Ruhemasse analog zur Optik (Linienbreite) Wahrscheinlichkeit, Teilchen mit E (cms) = E zu erzeugen: P(E) (Γ/2) 2 (E M) 2 + (Γ/2) 2 M entspricht Ruhemasse Γ = 1 τ ist FWHM

12 Kinematik Die -Resonanz Die -Resonanz M = 1232 MeV Γ = 118 MeV τ = 5, s N + π S = 3 2

13 Kinematik Erzeugung der Resonanz Photoproduktion: γ + N p γ = E γ p N = 0 für Resonanz: E γ = M2 m2 N 2m N = 340 MeV für FWHM: E γ = ( ) MeV ELSA bei 800 MeV Tagger liefert 25%-90% E γ = ( ) MeV

14 Kinematik Die -Resonanz Bei Resonanzenergie, im Laborsystem: E (ls) = 1279 MeV p(ls) = 340 MeV γ = E (ls) M = 1, 04 β = p(ls) E (ls) = 0, 27 im Mittel zurückgelegte Strecke: L = βγcτ = 0, 5 fm zum Vergleich: mittlerer Ladungsradius Proton < r 2 p > = 0, 9 fm

15 Kinematik Zerfall der Resonanz im CM-System: p N = p π = 229 MeV π: β π = 0, 86 γ π = 1, 96 N: β N = 0, 24 γ N = 1, 03 Spin-Bilanz: aus Drehimpulserhaltung: L π = 1 Pion: P-Welle mit Winkelverteilung W (θ) sin 2 θ

16 Kinematik Das π-meson W (θ) sin 2 θ Maximum: θ (cms) = 90 tan θ (ls) = 1 γ (0+β /β π) θ (ls) = 72, 2

17 Kinematik Zerfall der Pionen π ± τ = 2, s L 13 m π ± µ ± + ν µ π 0 τ = 8, s L 45 nm π 0 γ + γ π 0 γ + γ mit Koinzidenz einfach zu detektieren Reaktionen: γ + p p + π 0 γ + n n + π 0

18 Kinematik Zerfall des π 0 (cms): isotrope Winkelverteilung betrachte: θ (cms) = 90 tan θ (ls) = 1 γ πβ π θ (ls) = 29, 4 liefert gröÿte Akzeptanz, höchste Rate Energie E γ 137 MeV

19 Aufbau Aufbau

20 Aufbau Detektion von π 0 durch γ CsI-Detektoren detektieren geladene Teilchen und Photonen Dünne organische Szintillatoren detektieren keine Photonen organische Detektoren als Vetos γ: Signal von CsI und gleichzeitig nicht von Veto Koinzidenz zweier γ wird als π 0 -Zerfall identiziert [(D 1 & V 1 ) & (D 2 & V 2 )] & Tagger

21 Aufbau Aufbau

22 Zählrate Ṅ = L σ Luminosität L gegeben durch Strahl und Target Wirkungsquerschnitt σ wird i.d.r. aus Ṅ und L bestimmt hier: σ wird mit Daten von MAID berechnet erwartete Zählrate Ṅ

23 Wirkungsquerschnitt Wirkungsquerschnitt WQ Wahrscheinlichkeit, dass Reaktion geschieht σ = Reaktionsrate Rate der Strahlteilchen Targetteilchen pro Fl äche [σ] = barn = m 2 aber: realer Detektor überdeckt nicht den gesamten Raum detektierte Reaktionsrate hängt von Fläche A und Position (r, θ, ϕ) des Detektors D ab.

24 Wirkungsquerschnitt Dierentieller WQ dσ = Streurate nach dω Rate der Strahlteilchen Targetteilchen pro Fl äche σ D = D dσ dω dσ ( ) dω θ, ϕ dω Ω = dσ ( ) θ, ϕ A dω r 2

25 Wirkungsquerschnitt Dierentieller WQ dσ/dω (γ + p p + π 0 E (cms) = 1232 MeV dσ dω( θ (cms) = 90 ) E=M = 28 µb sr konstant über Winkelbereich von 10 (MAID)

26 Wirkungsquerschnitt Raumwinkel 2 Blöcke aus 9 Kristallen mit je 2, 2cm 3cm Endäche A = 60cm 2 pro Block Abstand von Target r = 30cm Abschätzung: Photonen werden isotrop emittiert 1. Photon: Ω 1 = 2 A r 2 2. Photon: Ω 2 = A r 2 eektiver Raumwinkel ist Produkt der beiden einzelnen (UND) Ω = 2 A r A = 0, 009 sr 2 r 2

27 Wirkungsquerschnitt Abschätzung des WQ σ D (E) dσ ( θ = 90 ; E ) Ω dω Energieabhängigkeit: Breit-Wigner-Funktion P(E) Winkelabhängigkeit: 20 cm Detektorbreite = 10 keine Änderung des WQ im betrachteten Winkelbereich σ D (E) = 0, 25µb P(E)

28 Luminosität Luminosität L = einfallende Teilchen pro Fl äche Targets einfallende Teilchen: Ṅ γ 1 E als Bremsstrahlung Targets: N N Nukleonen im Target-Material mit F d Annahme: Targetdurchmesser Strahldurchmesser verwende Flächenbelegung n N = N N F L = Ṅγ F N N = Ṅ γ n N

29 Luminosität Das Target Polyethylen-Scheibe, d = 5cm Massenformel C x H 2x+2 CH 2 Dichte ϱ 1g cm 3, molare Masse m M = 14 g mol 2 freie Protonen pro Molekül im 12 C -Kern zusätzlich 6 Protonen und 6 Neutronen

30 Luminosität Flächenbelegung Gewicht eines Moleküls: m = m M N A Anzahldichte der Moleküle: N V = ϱ m Flächenbelegung: n = N F = N V d Targets pro Molekül: N N N = 14 n p = N A ϱ d NN m M N = µb 1

31 Luminosität Photonenuss Pro Energie-Intervall: dṅ γ = Ṅ0 E γ de Im Experiment: Taggerlatte 12: 1,5 MHz Energiebereich: 35%-40% 1, 5MHz = Ṅ de E 0, 13 Ṅ 0 Ṅ 0 12 MHz

32 Erwartete Zählrate Erwartete Zählrate dl de = Ṅ 0 n N 1 E Ṅ = Ṅ 0 n N σ D P(E) E de erwartete Zählrate: Ṅ = 12MHz µb 1 0, 25µb 0, 01 0, 1Hz gemessene Zählrate: Ṅ (0, 5 1, 0)Hz

33 Erwartete Zählrate Fehlerdiskussion Gründe für Abweichungen: Untergrundereignisse (zufällige Koinzidenzen) Abschätzung Photonenuss Vernachlässigung der γ-korrelation Beiträge anderer Resonanzen

34 Erwartete Zählrate Zusammenfassung Photoproduktion der -Resonanz Kinematik Aufbau Zählrate Ṅ 0, 1Hz

1. Relativistische Kinematik

1. Relativistische Kinematik Notizen zur Kern-eilchenphsik II (SS 2004: 1. Relativistische Kinematik Prof. Dr. R. Santo Dr. K. Regers http://www.uni-muenster.de/phsik/kp/lehre/k2-ss04/ Kern- eilchenphsik II - SS 2004 1 Lorentztransformation

Mehr

Experimente mit reellen Photonen. Kernphysikalisches Seminar zum F-Praktikum Christian Wuttke

Experimente mit reellen Photonen. Kernphysikalisches Seminar zum F-Praktikum Christian Wuttke Kernphysikalisches Seminar zum F-Praktikum 13.06.2005 Christian Wuttke 1 Übersicht Gliederung 1. Überblick und Motivation 3. Verfahren zur Erzeugung von reellen 5. Ein Beispielexperiment und Aufbau 7.

Mehr

Rutherford Streuung F 1. r 12 F 2 q 2 = Z 2 e. q 1 = Z 1 e

Rutherford Streuung F 1. r 12 F 2 q 2 = Z 2 e. q 1 = Z 1 e Rutherford Streuung Historisch: Allgemein: Streuung von α-teilchen an Metallfolien Ernest Rutherford, 96 Streuung geladener Teilchen an anderen geladenen Teilchen unter der Wirkung der Coulomb-Kraft. F

Mehr

Wechselwirkung von Neutrinos und Kopplung an W und Z

Wechselwirkung von Neutrinos und Kopplung an W und Z Wechselwirkung von Neutrinos und Kopplung an W und Z Bosonen Fakultät für Physik und Astronomie Ruprecht-Karls-Universität Heidelberg 16. Mai 2007 Agenda der Neutrinos 1 der Neutrinos 2 Erhaltungsgrößen

Mehr

Notizen zur Kern-Teilchenphysik II (SS 2004): 2. Erhaltungsgrößen. Prof. Dr. R. Santo Dr. K. Reygers

Notizen zur Kern-Teilchenphysik II (SS 2004): 2. Erhaltungsgrößen. Prof. Dr. R. Santo Dr. K. Reygers Notizen zur Kern-Teilchenphysik II (SS 4):. Erhaltungsgrößen Prof. Dr. R. Santo Dr. K. Reygers http://www.uni-muenster.de/physik/kp/lehre/kt-ss4/ Kern- Teilchenphysik II - SS 4 1 Parität (1) Paritätsoperator:

Mehr

Kerne und Teilchen. e + e - Kollisionen. Moderne Experimentalphysik III Vorlesung 9. MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK

Kerne und Teilchen. e + e - Kollisionen. Moderne Experimentalphysik III Vorlesung 9.   MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Kerne und Teilchen Moderne Experimentalphysik III Vorlesung 9 MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK e + e - Kollisionen KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Kapitel 5. Relativistische Kinematik. 5.1 Der Energie-Impuls 4-Vektor. 5.2 Relativistische Kinematik

Kapitel 5. Relativistische Kinematik. 5.1 Der Energie-Impuls 4-Vektor. 5.2 Relativistische Kinematik 74 Teilchenphysik, HS 007-SS 008, Prof. A. Rubbia (ETH Zurich Mit Hilfe der 4-Geschwindigkeit definieren wir nun den Energie-Impuls 4- Vektor als Kapitel 5 Relativistische Kinematik 5.1 Der Energie-Impuls

Mehr

Übung 8 : Spezielle Relativitätstheorie

Übung 8 : Spezielle Relativitätstheorie Universität Potsdam Institut für Physik Vorlesung Theoretische Physik I LA) WS 13/14 M. Rosenblum Übung 8 : Spezielle Relativitätstheorie Besprechung am Montag, dem 03.0.014) Aufgabe 8.1 Zeigen Sie die

Mehr

1) Teilchenbeschleunigung am LHC und im Kosmos

1) Teilchenbeschleunigung am LHC und im Kosmos 1 Übungsblatt 06112013 1) Teilchenbeschleunigung am LHC und im Kosmos Kosmische Beschleuniger wie aktive galaktische Kerne, sog AGN s (active galactic nuclei), beschleunigen Teilchen auf Energien von bis

Mehr

Kernphysik. Elemententstehung. 2. Kernphysik. Cora Fechner. Universität Potsdam SS 2014

Kernphysik. Elemententstehung. 2. Kernphysik. Cora Fechner. Universität Potsdam SS 2014 Elemententstehung 2. Cora Fechner Universität Potsdam SS 2014 alische Grundlagen Kernladungszahl: Z = Anzahl der Protonen Massenzahl: A = Anzahl der Protonen + Anzahl der Neutronen Bindungsenergie: B

Mehr

Synchrotronstrahlung. Strahlung beschleunigter Teilchen Winkelverteilung Zeitstruktur Spektrum

Synchrotronstrahlung. Strahlung beschleunigter Teilchen Winkelverteilung Zeitstruktur Spektrum Strahlung beschleunigter Teilchen Winkelverteilung Zeitstruktur Spektrum Strahlung beschleunigter Teilchen Strahlung eines nichtrelativistischen, beschleunigten Teilchens e 2 ( ) dp 2 P = 6πɛ 0 m0 2c3

Mehr

Partialwellenanalyse

Partialwellenanalyse Partialwellenanalyse Marc Schiereck 21. November 2007 Marc Schiereck Partialwellenanalyse 21. November 2007 1 / 35 Einleitung Überblick 1 Resonanzen 2 Partialwellenentwicklung 3 Polarisationsobservablen

Mehr

NeutronenStreuung. Grundlagen. Aufbau. Eigenschaften & Vorteile Messgrößen. Historie Erzeugung Präparation Detektoren. Diffraktometer.

NeutronenStreuung. Grundlagen. Aufbau. Eigenschaften & Vorteile Messgrößen. Historie Erzeugung Präparation Detektoren. Diffraktometer. NeutronenStreuung Grundlagen Eigenschaften & Vorteile Messgrößen Historie Erzeugung Präparation Detektoren Inhalt Diffraktometer 1 / 24 Einführung detaillierte Eigenschaften auf atomarer Ebene n- & Röntgen-Streuung

Mehr

Synchrotronstrahlung. Strahlung beschleunigter Teilchen Winkelverteilung Zeitstruktur Spektrum

Synchrotronstrahlung. Strahlung beschleunigter Teilchen Winkelverteilung Zeitstruktur Spektrum Synchrotronstrahlung Strahlung beschleunigter Teilchen Winkelverteilung Zeitstruktur Spektrum Synchrotronstrahlung Strahlung beschleunigter Teilchen Strahlung eines nichtrelativistischen, beschleunigten

Mehr

Fortgeschrittene Teilchenphysik

Fortgeschrittene Teilchenphysik Albert-Ludwigs-Universität Freiburg Wintersemester 008/09 Fortgeschrittene Teilchenphysik Markus Schumacher Übung X Matthew Beckingham und Markus Warsinsky 161009 Anwesenheitsaufgaben Aufgabe 49 Z 0 -Breite

Mehr

2. Vorlesung Teilchen- und Astroteilchen

2. Vorlesung Teilchen- und Astroteilchen 2. Vorlesung Teilchen- und Astroteilchen Grundlagen des Teilchennachweises: Wechselwirkung hochenergetischer Teilchen mit Materie in makroskopischen Mengen 1. Klassifizierung der Teilchen in Bezug auf

Mehr

Experimente mit reellen Photonen

Experimente mit reellen Photonen Experimente mit reellen Photonen Stefanie Bender und Kathlynne Tullney Der Vortrag versucht, einen Einblick auf Experimente mit reellen Photonen zu vermitteln. Diese dienen dazu, die Nukleonenresonanzen

Mehr

Musterlösung 02/09/2014

Musterlösung 02/09/2014 Musterlösung 0/09/014 1 Streuexperimente (a) Betrachten Sie die Streuung von punktförmigen Teilchen an einer harten Kugel vom Radius R. Bestimmen Sie die Ablenkfunktion θ(b) unter der Annahme, dass die

Mehr

Grundlagen von Streuprozessen

Grundlagen von Streuprozessen Grundlagen von Streuprozessen Aktuelle Probleme der experimentellen Teilchenphysik WS 2009 / 10 Lehrstuhl für Physik und ihre Didaktik 03.11.2009 Ortsauflösung de Broglie Wellenlänge Auflösungsvermögen

Mehr

Kern- und Teilchenphysik

Kern- und Teilchenphysik Kern- und Teilchenphysik Einführung in die Teilchenphysik: Erinnerung: Elektronstreuung & Formfaktor Formfaktor des Nukleons Tiefinelastische Elektron-Nukleon Streuung Substruktur des Nukleons Folien und

Mehr

Streuung elastische Streuung am Nukleon quasielastische Streuung

Streuung elastische Streuung am Nukleon quasielastische Streuung Kerne und Teilchen Moderne Experimentalphysik III Vorlesung 6 MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Streuung elastische Streuung am Nukleon quasielastische Streuung KIT Universität des

Mehr

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010 Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010 Übungsblatt Nr. 1 Bearbeitung bis 22.04.2010 Webseite des Email-Verteilers: https://www.lists.kit.edu/sympa/info/ktp-ss2010 Verwenden Sie den

Mehr

A 1. + r 2 ) 2. Stoßquerschnitt und mittlere freie Weglänge

A 1. + r 2 ) 2. Stoßquerschnitt und mittlere freie Weglänge Stoßquerschnitt und mittlere freie Weglänge Im idealen Gas findet zwischen zwei Teilchen ein Stoß statt, wenn der Abstand der Fluggeraden den beiden Teilchen, der Stoßparameter b, kleiner ist als die Summe

Mehr

Wiederholung BARYONEN. LEPTONEN Neutrinos HADRONEN MESONEN. Die Welt besteht aus

Wiederholung BARYONEN. LEPTONEN Neutrinos HADRONEN MESONEN. Die Welt besteht aus Wiederholung Die Welt besteht aus HADRONEN BARYONEN MESONEN LEPTONEN e, µ, τ Neutrinos Kernphysik Physik der stabilen Baryonen (NUKLEONEN) eine starke bzw. hadronische Wechselwirkung bindet Nukleonen Bindungsenergie:

Mehr

Parton-Modell und pp-kollisionen

Parton-Modell und pp-kollisionen und pp-kollisionen 11. August 2008 und pp-kollisionen Übersicht Historische Entwicklung 1 Historische Entwicklung 2 3 Interpretationsannahmen geladene Partonen neutrale Partonen Skalenbrechung 4 und pp-kollisionen

Mehr

Strahlpolarimetrie am CBELSA/TAPS Experiment

Strahlpolarimetrie am CBELSA/TAPS Experiment Strahlpolarimetrie am CBELSA/TAPS Experiment Susanne Kammer für die CBELSA/TAPS Kollaboration Universität Bonn Zirkular polarisierte Møller-Polarimetrie Eta-Polarimetrie Gefördert durch die DFG (SFB/TR16)

Mehr

Messung der Winkelkorrelation von γ-strahlung

Messung der Winkelkorrelation von γ-strahlung Physikalisches Praktikum für Fortgeschrittene (P3) Messung der Winkelkorrelation von γ-strahlung Betreuer: Jan Reich Juliane Raasch, Matthias Ernst Gruppe 0 Karlsruhe, 5..200 Inhaltsverzeichnis Theoretische

Mehr

Kerne und Teilchen. Moderne Physik III

Kerne und Teilchen. Moderne Physik III Kerne und Teilchen Moderne Physik III Vorlesung #. Eigenschaften stabiler Kerne - Wirkungsquerschnitt: Definition, totaler Wq. σ tot - differentieller Wq. / - Mott-Streuung - Formfaktor F(q ) & Ladungsverteilung

Mehr

FK Experimentalphysik 3, Lösung 4

FK Experimentalphysik 3, Lösung 4 1 Sterne als schwarze Strahler FK Experimentalphysik 3, 4 1 Sterne als schwarze Strahler Betrachten sie folgende Sterne: 1. Einen roten Stern mit einer Oberflächentemperatur von 3000 K 2. einen gelben

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 05. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 05. 06.

Mehr

Tief inelastische Streuung

Tief inelastische Streuung Kerne un Teilchen Moerne Experimentalphysik III Vorlesung 7 MICHAEL EINDT INSTITUT ÜR EXPERIMENTELLE KERNPHYSIK Tief inelastische Streuung KIT Universität es Lanes Baen-Württemberg un nationales orschungszentrum

Mehr

Das solare Neutrinoproblem

Das solare Neutrinoproblem Das solare Neutrinoproblem Helene Kraft, Benjamin Gutknecht, Bartosz Slomski, Esther Dönsdorf, Maria Reinhardt, Kristoffer Menzel, David Caliebe 3. Juni, 2005 1 Der Weg zum Postulat des Neutrinos 1930,

Mehr

Kerne und Teilchen. Physik VI

Kerne und Teilchen. Physik VI Kerne und Teilchen Physik VI Vorlesung # 0 15.4.010 Guido Drexlin, Institut für Experimentelle Kernphysik Eigenschaften stabiler Kerne - Wirkungsquerschnitt: Definition, totaler Wq. tot - differentieller

Mehr

Kern- und Teilchenphysik. Einführung in die Teilchenphysik: Erinnerung: Elektronstreuung & Formfaktor

Kern- und Teilchenphysik. Einführung in die Teilchenphysik: Erinnerung: Elektronstreuung & Formfaktor Kern- und Teilchenphysik Einführung in die Teilchenphysik: Erinnerung: Elektronstreuung & Formfaktor Formfaktor des Nukleons Tiefinelastische Elektron-Nukleon Streuung Substruktur des Nukleons Folien und

Mehr

1.2 Wechselwirkung Strahlung - Materie

1.2 Wechselwirkung Strahlung - Materie 1.2 Wechselwirkung Strahlung - Materie A)Wechselwirkung von elektromagnetischer Strahlung mit Materie B)Wechselwirkung von geladenen Teilchen mit Materie C)Wechselwirkung von ungeladenen Teilchen mit Materie

Mehr

Einführung in das Partonmodell und Faktorisierungstheorem der QCD

Einführung in das Partonmodell und Faktorisierungstheorem der QCD Einführung in das Partonmodell und Faktorisierungstheorem der QCD Stefanie Todt Betreuer: Prof. Dr. Dominik Stöckinger Dresden, 16. Mai 01 Inhaltsverzeichnis Relevante Streuprozesse Elastische Elektron-Streuung

Mehr

Paritätsverletzung beim Beta-Zerfall

Paritätsverletzung beim Beta-Zerfall Paritätsverletzung beim Beta-Zerfall Ilja Homm und Thorsten Bitsch Betreuer: Robert Jaeger 09.07.2012 Fortgeschrittenen-Praktikum Abteilung C Inhalt 1 Einleitung 2 1.1 Ziel des Versuchs........................................

Mehr

Tief inelastische Streuung

Tief inelastische Streuung Kerne un Teilchen Moerne Experimentalphysik III Vorlesung 7 MICHAEL EINDT INSTITUT ÜR EXPERIMENTELLE KERNPHYSIK Tief inelastische Streuung KIT Universität es Lanes Baen-Württemberg un nationales orschungszentrum

Mehr

Kerne und Teilchen. Symmetrien. Moderne Experimentalphysik III Vorlesung MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK

Kerne und Teilchen. Symmetrien. Moderne Experimentalphysik III Vorlesung MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Kerne und Teilchen Moderne Exerimentalhysik III Vorlesung 11 MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Symmetrien KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Kerne und Teilchen. Moderne Physik III

Kerne und Teilchen. Moderne Physik III Kerne und Teilchen Moderne Physik III Vorlesung # 09 3. Instabile Kerne - Innerne Konversion - Kernspaltung 4. Nukleonen 4.1 Aufbau & Wechselwirkung q - Vierervektoren & Viererimpuls Q - elektrischer &

Mehr

5.3.3 Die Lorentz-Transformationen

5.3.3 Die Lorentz-Transformationen 5.3. EINSTEINS SPEZIELLE RELATIVITÄTSTHEORIE 135 Wir kennen bereits die Transformationen zwischen Inertialsystemen der Potentiale der Elektrodynamik. So sind ϕ und A für eine gleichmäßig, geradlinig bewegte

Mehr

Ladungsverteilung von Kern und Nukleon (Formfaktoren)

Ladungsverteilung von Kern und Nukleon (Formfaktoren) Seminar zum physikalischen Praktikum für Fortgeschrittene an der Johannes Gutenberg-Universtität Mainz Ladungsverteilung von Kern und Nukleon (Formfaktoren Melanie Müller Diese Zusammenfassung soll einen

Mehr

Restwechselwirkung zwischen Protonen und Neutronen treibt Deformation Art und Stärke der Restwechselwirkung hängt von der Konfiguration ab

Restwechselwirkung zwischen Protonen und Neutronen treibt Deformation Art und Stärke der Restwechselwirkung hängt von der Konfiguration ab Formkoexistenz Ein paar Gedanken zur Einführung Restwechselwirkung zwischen Protonen und Neutronen treibt Deformation Art und Stärke der Restwechselwirkung hängt von der Konfiguration ab verschiedene Konfigurationen

Mehr

F-Praktikum B. WS 2005/2006 RWTH Aachen Versuch IX - L3-Experiment: Z-Resonanz

F-Praktikum B. WS 2005/2006 RWTH Aachen Versuch IX - L3-Experiment: Z-Resonanz F-Praktikum B WS 2005/2006 RWTH Aachen Versuch IX - L3-Experiment: Z-Resonanz Versuch IX L3-Experiment: Z-Resonanz 2 Inhaltsverzeichnis 1 Versuchsbeschreibung 3 2 Auswertung 4 2.1 Bestimmen der Z-Masse

Mehr

Kern- und Teilchenphysik

Kern- und Teilchenphysik Kern- und Teilchenphysik Johannes Blümer SS2012 Vorlesung-Website KIT-Centrum Elementarteilchen- und Astroteilchenphysik KCETA KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010 Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010 Übungsblatt Nr. 08 Bearbeitung bis 24.06.2010 Abgabedatum Aufgabe 1: Teilchendetektoren Wenn ein geladenes Teilchen in einem Szintillator Energie

Mehr

Zusammenfassung: Erhaltungsgrößen. PD Dr. K. Reygers

Zusammenfassung: Erhaltungsgrößen. PD Dr. K. Reygers Zusammenfassung: Erhaltungsgrößen PD Dr. K. Reygers Parität () Verhalten der Wellenfunktion Paritätsoperator: P () r = ( r) Mögliche Eigenwerte: +, - bei Raumspiegelung m m im Beispiel: Kugelflächenfunktionen:

Mehr

Isospin. N N I I 3 Q pp nn Triplet pp np Singulet I 3 Q B

Isospin. N N I I 3 Q pp nn Triplet pp np Singulet I 3 Q B Isospin Isospinarstelleng er Nkleonen: p = I = 1 2, I = + 1 2 n = I = 1 2, I = 1 2 Gekoppelte Nkleon Nkleon Systeme: N N I I Q pp 1 +1 +2 nn 1 1 0 Triplet pp 1 0 +2 np 0 0 +1 Singlet Allgemein gilt für

Mehr

Ein Aerogel Čerenkov Detektor für das CBELSA/TAPS Experiment Diplomkolloquium

Ein Aerogel Čerenkov Detektor für das CBELSA/TAPS Experiment Diplomkolloquium Ein Aerogel Čerenkov Detektor für das Experiment 03.05.07 Diplomkolloquium von Stefan Materne, s Institut, Rheinische Friedrich-Wilhelms-Universität Bonn Hadronenspektroskopie In Medium Modifikationen

Mehr

Das Goldhaber Experiment

Das Goldhaber Experiment ν e Das Goldhaber Experiment durchgeführt von : Maurice Goldhaber, Lee Grodzins und Andrew William Sunyar 19.12.2014 Goldhaber Experiment, Laura-Jo Klee 1 Gliederung Motivation Physikalische Grundlagen

Mehr

9. Spezielle Relativitätstheorie

9. Spezielle Relativitätstheorie 7. Relativistischer Impuls 9. Spezielle Relativitätstheorie (SRT) Inhalt 9. Spezielle Relativitätstheorie 9.1 Galilei-Transformation 9.2 Lorentz-Transformation 9.3 Transformation von Geschwindigkeiten

Mehr

Die Entdeckung des c-quark

Die Entdeckung des c-quark Die Entdeckung des c-quark 25.04.07 Die Entdeckung des c-quark Thomas Kormoll 25.04.2007 Thomas Kormoll Seite 1 von 38 Die Entdeckung des c-quark 25.04.07 Gliederung: Probleme mit nur drei Quarks Lösungsvorschläge

Mehr

Benjamin Niepelt (Dated: ) ist die Impulsraum Zustandsdichte der gestreuten Teilchen. mit WW-Hamiltonoperator H W W.

Benjamin Niepelt (Dated: ) ist die Impulsraum Zustandsdichte der gestreuten Teilchen. mit WW-Hamiltonoperator H W W. Formfaktoren: Ladungsverteilung von Kernen und Nukleonen Seminar zum Fortgeschrittenen-Praktikum Kern- und Teilchenphysik Johannes-Gutenberg-Universität Mainz Benjamin Niepelt (Dated: 9.1.008) I. MOTIVATION

Mehr

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010 Übungen Physik VI (Kerne und Teilchen) Sommersemester 010 Übungsblatt Nr. 06 Bearbeitung bis 10.06.010 Aufgabe 1: Das β-spektrum und Fermis Goldene Regel Die Form des β-spektrum ist gegeben durch d N dt

Mehr

VII. Streuprozesse. Dieser erste Abschnitt fasst die Definitionen von ein paar Grundbegriffen betreffend Streuprozesse

VII. Streuprozesse. Dieser erste Abschnitt fasst die Definitionen von ein paar Grundbegriffen betreffend Streuprozesse II. Streuprozesse In diesem Kapitel werden Streuprozesse, d.h. Teilchenstöße, diskutiert. Nach der Einführung von ein paar Begriffen (Aschn. II.1) wird das Prinzip der Berechnung des Wirkungsquerschnitts

Mehr

Double Chooz: Auf der Suche nach θ13 mit Reaktorneutrinos

Double Chooz: Auf der Suche nach θ13 mit Reaktorneutrinos Double Chooz: Auf der Suche nach θ13 mit Reaktorneutrinos Tobias Lachenmaier Universität t TübingenT Workshop "Astroteilchenphysik in Deutschland" Zeuthen, 04.10.2005 Auf der Suche nach θ13 ν e ν ν μ τ

Mehr

Einführung in die Neutronenstreuung. Robert Georgii Forschungsneutronenquelle Hans Maier-Leibnitz TU München

Einführung in die Neutronenstreuung. Robert Georgii Forschungsneutronenquelle Hans Maier-Leibnitz TU München Einführung in die Neutronenstreuung Robert Georgii Forschungsneutronenquelle Hans Maier-Leibnitz TU München Literatur Sehr empfehlenswert: Neutron scattering: A Primer by Roger Pynn Los Alamos Science

Mehr

6. Elementarteilchen

6. Elementarteilchen 6. Elementarteilchen Ein Ziel der Physik war und ist, die Vielfalt der Natur auf möglichst einfache, evtl. auch wenige Gesetze zurückzuführen. Die Idee hinter der Atomvorstellung des Demokrit war, unteilbare

Mehr

mit Im Laborsystem, in dem das Targetproton in Ruhe ist, hat die Größe ν eine anschauliche Bedeutung. Hier gilt

mit Im Laborsystem, in dem das Targetproton in Ruhe ist, hat die Größe ν eine anschauliche Bedeutung. Hier gilt Die Erzeugung einer Nukleonresonanz ist natürlich kein elastischer Prozess, da die Massen der Stoßpartner während der Reaktion nicht unverändert bleiben. Man bezeichnet die invariante Masse des Resonanzzustandes

Mehr

Proton-Proton-Zyklus. p+p => 2 H+e + + ν e (99%) p+e - +p => 2 H+ ν e (1%) H+p => 3 He+γ. He+ 3 He => 4 He+2p (86%) He+ 4 He=> 7 Be+γ (14%)

Proton-Proton-Zyklus. p+p => 2 H+e + + ν e (99%) p+e - +p => 2 H+ ν e (1%) H+p => 3 He+γ. He+ 3 He => 4 He+2p (86%) He+ 4 He=> 7 Be+γ (14%) Proton-Proton-Zyklus pp-neutrino pep-neutrino p+p => 2 H+e + + ν e (99%) p+e - +p => 2 H+ ν e (1%) 2 H+p => 3 He+γ 3 He+ 3 He => 4 He+2p (86%) 3 He+ 4 He=> 7 Be+γ (14%) 3 He+p => 4 He+ν e +e + (

Mehr

= Synthese der leichten Elemente in den ersten 3 min nach Urknall (T = 10 MeV 0.1MeV)

= Synthese der leichten Elemente in den ersten 3 min nach Urknall (T = 10 MeV 0.1MeV) 3. Primordiale Nukleosynthese = Synthese der leichten Elemente in den ersten 3 min nach Urknall (T = 10 MeV 0.1MeV) Kern Bindungsenergie Häufigkeit (MeV) (% der der sichtbaren Masse) 1 H(= p) 0 71 a) 2

Mehr

Ferienkurs Experimentalphysik 4. Hannah Schamoni, Susanne Goerke. Lösung Probeklausur

Ferienkurs Experimentalphysik 4. Hannah Schamoni, Susanne Goerke. Lösung Probeklausur Ferienkurs Experimentalphysik 4 Hannah Schamoni, Susanne Goerke Lösung Probeklausur 1 Kurzfragen 1. Wie ist der Erwartungswert eines Operators definiert? Was bedeutet er?. Bestimme die spektroskopischen

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein korrigierter Übungszettel aus dem Modul physik411. Dieser Übungszettel wurde von einem Tutor korrigiert. Dies bedeutet jedoch nicht, dass es sich um eine Musterlösung handelt.

Mehr

2.1.3 Wechselwirkung von Photonen in Materie

2.1.3 Wechselwirkung von Photonen in Materie 2.1.3 Wechselwirkung von Photonen in Materie Photo-Effekt (dominant b. kleinen Energien) Compton-Effekt Paarerzeugung (dominant b. großen Energien) Literatur: W.R. Leo, Techniques for Nuclear and Particle

Mehr

Fortgeschrittenenpraktikum. Comptoneekt. Gruppe 10 Matthias Ernst, Juliane Raasch Betreuer: Sebastian Neubauer

Fortgeschrittenenpraktikum. Comptoneekt. Gruppe 10 Matthias Ernst, Juliane Raasch Betreuer: Sebastian Neubauer Fortgeschrittenenpraktikum Comptoneekt Gruppe 10 Matthias Ernst, Juliane Raasch Betreuer: Sebastian Neubauer 29.11.2010 Inhaltsverzeichnis 1 Versuchsziel 2 2 Theoretische Grundlagen 2 2.1 Wirkungsquerschnitt.....................................

Mehr

Röntgenstrahlung. Frédéric Stein, Alice Zimmermann 17. Januar Zusammenfassung des Seminar-Vortrages vom Teil

Röntgenstrahlung. Frédéric Stein, Alice Zimmermann 17. Januar Zusammenfassung des Seminar-Vortrages vom Teil Röntgenstrahlung Frédéric Stein, Alice Zimmermann 17. Januar 2007 Zusammenfassung des Seminar-Vortrages vom 16.01.2007 1. Teil 1 1 Allgemeines zur Röntgenstrahlung 1.1 Geschichtliches Beim Experimentieren

Mehr

Der Comptoneffekt (Versuch 22)

Der Comptoneffekt (Versuch 22) Der Comptoneffekt (Versuch ) Experiment von Compton Begriff des Wirkungsquerschnitts Klein-Nishina-Formel Aufbau im Praktikum Detektoranordnung Elektronik Koinzidenzmessung Moderne Anwendungen Szintillationsdetektoren

Mehr

Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen)

Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) KIT-Fakultät für Physik Institut für Experimentelle Kernphysik Prof. Dr. Günter Quast Priv. Doz. Dr. Roger Wolf Dr. Pablo Goldenzweig Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) Sommersemester

Mehr

7.4 Einige Konsequenzen aus der Lorentz Transformation

7.4 Einige Konsequenzen aus der Lorentz Transformation 7.4. EINIGE KONSEQUENZEN AUS DER LORENTZ TRANSFORMATION 265 7.4 Einige Konsequenzen aus der Lorentz Transformation Um zu sehen welche Konsequenzen sich aus der Lorentz Transformation und damit ja eigentlich

Mehr

E1 Mechanik Musterlösung Übungsblatt 6

E1 Mechanik Musterlösung Übungsblatt 6 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik Musterlösung Übungsblatt 6 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Zwei Kugeln der gleichen Masse mit den Geschwindigkeiten

Mehr

Beispiele. Lorentz Transformation. Vierergeschwindigkeit, Energie und Impuls. Vierervektoren

Beispiele. Lorentz Transformation. Vierergeschwindigkeit, Energie und Impuls. Vierervektoren Spezielle Relativitätstheorie: Physikalische Gesetze gelten in jedem inertialen Bezugssystem gleich. (Inertialsystem ist ein System, in dem das erste Newton sche Gesetz gilt) Übergang von S nach S : x'

Mehr

Winkelkorrelation. Marcel Köpke & Axel Müller (Gruppe 144)

Winkelkorrelation. Marcel Köpke & Axel Müller (Gruppe 144) Winkelkorrelation Marcel Köpke & Axel Müller (Gruppe 144) 07.11.2012 Inhaltsverzeichnis 1 Theoretische Grundlagen 3 1.1 Ziel des Versuchs................................ 3 1.2 Der radioaktive Zerfall im

Mehr

Versuch 1.2: Radioaktivität

Versuch 1.2: Radioaktivität 1 Versuch 1.2: Radioaktivität Sicherheitshinweis: Schwangere dürfen diesen Versuch nicht durchführen. Sollten Sie als Schwangere zu diesem Versuch eingeteilt worden sein, so wenden Sie sich zwecks Zuweisung

Mehr

Elektrischer und magnetischer Formfaktor des Protons

Elektrischer und magnetischer Formfaktor des Protons Elektrischer und magnetischer Formfaktor des Protons Malte Deiseroth 3. Juli 2013 1 Grundlagen und theoretische Einleitung 1.1 Der Wirkungsquerschnitt des Protons und seine Formfaktoren Der Wirkungsquerschnitt

Mehr

Einführung in die Teilchenphysik

Einführung in die Teilchenphysik PD A. Maas Theoretisch-Physikalisches Institut FRIEDRICH S C H I L L E R UNIVERSITÄT J E N A Einführung in die Teilchenphysik WS 013/14, 1. Übungsblatt 8.10.013 (Abgabe bis 13.11.013) Präsenzaufgaben:

Mehr

Klein-Gordon-Gleichung

Klein-Gordon-Gleichung Seminar zur Theorie der Atome, Kerne und kondensierten Matierie Klein-Gordon-Gleichung Judith Beier 17.12.2014 1 Inhaltsverzeichnis 1 Einblick in die Geschichte der relativistischen Quantenmechanik 3 2

Mehr

Das anomale magnetische Moment des Myons

Das anomale magnetische Moment des Myons Zusammenfassung des Vortrags Das anomale magnetische Moment des Myons Ein Präzisionstest des Standardmodells Thomas Ruster gehalten am 17. Januar 011 Das magnetische Moment Elementarteilchen mit Spin S

Mehr

12. Spezielle Relativitätstheorie

12. Spezielle Relativitätstheorie Inhalt 12. Spezielle Relativitätstheorie 12.1 Lorentz-Transformation 12.2 Transformation von Geschwindigkeiten 12.3 Zeitdilatation 12.4 Längenkontraktion kti 12.5 Relativistischer Impuls 12.6 Relativistische

Mehr

c) Elemente oberhalb Fe

c) Elemente oberhalb Fe c) Elemente oberhalb Fe Neutroneneinfang: (Z,A) + n (Z, A+1) + γ β-zerfall: (Z, A+1) (Z+1, A+1) + e + ν e s(low)-process: Rate ω n

Mehr

Überblick über schwere Hadronen (c,b) Katharina Anna Brodatzki Ruhr-Universität Bochum

Überblick über schwere Hadronen (c,b) Katharina Anna Brodatzki Ruhr-Universität Bochum Überblick über schwere Hadronen (c,b) Katharina Anna Brodatzki Ruhr-Universität Bochum 1 Übersicht: 1. Situation bis 1974 2. Entdeckung des J/Ψ Mesons charm-quark Novemberrevolution Charmonium: Open-charm-Zustände

Mehr

Allgemeine Relativitätstheorie: Systeme, die gegeneinander beschleunigt werden; Einfluss von Gravitationsfeldern.

Allgemeine Relativitätstheorie: Systeme, die gegeneinander beschleunigt werden; Einfluss von Gravitationsfeldern. II Spezielle Relativitätstheorie II.1 Einleitung Mechanik für v c (Lichtgeschwindigkeit: 3x10 8 m/s) Spezielle Relativitätstheorie: Raum und Zeit in Systemen, die sich gegeneinander mit konstanter Geschwindigkeit

Mehr

Vorlesung 11: Roter Faden: 1. Neutrino Hintergrundstrahlung 2. Kernsynthese. Photonen (410/cm 3 ) (CMB) Neutrinos (350/cm 3 ) (nicht beobachtet)

Vorlesung 11: Roter Faden: 1. Neutrino Hintergrundstrahlung 2. Kernsynthese. Photonen (410/cm 3 ) (CMB) Neutrinos (350/cm 3 ) (nicht beobachtet) Vorlesung 11: Roter Faden: 1. Neutrino Hintergrundstrahlung 2. Kernsynthese Universum besteht aus: Hintergrundstrahlung: Photonen (410/cm 3 ) (CMB) Neutrinos (350/cm 3 ) (nicht beobachtet) Wasserstoff

Mehr

Analyse von p p bei CBELSA/TAPS

Analyse von p p bei CBELSA/TAPS Analyse von p p bei CBELSA/TAPS 02.07.2010 Fakultät für Physik Lehrstuhl für Experimentalphysik I Überblick Einleitung CBELSA/TAPS Experiment Motivation für die Analyse des Kanals p p Status der Analyse

Mehr

Experimentalphysik E1

Experimentalphysik E1 Eperimentalphysik E Schwerpunktssystem Schwerpunktssatz, Zwei-Körper Systeme:reduzierte Masse Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/inde.html 0. Dez. 06 ct

Mehr

Inhalt. Einführung. Paritätsverletzung im β-zerfall, Helizität der Neutrinos. Beschreibung und Eigenschaften von Neutrinos

Inhalt. Einführung. Paritätsverletzung im β-zerfall, Helizität der Neutrinos. Beschreibung und Eigenschaften von Neutrinos Wiederholung Kurzer geschichtlicher Überblick Vorkommen von Neutrinos Standardmodell Die Rätsel des β-zerfalls Erster Nachweis von Neutrinos Vorschau: Direkte Massenmessungen (Kurie-Plot) Vorschau: Neutrino-Oszillationen

Mehr

Das Neutron. Eigenschaften des Neutrons m n = 1.001m p m i = m g ± 10 4 τ n = ± 0.8 s

Das Neutron. Eigenschaften des Neutrons m n = 1.001m p m i = m g ± 10 4 τ n = ± 0.8 s Vorlesung Fundamentale Experimente mit ultrakalten Neutronen (FundExpUCN) Die Entdeckung des Neutrons Fundamentale Eigenschaften des Neutrons Reaktorphysik und Erzeugung von Neutronen Spallationsneutronenquellen

Mehr

Kerne und Teilchen. Physik VI

Kerne und Teilchen. Physik VI Kerne und Teilchen Physik VI Vorlesung # 07 4.5.010 Guido Drexlin, Institut für Experimentelle Kernphysik Nukleonen - Vierervektoren & Viererimpuls Q - elektrischer & magnetischer Formfaktor: Rosenbluth

Mehr

Wu Experiment. Entdeckung der Paritätsverletzung. Seminarvortrag von Max Lamparth; 12. Dezember 2014

Wu Experiment. Entdeckung der Paritätsverletzung. Seminarvortrag von Max Lamparth; 12. Dezember 2014 Wu Experiment Entdeckung der Paritätsverletzung Seminarvortrag von Max Lamparth; 12. Dezember 2014 Gliederung 1) Theoretische Grundlagen 2) Historischer Hintergrund und Motivation 3) Konzept des Experiments

Mehr

Kinematik des Massenpunktes

Kinematik des Massenpunktes Kinematik des Massenpunktes Kinematik: Beschreibt die Bewegung von Körpern, ohne die zugrunde liegenden Kräfte zu berücksichtigen. Bezugssysteme Trajektorien Zeit Raum Bezugssysteme Koordinatensystem,

Mehr

Schlüsselexperimente der Teilchenphysik Goldhaber Experiment

Schlüsselexperimente der Teilchenphysik Goldhaber Experiment Schlüsselexperimente der Teilchenphysik Goldhaber Experiment Marc Schuh Betreuerin: Prof. Dr. J. Stachel Universität Heidelberg 23.04.2010 Vorwissen Experimentatoren Maurice Goldhaber (*1911) Andrew William

Mehr

Messung der Strahlasymmetrie der Reaktion γp π 0 p und Untersuchungen zur Linearpolarisation am BGO-OD Experiment

Messung der Strahlasymmetrie der Reaktion γp π 0 p und Untersuchungen zur Linearpolarisation am BGO-OD Experiment Messung der Strahlasymmetrie der Reaktion γp π p und Untersuchungen zur Linearpolarisation am BGO-OD Experiment Christian Tillmanns Bachelorarbeit in Physik angefertigt im Physikalischen Institut vorgelegt

Mehr

Absolutmessung des Wirkungsquerschnitts der Photoproduktion des neutralen Pions am Proton

Absolutmessung des Wirkungsquerschnitts der Photoproduktion des neutralen Pions am Proton Absolutmessung des Wirkungsquerschnitts der Photoproduktion des neutralen Pions am Proton Marvin Bleckwenn Bachelorarbeit in Physik angefertigt im Physikalischen Institut vorgelegt der Mathematisch-Naturwissenschaftlichen

Mehr

Aufbau und Entwicklung von Neutronen-Flugzeit-Detektoren für die Untersuchung astrophysikalisch relevanter (γ,n)-reaktionen

Aufbau und Entwicklung von Neutronen-Flugzeit-Detektoren für die Untersuchung astrophysikalisch relevanter (γ,n)-reaktionen Aufbau und Entwicklung von Neutronen-Flugzeit-Detektoren für die Untersuchung astrophysikalisch relevanter (γ,n)-reaktionen Diplomarbeit von durchgeführt am des Forschungszentrums Rossendorf bei Dresden

Mehr

Moderne Physik: Elementarteilchenphysik, Astroteilchenphysik, Kosmologie

Moderne Physik: Elementarteilchenphysik, Astroteilchenphysik, Kosmologie Moderne Physik: Elementarteilchenphysik, Astroteilchenphysik, Kosmologie Ulrich Husemann Humboldt-Universität zu Berlin Sommersemester 2008 Kapitel 3 Grundlagen: Relativitätstheorie und Quantenphysik Kapitel

Mehr

Elementarteilchenphysik

Elementarteilchenphysik Christoph Berger Elementarteilchenphysik Von den Grundlagen zu den modernen Experimenten Zweite, aktualisierte und überarbeitete Auflage Mit 217 Abbildungen, 51 Tabellen und 88 Übungen mit Lösungshinweisen

Mehr

Fundamentale Physikalische Konstanten - Gesamtliste Relativer Größe Symbol Wert Einheit Fehler

Fundamentale Physikalische Konstanten - Gesamtliste Relativer Größe Symbol Wert Einheit Fehler UNIVERSELLE KONSTANTEN Vakuumlichtgeschwindigkeit c, c 0 299 792 458 m s 1 (exact) Magnetische Feldkonstante des Vakuums µ 0 4π 10 7 N A 2 (exact) =12.566 370 614... 10 7 N A 2 (exact) Elektrische Feldkonstante

Mehr

Kosmische Neutrinos. Sommersemester Universität Siegen Claus Grupen. Kosmische Neutrinos p. 1/52

Kosmische Neutrinos. Sommersemester Universität Siegen Claus Grupen. Kosmische Neutrinos p. 1/52 Kosmische Neutrinos Sommersemester 2015 Universität Siegen Claus Grupen Kosmische Neutrinos p. 1/52 Neutrino Astronomie Solare Neutrinos (MeV-Bereich) Atmospherische Neutrinos (GeV-Bereich) Neutrino Oszillationen

Mehr

Struktur der Materie II (L) Kern und Teilchenphysik

Struktur der Materie II (L) Kern und Teilchenphysik Struktur der Materie II (L) Kern und Teilchenphysik Vorlesung für das Lehramt Physik Dr. Martin zur Nedden Humboldt-Universität zu Berlin, Institut für Physik nedden@physik.hu-berlin.de Berlin, Wintersemester

Mehr

Entdeckung der B - Oszillation mit ARGUS (1987)

Entdeckung der B - Oszillation mit ARGUS (1987) Entdeckung der - Oszillation mit ARGUS (1987) Überblick Kaonen -Mesonen Experimenteller Aufbau Messung Auswertung Ausblick Kaonenzerfall K = p K L q K S K = p K L q K S K L, K S Masseneigenzustände Zeitentwicklung

Mehr