POWER ALS BIG DATA PLATTFORM. Vom klassischen Data Warehouse zum Big Data Ansatz

Größe: px
Ab Seite anzeigen:

Download "POWER ALS BIG DATA PLATTFORM. Vom klassischen Data Warehouse zum Big Data Ansatz"

Transkript

1 POWER ALS BIG DATA PLATTFORM Vom klassischen Data Warehouse zum Big Data Ansatz

2 IBM COGNOS VORSTELLUNG Stefan Held Software Architekt PROFI GS Bochum Schwerpunkte: Business Intelligence & Analytics Big Data & Data Warehouse CRM 2

3 BIG DATA? Nicht schon wieder! Brauchen wir nicht! Wo sind die Use Cases? 3 V $$$! Was ist das? Social Media Machen wir schon! Hadoop Nur ein Hype! 3

4 WARUM BIG DATA? Zunehmende Komplexität von Prozessen Zunehmende Menge an Daten, die für eine Entscheidung berücksichtigt oder ignoriert werden können Relevanz von Daten nicht klar ersichtlich Strukturierte und unstrukturierte Daten Welche Informationen verbergen sich in den Daten? Entscheidungen werden nach Bauchgefühl getroffen Aber: Das Bauchgefühl ist subjektiv und schwer zu belegen! Entscheidungen werden nach Zahlenlage getroffen Aber: Sind die Zahlen vollständig? Zeigen sie die ganze Wahrheit? 4

5 SITUATION HEUTE DAS KLASSISCHE DWH Anwendungen Data Warehouse Auswertung Listen SQL DB Würfel ETL-Prozesse: Abgleich Filterung Transformation Abfrageschema: Relational Dimensional 5

6 SITUATION HEUTE PROBLEMSTELLUNGEN Anwendungen Data Warehouse Auswertung SQL DB Listen Würfel Kapazität ETL-Prozesse: Abgleich Filterung Transformation Abfrageschema: Relational Dimensional vs. Geschwindigkeit 6

7 SITUATION HEUTE PROBLEMSTELLUNGEN Anwendungen Data Warehouse Auswertung SQL DB Listen Würfel Integration ETL-Prozesse: Abgleich Filterung Transformation Abfrageschema: Relational Dimensional vs. Integrität 7

8 SITUATION HEUTE PROBLEMSTELLUNGEN Anwendungen Data Warehouse Auswertung SQL DB Listen Würfel Anfrage ETL-Prozesse: Abgleich Filterung Transformation Abfrageschema: Relational Dimensional vs. Angebot 8

9 SITUATION HEUTE PROBLEMSTELLUNGEN Beständiges Wachstum der möglichen Datenquellen Einbindung neuer Datenbestände soll nicht Qualität und Performance der bestehenden DWH-Lösung beeinträchtigen Entstehen von Datensilos Ladevorgänge direkt in Aggregate hinein Verzicht auf hohen Detailgrad Gebaut wird auf Anforderung der Fachabteilung Anforderungen wirken sich aus bis zu den Extraktionsprozessen aus den Ursprungssystemen Hemmschwelle, Workarounds 9

10 SITUATION HEUTE PROBLEMSTELLUNGEN Weitere Anwendungen Unstrukturierte Dokumente Historische Daten Suche nach Einflussfaktoren Anwendungen Data Warehouse Auswertung Listen Social Media SQL DB Würfel Echtzeitauswertung ETL-Prozesse: Abgleich Filterung Transformation Abfrageschema: Relational Dimensional Maschinen- /Sensordaten Zugekaufte Daten nn Volltextsuche 10

11 NEUER LÖSUNGSANSATZ Sammeln und verknüpfen Sammeln aller Daten unterschiedlichster Herkunft, Beschaffenheit und Bedeutung in einer gemeinsamen Sammelplattform Kontinuierlicher Aufbau von Beziehungen zwischen den Daten Stammdatenabgleich, Anreicherung Analyse von noch zu strukturierenden Daten Abfragen zur Bereitstellung von Datenextrakten für weitere Analyseschritte Basis für Detailabfragen 11

12 NEUER LÖSUNGSANSATZ Heiß und Kalt Aufteilen des gesamten Datenbestandes in einen heißen Bestand Aktuell Verdichtet Mit minimaler Latenzzeit auf Knopfdruck abrufbar Austauschbar + jederzeit reproduzierbar und einen kalten Bestand Historische Daten Detaildaten Wenig benötigte Daten Dauerhaft mit vernünftigen Antwortzeiten verfügbar 12

13 NEUER LÖSUNGSANSATZ Art der Zusammenarbeit Der Fachabteilung / dem Kunden proaktiv immer wieder einen Einblick in die Möglichkeiten geben. Grundannahme: Jede Antwort steckt irgendwo in den Daten Gemeinsam aus Daten Entscheidungsgrundlagen entwickeln 13

14 NEUER LÖSUNGSANSATZ Technologische Basis Preiswerte, skalierbare Plattform für Massendaten aller Art Hochperformante Analysemaschine für kumulierte Daten Kontinuierliche Datenaufnahme und aufbereitung durch Suchvorgänge, statistische Modelle, Crawler etc. Verknüpfung strukturierter und unstrukturierter Daten 14

15 BEISPIELAUFBAU Analysetools, Reporting, Statistik, Weiterverarbeitung Vorverarbeitung Verknüpfung Stammdaten-Match Analyse-Datenbank Statistik-Server Echtzeitdaten Landing Zone / Staging Area / Sammelplattform D A T E N 15

16 BEISPIELAUFBAU Analysetools, Cognos, SPSS Reporting, Statistik, Weiterverarbeitung Vorverarbeitung Verknüpfung Stammdaten-Match Analyse-Datenbank DB2 BLU InfoSphere Landing Zone / Staging Area / Sammelplattform BigInsights SPSS Analytic Server Statistik-Server Echtzeitdaten InfoSphere Streams D A T E N 16

17 POWER 8 ALS BASIS Prinzipiell ist die Rechnerplattform nicht die erste Priorität, aber POWER 8 wurde nach den Bedürfnissen von Big Data & Business Analytics entwickelt! Hohe I/O-Bandbreite Hohe Memory-Bandbreite bis 230GB/s Hohe Leistung / Core Eingebaute Virtualisierungsschicht BI Benchmark Tests Je komplexer die Anwendung, desto größer die Performance-Vorteile von POWER 8 Vorteile möglichst leistungsstarker Server z.b.: Höhere Leistung im performance-intensiven Bereich Weniger Knoten erforderlich im volumen-intensiven Bereich günstigere Lizenzierung von BigInsights pro Knoten! 17

18 ANWENDUNGSBEISPIELE Bessere Skalierung Ihrer Data Warehouse - Lösung Aufteilung in eine heiße und eine kalte Zone Heiße Zone: Analysestrukturen für verdichtete Daten, zeitkritische Auswertung, komplexe berechnete Kenngrößen Begrenzter Zeitrahmen für Historie In-Memory Sich ändernde Strukturen nach aktuellen Business-Anforderungen Kalte Zone: Preiswerter Datenspeicher für Detaildaten und komplette Historie Nicht-zeitkritische Auswertungsdaten Daten, die im klassischen Data Warehouse aus Platzgründen weggeworfen werden Ablage für strukturierte und unstrukturierte Zusatzdaten 18

19 ANWENDUNGSBEISPIELE Energieversorgung profitable Nutzung des Smart Meter Rollouts Nutzung von: Kontinuierliche Zählerstandsdaten Standortinformationen Ereignisvorschau Wetterdaten Preisentwicklung am Strommarkt Verwendung für: Genauigkeit der Bedarfsvorhersage Anbieten kundenspezifischer Preis- und Abrechnungsmodelle Reaktion auf Über- oder Unterversorgung Früherkennung von Störungen Smart Home Steuerung durch die Preisentwicklung 19

20 ANWENDUNGSBEISPIELE Predictive Maintenance Nutzung von: Sensordaten, Logfiles (Maschine, Umgebung) Informationen über aufgetretene Störungen Erkennung von Mustern und Anomalien Ermittlung von: Einflussfaktoren in den historischen Sensordaten auf bereits aufgetretene Störungen Ziel: Anwendung der Berechnungsmodelle auf aktuelle Sensordaten zur Ermittlung der Wahrscheinlichkeit bestimmter Störungen innerhalb eines Zeitraumes 20

21 ANWENDUNGSBEISPIELE Handel und Konsumgüterproduktion Nutzung von Social Media Daten Nutzung von: Produkt- oder unternehmensbezogene Stimmung im Netz Käuferprofile Detaillierte Umsatzzahlen, -verteilung, -historie Ermittlung von: Zusammenhängen zwischen Stimmung und Umsatz Aufkommenden Problemen, bevor diese ernst werden Ziel: Früherkennung von Qualitäts- oder Imageproblemen Produktverbesserung durch Kundenfeedback 21

22 ANWENDUNGSBEISPIELE Logistik Nutzung von: Verkehrs-, Wetter- und Carrier-Daten Historische Statistikdaten Frachtvolumen, Routen, zeitliche Abhängigkeiten Ermittlung von: Verbesserte Vorhersage der Ankunftstermine Nutzung für: Steuerung nachfolgender Vorgänge, Lagerkapazität, etc. 22

23 PROFI-LEISTUNGEN Wie kann PROFI Sie unterstützen? Beratung, Konzeption, Anforderungsanalyse Unterstützung bei der Produktauswahl Infrastruktur Implementierung der Lösung Begleitung der Einführung Laufende Unterstützung und Weiterentwicklung Projektleitung 23

24 VIELEN DANK FÜR IHRE AUFMERKSAMKEIT STEFAN HELD SOFTWARE ARCHITEKT TEL:

BIG DATA. PROFI Webcast

BIG DATA. PROFI Webcast PROFI Webcast VORSTELLUNG Stefan Held Software Architekt PROFI GS Bochum Schwerpunkte: Business Intelligence & Analytics Big Data & Data Warehouse CRM 2 WIE KOMMT MAN ZU BIG DATA?! Ich brauche da mal Entscheidungen

Mehr

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden Jens Kaminski ERP Strategy Executive IBM Deutschland Ungebremstes Datenwachstum > 4,6 Millarden

Mehr

Vorstellung IBM Cognos 10.2. Oliver Linder Client Technical Professional Business Analytics

Vorstellung IBM Cognos 10.2. Oliver Linder Client Technical Professional Business Analytics Vorstellung IBM Cognos 10.2 Oliver Linder Client Technical Professional Business Analytics Agenda IBM Cognos 10.2 Architektur User Interfaces IBM Cognos Workspace IBM Cognos Workspace Advanced IBM Cognos

Mehr

Big Data: Nutzen und Anwendungsszenarien. CeBIT 2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC

Big Data: Nutzen und Anwendungsszenarien. CeBIT 2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data: Nutzen und Anwendungsszenarien CeBIT 2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data steht für den unaufhaltsamen Trend, dass immer mehr Daten in Unternehmen anfallen und von

Mehr

Big Data Modewort oder echter Mehrwert. freenet Group Dr. Florian Johannsen

Big Data Modewort oder echter Mehrwert. freenet Group Dr. Florian Johannsen Big Data Modewort oder echter Mehrwert freenet Group Dr. Florian Johannsen freenet Group 2 Titel der Präsentation 07.07.2015 Mobilfunkgeschäft der freenet Group Austausch von Daten und Informationen Im

Mehr

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH Lars Priebe Senior Systemberater ORACLE Deutschland GmbH Data Mining als Anwendung des Data Warehouse Konzepte und Beispiele Agenda Data Warehouse Konzept und Data Mining Data Mining Prozesse Anwendungs-Beispiele

Mehr

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Oracle DWH-Konferenz 21. März 2012 Dr. Carsten Bange Gründer & Geschäftsführer BARC Big Data bietet Methoden und Technologien

Mehr

vinsight BIG DATA Solution

vinsight BIG DATA Solution vinsight BIG DATA Solution München, November 2014 BIG DATA LÖSUNG VINSIGHT Datensilos erschweren eine einheitliche Sicht auf die Daten...... und machen diese teilweise unmöglich einzelne individuelle Konnektoren,

Mehr

Big Data Vom Hype zum Geschäftsnutzen

Big Data Vom Hype zum Geschäftsnutzen Big Data Vom Hype zum Geschäftsnutzen IBM IM Forum, Berlin, 16.04.2013 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Hype 15.04.2013 BARC 2013 2 1 Interesse an Big Data Nature 09-2008 Economist 03-2010

Mehr

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung 2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung Reporting, Analyse und Data Mining André Henkel, initions AG 22. und 23. Oktober 2013 in Hamburg

Mehr

1Ralph Schock RM NEO REPORTING

1Ralph Schock RM NEO REPORTING 1Ralph Schock RM NEO REPORTING Bereit für den Erfolg Business Intelligence Lösungen Bessere Entscheidungen Wir wollen alle Mitarbeiter in die Lage versetzen, bessere Entscheidungen schneller zu treffen

Mehr

Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence

Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence IBM Netezza Roadshow 30. November 2011 Carsten Bange Gründer & Geschäftsführer BARC Die Krise hat die Anforderungen

Mehr

Big Data, small Data und alles dazwischen!

Big Data, small Data und alles dazwischen! Technologische Entwicklung Governance & Compliance Entwicklung 15.05.2015 Big Data, small Data und alles dazwischen! Wien, 20.5.2015 Herbert Stauffer Geschichtliche Entwicklung der Weg zu Big Data 1970

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Konrad Linner, solvistas GmbH Nürnberg, 20.November 2012 Inhaltsverzeichnis Vorstellung solvistas

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data Herausforderungen und Chancen für Controller ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC BARC: Expertise für datengetriebene Organisationen Beratung Strategie

Mehr

Prognosen via Datenanalyse Predictive Analytics: Darauf müssen Unternehmen achten

Prognosen via Datenanalyse Predictive Analytics: Darauf müssen Unternehmen achten Prognosen via Datenanalyse Predictive Analytics: Darauf müssen Unternehmen achten von Jürgen Mauerer Foto: Avantum Consult AG Seite 1 von 21 Inhalt Mehrwert aufzeigen nach Analyse des Geschäftsmodells...

Mehr

DWH Szenarien. www.syntegris.de

DWH Szenarien. www.syntegris.de DWH Szenarien www.syntegris.de Übersicht Syntegris Unser Synhaus. Alles unter einem Dach! Übersicht Data-Warehouse und BI Projekte und Kompetenzen für skalierbare BI-Systeme. Vom Reporting auf operativen

Mehr

Big Data Herausforderungen für Rechenzentren

Big Data Herausforderungen für Rechenzentren FINANCIAL INSTITUTIONS ENERGY INFRASTRUCTURE, MINING AND COMMODITIES TRANSPORT TECHNOLOGY AND INNOVATION PHARMACEUTICALS AND LIFE SCIENCES Big Data Herausforderungen für Rechenzentren RA Dr. Flemming Moos

Mehr

1 Ihre BI-Galaxie von BITMARCK!

1 Ihre BI-Galaxie von BITMARCK! 1 Ihre BI-Galaxie von BITMARCK! Die Summe aller Sterne ist die Galaxie Ihre BI-Galaxie von BITMARCK! Michael Heutmann, Peter Hernold, Markus Jankowski Neuss, 4. November 2013 Sie haben uns mit auf den

Mehr

Big Data - Chancen für die Energiewirtschaft

Big Data - Chancen für die Energiewirtschaft Big Data - Chancen für die Energiewirtschaft Dr. Roger Knorr - Leader Business Development Big Data (Email: Roger.Knorr@de.ibm.com, Mobil: 0160 885 1584) Agenda Big Data und die Energiewende Big Data -

Mehr

Die Herausforderung der Informationsflut: Menge, Vielseitigkeit & Schnelligkeit. "Big Data" und seine Bedeutung für die öffentliche Verwaltung

Die Herausforderung der Informationsflut: Menge, Vielseitigkeit & Schnelligkeit. Big Data und seine Bedeutung für die öffentliche Verwaltung "Big Data" und seine Bedeutung für die öffentliche Verwaltung Stefan Lindenmeyer, IT Specialist Big Data, stefan.lindenmeyer@de.ibm.com Die Herausforderung der Informationsflut: Menge, Vielseitigkeit &

Mehr

TRACK II Datenmanagement Strategien & Big Data Speicherkonzepte. TRACK I Big Data Analytics & Self Service BI

TRACK II Datenmanagement Strategien & Big Data Speicherkonzepte. TRACK I Big Data Analytics & Self Service BI 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller Was ist? Hannover, CeBIT 2014 Patrick Keller Business Application Research Center Historie 1994: Beginn der Untersuchung von Business-Intelligence-Software am Lehrstuhl Wirtschaftsinformatik der Universität

Mehr

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -

Mehr

Digitale Transformation: BI und Big Data treiben neue Geschäftsmodelle. CeBIT, 18.3.2015 Dr. Carsten Bange, Gründer und Geschäftsführer BARC

Digitale Transformation: BI und Big Data treiben neue Geschäftsmodelle. CeBIT, 18.3.2015 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Digitale Transformation: BI und Big Data treiben neue Geschäftsmodelle CeBIT, 18.3.2015 Dr. Carsten Bange, Gründer und Geschäftsführer BARC BARC: Expertise für datengetriebene Unternehmen Beratung Strategie

Mehr

Prozess- und Datenmanagement Kein Prozess ohne Daten

Prozess- und Datenmanagement Kein Prozess ohne Daten Prozess- und Datenmanagement Kein Prozess ohne Daten Frankfurt, Juni 2013 Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust Prozess- und Datenmanagement Erfolgreiche Unternehmen sind Prozessorientiert.

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

Data Science & Big Data, made in Switzerland Thilo Stadelmann, ZHAW School of Engineering Frank Ihringer, Serwise AG. 2013 IBM Corporation

Data Science & Big Data, made in Switzerland Thilo Stadelmann, ZHAW School of Engineering Frank Ihringer, Serwise AG. 2013 IBM Corporation Data Science & Big Data, made in Switzerland Thilo Stadelmann, ZHAW School of Engineering Frank Ihringer, Serwise AG 2013 IBM Corporation Agenda Data Science made in Switzerland Case Study 1: Social Media

Mehr

Neue Möglichkeiten analytischer Lösungen für gesetzliche Krankenversicherungen

Neue Möglichkeiten analytischer Lösungen für gesetzliche Krankenversicherungen BITMARCK Kundentag am 04.11.2013 Neue Möglichkeiten analytischer Lösungen für gesetzliche Krankenversicherungen Stefan Sander; Senior Client Technical Specialist IBM Software Group Mascha Minou Lentz ;

Mehr

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2 Seminar Cloud Data Management WS09/10 Tabelle1 Tabelle2 1 Einführung DBMS in der Cloud Vergleich verschiedener DBMS Beispiele Microsoft Azure Amazon RDS Amazon EC2 Relational Databases AMIs Was gibt es

Mehr

Big Data Hype und Wirklichkeit Bringtmehrauchmehr?

Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Günther Stürner, Vice President Sales Consulting 1 Copyright 2011, Oracle and/or its affiliates. All rights Überschrift 2 Copyright 2011, Oracle and/or

Mehr

Kann man Big Data managen?

Kann man Big Data managen? Kann man Big Data managen? Information Governance in Retail-Unternhmen Uwe Nadler Senior Managing Consultant Big Data Architect Sales Leader Information Governance D-A-CH Themen Die Bedeutung von Information

Mehr

Master-Thesis (m/w) für unseren Standort Stuttgart

Master-Thesis (m/w) für unseren Standort Stuttgart Master-Thesis (m/w) für unseren Standort Abschlussarbeit im Bereich Business Process Management (BPM) Effizienzsteigerung von Enterprise Architecture Management durch Einsatz von Kennzahlen Braincourt

Mehr

Big Data: Definition, Einführung und Live Democase [C1] Arne Weitzel Uetliberg, 16.09.2014 www.boak.ch

Big Data: Definition, Einführung und Live Democase [C1] Arne Weitzel Uetliberg, 16.09.2014 www.boak.ch Big Data: Definition, Einführung und Live Democase [C1] Arne Weitzel Uetliberg, 16.09.2014 www.boak.ch Unstrukturierte Daten spielen eine immer bedeutender Rolle in Big Data-Projekten. Zunächst gilt es

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

Symbiose hybrider Architekturen im Zeitalter digitaler Transformation. Hannover, 18.03.2015

Symbiose hybrider Architekturen im Zeitalter digitaler Transformation. Hannover, 18.03.2015 Symbiose hybrider Architekturen im Zeitalter digitaler Transformation Hannover, 18.03.2015 Business Application Research Center (BARC) B (Analystengruppe Europas führendes IT-Analysten- und -Beratungshaus

Mehr

Review Freelancer-Workshop: Fit für Big Data. Mittwoch, 29.04.2015 in Hamburg

Review Freelancer-Workshop: Fit für Big Data. Mittwoch, 29.04.2015 in Hamburg Review Freelancer-Workshop: Fit für Big Data Mittwoch, 29.04.2015 in Hamburg Am Mittwoch, den 29.04.2015, hatten wir von productive-data in Zusammenarbeit mit unserem langjährigen Partner Informatica zu

Mehr

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle 40. Congress der Controller, Themenzentrum C, München Steffen Vierkorn, Geschäftsführer Qunis GmbH, Neubeuern Die

Mehr

Agile Analytics Neue Anforderungen an die Systemarchitektur

Agile Analytics Neue Anforderungen an die Systemarchitektur www.immobilienscout24.de Agile Analytics Neue Anforderungen an die Systemarchitektur Kassel 20.03.2013 Thorsten Becker & Bianca Stolz ImmobilienScout24 Teil einer starken Gruppe Scout24 ist der führende

Mehr

Was tun mit Big Data? Workshop-Angebote der PROFI AG

Was tun mit Big Data? Workshop-Angebote der PROFI AG Was tun mit Big Data? Workshop-Angebote der PROFI AG Jetzt anmelden! Die Teilnehmerzahl ist begrenzt. Was ist Big Data? 3 Herzlich willkommen. Die PROFI AG bietet Kunden ein breites Spektrum an Software-Lösungen,

Mehr

KOMPASS, STECHZIRKEL, SEXTANT (LÖSUNGEN ZUR UNTERNEHMENSSTEUERUNG)

KOMPASS, STECHZIRKEL, SEXTANT (LÖSUNGEN ZUR UNTERNEHMENSSTEUERUNG) KOMPASS, STECHZIRKEL, SEXTANT (LÖSUNGEN ZUR UNTERNEHMENSSTEUERUNG) W W W. N O V E M B A. D E Sie haben Ihr Ziel erreicht! Strategie & Planung Unter vollen Segeln zum Erfolg Strategie & Planung Unter vollen

Mehr

SQL PASS Treffen RG KA. Überblick Microsoft Power BI Tools. Stefan Kirner Karlsruhe, 27.05.2014

SQL PASS Treffen RG KA. Überblick Microsoft Power BI Tools. Stefan Kirner Karlsruhe, 27.05.2014 SQL PASS Treffen RG KA Überblick Microsoft Power BI Tools Stefan Kirner Karlsruhe, 27.05.2014 Agenda Die wichtigsten Neuerungen in SQL 2012 und Power BI http://office.microsoft.com/en-us/office365-sharepoint-online-enterprise-help/power-bi-for-office-365-overview-andlearning-ha104103581.aspx

Mehr

EMC. Data Lake Foundation

EMC. Data Lake Foundation EMC Data Lake Foundation 180 Wachstum unstrukturierter Daten 75% 78% 80% 71 EB 106 EB 133 EB Weltweit gelieferte Gesamtkapazität Unstrukturierte Daten Quelle März 2014, IDC Structured vs. Unstructured

Mehr

"Hier kann ich mich weiterentwickeln!"

Hier kann ich mich weiterentwickeln! "Hier kann ich mich weiterentwickeln!" Zur Verstärkung suchen wir für die Standorte München und Dresden einen Reporting Specialist (m/w) Leistungsspektrum der BBF BBF ist ein mittelständisches Unternehmen

Mehr

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

Business Intelligence - Wie passt das zum Mainframe?

Business Intelligence - Wie passt das zum Mainframe? Business Intelligence - Wie passt das zum Mainframe? IBM IM Forum, 15.04.2013 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Ressourcen bei BARC für Ihr Projekt Durchführung von internationalen Umfragen,

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

TOP. wird ein wichtiges Jahr für BIG (Business Intelligence Growth) DER BUSINESS INTELLIGENCE TRENDS FÜR DAS JAHR 2013

TOP. wird ein wichtiges Jahr für BIG (Business Intelligence Growth) DER BUSINESS INTELLIGENCE TRENDS FÜR DAS JAHR 2013 0 Es TOP 10 DER BUSINESS INTELLIGENCE TRENDS FÜR DAS JAHR 2013 wird ein wichtiges Jahr für BIG (Business Intelligence Growth) 2012 war ein fantastisches Jahr für Business Intelligence! Die biedere alte

Mehr

Infografik Business Intelligence

Infografik Business Intelligence Infografik Business Intelligence Top 5 Ziele 1 Top 5 Probleme 3 Im Geschäft bleiben 77% Komplexität 28,6% Vertrauen in Zahlen sicherstellen 76% Anforderungsdefinitionen 24,9% Wirtschaflicher Ressourceneinsatz

Mehr

Michael Bauer Niederlassungsleiter Köln

Michael Bauer Niederlassungsleiter Köln Click to edit Master title style 1 Michael Bauer Niederlassungsleiter Köln Hamburg, 18. Juni 2009 2009 IBM Corporation Agenda Click to edit Master title style 2 zur Person Wo, Warum.., Was - CPM liefert

Mehr

Technische Seminarreihe Empowering Business Intelligence

Technische Seminarreihe Empowering Business Intelligence PRESSEMITTEILUNG / Veranstaltungshinweis Technische Seminarreihe Empowering Business Intelligence Trivadis bietet für Entwickler, Projektleiter, Datenbank-Administratoren sowie DWHund BI-Interessierte

Mehr

Möglichkeiten für bestehende Systeme

Möglichkeiten für bestehende Systeme Möglichkeiten für bestehende Systeme Marko Filler Bitterfeld, 27.08.2015 2015 GISA GmbH Leipziger Chaussee 191 a 06112 Halle (Saale) www.gisa.de Agenda Gegenüberstellung Data Warehouse Big Data Einsatz-

Mehr

IBM Smart Analytics System und IBM Cognos BI: Vom Single Point of Truth zum mobilen Cockpit - ein Praxisbericht beim Unternehmen Theo Förch

IBM Smart Analytics System und IBM Cognos BI: Vom Single Point of Truth zum mobilen Cockpit - ein Praxisbericht beim Unternehmen Theo Förch IBM Smart Analytics System und IBM Cognos BI: Vom Single Point of Truth zum mobilen Cockpit - ein Praxisbericht beim Unternehmen Theo Förch Markus Ruf, Geschäftsführer mip GmbH Jens Kretzschmar, Senior

Mehr

Digitalisierung wie aus einer Strategie Realität wird.

Digitalisierung wie aus einer Strategie Realität wird. Digitalisierung wie aus einer Strategie Realität wird. Information Builders International Summit Frankfurt, 10.06.2015 Dr. Carsten Bange, Business Application Research Center (BARC) Knüpfen wir dort an,

Mehr

Data Warehousing in der Lehre

Data Warehousing in der Lehre Data Warehousing in der Lehre Prof. Dr.-Ing. Tomas Benz Dipl.-Inform. Med. Alexander Roth Agenda Vorstellung Fachhochschule Heilbronn Vorstellung i3g Vorlesungen im DWH-Bereich Seminare Projekte Studien-

Mehr

Data Warehouse Grundlagen

Data Warehouse Grundlagen Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Copyright 2014, Oracle and/or its affiliates. All rights reserved.

Copyright 2014, Oracle and/or its affiliates. All rights reserved. 1 Integrierte Systeme für ISVs Matthias Weiss Direktor Mittelstand Technologie ORACLE Deutschland B.V. & Co. KG 2 Agenda Engineered Systems Lösungsansatz aus der Praxis Engineered Systems Oracle s Strategie

Mehr

Wird BIG DATA die Welt verändern?

Wird BIG DATA die Welt verändern? Wird BIG DATA die Welt verändern? Frankfurt, Juni 2013 Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust Big Data Entmythisierung von Big Data. Was man über Big Data wissen sollte. Wie

Mehr

Forum Kommune 21, DiKOM Nord Hannover, 17. Februar 2011

Forum Kommune 21, DiKOM Nord Hannover, 17. Februar 2011 Forum Kommune 21, DiKOM Nord Hannover, 17. Februar 2011 Trends, Muster und Korrelationen erkennen und die richtigen Schlüsse daraus ziehen: MACH BI der für öffentliche Einrichtungen passende Zugang zur

Mehr

Business Intelligence Entscheidungsinformationen für eine erfolgreiche Unternehmensentwicklung im Mittelstand

Business Intelligence Entscheidungsinformationen für eine erfolgreiche Unternehmensentwicklung im Mittelstand Business Intelligence Entscheidungsinformationen für eine erfolgreiche Unternehmensentwicklung im Mittelstand 2. Fachtagung Dynamisierung des Mittelstandes durch IT, 09.09.2008 Was ist Business Intelligence

Mehr

Einsatz des Microsoft SQL-Servers bei der KKH

Einsatz des Microsoft SQL-Servers bei der KKH Einsatz des Microsoft SQL-Servers bei der KKH Reporting Services und Analysis Services Kontaktdaten Detlef André Abteilungsleiter Data Warehouse E-Mail detlef.andre@kkh.de Telefon 0511 2802-5700 Dr. Reinhard

Mehr

Was tun mit Big Data? Workshop-Angebote der PROFI AG

Was tun mit Big Data? Workshop-Angebote der PROFI AG Was tun mit Big Data? Workshop-Angebote der PROFI AG Jetzt anmelden! Die Teilnehmerzahl ist begrenzt. Herzlich willkommen. Die PROFI AG bietet Kunden ein breites Spektrum an Software-Lösungen, um Geschäftsprozesse

Mehr

Nach Data Warehousing kommt Business Intelligence

Nach Data Warehousing kommt Business Intelligence Nach Data Warehousing kommt Business Intelligence Andrea Kennel Trivadis AG Glattbrugg, Schweiz Schlüsselworte: Business Intelligence, Data Warehouse Zusammenfassung Data Warehouse bedeutet, dass operative

Mehr

Daten verstehen. Prozessoptimierung Applikationsmanagement Systemintegration. Daten- u. Prozessmodellierung Applikationsentwicklung Systemintegration

Daten verstehen. Prozessoptimierung Applikationsmanagement Systemintegration. Daten- u. Prozessmodellierung Applikationsentwicklung Systemintegration Actum + MIOsoft Ihr SAP Partner Prozessoptimierung Applikationsmanagement Systemintegration Daten verstehen Daten managen Business Analytics und IT Plattformanbieter Daten- u. Prozessmodellierung Applikationsentwicklung

Mehr

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Architektur und Konzepte Josef Kolbitsch Manuela Reinisch Übersicht Mehrstufiges BI-System Architektur eines Data Warehouses Architektur eines Reporting-Systems Benutzerrollen in

Mehr

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zettabyte CeBIT 2011 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zetabyte: analytische Datenbanken Die Datenflut. Analytische Datenbanken: Was ist neu? Analytische Datenbanken:

Mehr

Hadoop Projekte Besonderheiten & Vorgehensweise. Oracle/metafinanz Roadshow Februar 2014

Hadoop Projekte Besonderheiten & Vorgehensweise. Oracle/metafinanz Roadshow Februar 2014 Hadoop Projekte Besonderheiten & Vorgehensweise Oracle/metafinanz Roadshow Februar 2014 Head of Data Warehousing DWH Principal Consultant DWH Senior Consultant Wir fokussieren mit unseren Services die

Mehr

Big, Bigger, CRM: Warum Sie auch im Kundenmanagement eine Big-Data-Strategie brauchen

Big, Bigger, CRM: Warum Sie auch im Kundenmanagement eine Big-Data-Strategie brauchen Big, Bigger, CRM: Warum Sie auch im Kundenmanagement eine Big-Data-Strategie brauchen 01000111101001110111001100110110011001 Volumen 10 x Steigerung des Datenvolumens alle fünf Jahre Big Data Entstehung

Mehr

Rainer Klapper QS solutions GmbH

Rainer Klapper QS solutions GmbH Rainer Klapper QS solutions GmbH Der Handlungsbedarf Die CRM-Welt ist umgeben von Social Media Foren Communities Netzwerke CRM Blogs Fehlende Prozessintegration wird zunehmend zum Problem Wir bauen Brücken

Mehr

«DIE INFORMATIONSWELT MUSS EINFACHER UND AGILER WERDEN!» SCHNELLE, FLEXIBLE UND KOSTENGÜNSTIGE BUSINESS INTELLIGENCEund BIG DATA-LÖSUNGEN

«DIE INFORMATIONSWELT MUSS EINFACHER UND AGILER WERDEN!» SCHNELLE, FLEXIBLE UND KOSTENGÜNSTIGE BUSINESS INTELLIGENCEund BIG DATA-LÖSUNGEN «DIE INFORMATIONSWELT MUSS EINFACHER UND AGILER WERDEN!» SCHNELLE, FLEXIBLE UND KOSTENGÜNSTIGE BUSINESS INTELLIGENCEund BIG DATA-LÖSUNGEN UNSERE EINFACHE FORMEL FÜR AGILE BUSINESS INTELLIGENCE LÖSUNGEN

Mehr

Was ist Windows Azure? (Stand Juni 2012)

Was ist Windows Azure? (Stand Juni 2012) Was ist Windows Azure? (Stand Juni 2012) Windows Azure Microsofts Cloud Plattform zu Erstellung, Betrieb und Skalierung eigener Cloud-basierter Anwendungen Cloud Services Laufzeitumgebung, Speicher, Datenbank,

Mehr

Top 10 der Business Intelligence-Trends für 2014

Top 10 der Business Intelligence-Trends für 2014 Top 10 der Business Intelligence-Trends für 2014 Das Ende der Datenexperten. Datenwissenschaft kann künftig nicht nur von Experten, sondern von jedermann betrieben werden. Jeder normale Geschäftsanwender

Mehr

O-BIEE Einführung mit Beispielen aus der Praxis

O-BIEE Einführung mit Beispielen aus der Praxis O-BIEE Einführung mit Beispielen aus der Praxis Stefan Hess Business Intelligence Trivadis GmbH, Stuttgart 2. Dezember 2008 Basel Baden Bern Lausanne Zürich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg

Mehr

SAP In-Memory Technologie (HANA) in der Versorgungswirtschaft

SAP In-Memory Technologie (HANA) in der Versorgungswirtschaft SAP In-Memory Technologie (HANA) in der Versorgungswirtschaft Michael Utecht, Industry Expert Utilities Business Area COO Germany, Industry Solutions SAP Deutschland AG & Co.KG 09.11.2011 Opportunities

Mehr

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator Agenda Was ist Business Intelligence? Was ist OLAP? Unterschied zwischen OLAP und OLTP? Bestandteile

Mehr

BIG DATA STRATEGIE FÜR DEN ONLINE-HANDEL

BIG DATA STRATEGIE FÜR DEN ONLINE-HANDEL BIG DATA STRATEGIE FÜR DEN ONLINE-HANDEL Am Beispiel der OTTO GmbH & Co KG Dortmund, 09. September 2015 Conny Dethloff (OTTO GmbH & CO. KG) 1 Anliegen des heutigen Dialogs Über mich Inhalt des Dialogs

Mehr

BARC-Studie Data Warehousing und Datenintegration

BARC-Studie Data Warehousing und Datenintegration Ergebnisse der BARC-Studie Data Warehouse Plattformen Dr. Carsten Bange BARC-Studie Data Warehousing und Datenintegration Data-Warehouse -Plattformen und Datenintegrationswerkzeuge im direkten Vergleich

Mehr

Business Intelligence

Business Intelligence Business Intelligence Anwendung 1 MInf1 HAW Hamburg Betreuender Professor: Prof. Dr. Zukunft by Jason Hung Vuong [12] Gliederung 1. Hamburg Energie Kooperation 2. Motivation 3. Business Intelligence 4.

Mehr

MEHR ANALYTICS FÜR MEHR ANWENDER DR. GERHARD SVOLBA COE ANALYTICS DACH WIEN, 11. JUNI 2015

MEHR ANALYTICS FÜR MEHR ANWENDER DR. GERHARD SVOLBA COE ANALYTICS DACH WIEN, 11. JUNI 2015 MEHR ANALYTICS FÜR MEHR ANWENDER DR. GERHARD SVOLBA COE ANALYTICS DACH WIEN, 11. JUNI 2015 DAS ERWARTET SIE IN MEINEM VORTRAG Neue Anforderungen, neue Herausforderungen, neue Möglichkeiten Software Demo:

Mehr

Profil Andy Sydow. Persönliche Daten. Profil. Profil Andy Sydow. Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung

Profil Andy Sydow. Persönliche Daten. Profil. Profil Andy Sydow. Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung Profil Andy Sydow Persönliche Daten Nationalität Sprachen Abschluss deutsch Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung Profil Herr Sydow verfügt über mehrjährige Erfahrung als DWH/BI

Mehr

BIG DATA@Automotive: Die Daten sind da! Was nun?

BIG DATA@Automotive: Die Daten sind da! Was nun? BIG DATA@Automotive: Die Daten sind da! Was nun? BITKOM Big Data Summit 2014 Alf Porzig& Uwe Trost BIG DATA, MHP, Alf Porzig BIG DATA @ Automotive Enterprise Intelligence Use Cases entlang der Wertschöpfungskette

Mehr

Big Data Hype oder Realität?

Big Data Hype oder Realität? Big Data Hype oder Realität? Andreas Berth, CEO B2 Performance Group Inhalt B2 Performance das Unternehmen Big Data die Herausforderungen Beispiele für Datenquellen Big Data die Umsetzung Marketing KPI

Mehr

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP AGENDA HADOOP 9:00 09:15 Das datengetriebene Unternehmen: Big Data Analytics mit SAS die digitale Transformation: Handlungsfelder für IT und Fachbereiche Big

Mehr

Software EMEA Performance Tour 2013. 17.-19 Juni, Berlin

Software EMEA Performance Tour 2013. 17.-19 Juni, Berlin Software EMEA Performance Tour 2013 17.-19 Juni, Berlin Accenture s High Performance Analytics Demo-Umgebung Dr, Holger Muster (Accenture), 18. Juni 2013 Copyright 2012 Hewlett-Packard Development Company,

Mehr

CRM meets SPM - Über die Konvergenz von CRM und SPM! Keynote MuniConS Rolf Pollmeier, Geschäftsführer MuniConS!

CRM meets SPM - Über die Konvergenz von CRM und SPM! Keynote MuniConS Rolf Pollmeier, Geschäftsführer MuniConS! CRM meets SPM - Über die Konvergenz von CRM und SPM! MUNICONS( think!(act!(!!!!!!!!!!!!!!!!!!!!!!!!!rolf Pollmeier!!!MuniConS GmbH! Keynote MuniConS Rolf Pollmeier, Geschäftsführer MuniConS! Im Zentrum

Mehr

DATEN - Das Gold des 21. Jahrhunderts? Dr. Oliver Riedel, AUDI AG

DATEN - Das Gold des 21. Jahrhunderts? Dr. Oliver Riedel, AUDI AG DATEN - Das Gold des 21. Jahrhunderts? Dr. Oliver Riedel, AUDI AG Inhalt Globale und unternehmensspezifische Herausforderungen Von Big Data zu Smart Data Herausforderungen und Mehrwert von Smart Data 2

Mehr

Bachelor/Master-Thesis (für den Standort Stuttgart) Treiberbasierte Planung

Bachelor/Master-Thesis (für den Standort Stuttgart) Treiberbasierte Planung Bachelor/Master-Thesis (für den Standort Stuttgart) Treiberbasierte Planung Hochschulstudium (Wirtschaftsinformatik oder ein vergleichbarer Studiengang) Fachliche und technische Kenntnisse im Bereich Business

Mehr

Cognos Business Intelligence V10.2.2 ermöglicht IT unterstützten BI Self Service. 2015 IBM Corporation

Cognos Business Intelligence V10.2.2 ermöglicht IT unterstützten BI Self Service. 2015 IBM Corporation Cognos Business Intelligence V10.2.2 ermöglicht IT unterstützten BI Self Service V A L U E Unsere Reise bis heute IBM Cognos 8.4 IBM Cognos 8 BI ReportNet Einheitliche Informationsversorgung Rolenbasierte

Mehr

IBM DB2 für Ihre SAP-Landschaft

IBM DB2 für Ihre SAP-Landschaft IBM DB2 für Ihre SAP-Landschaft Die Lösungen der PROFI AG Senken auch Sie Ihre SAP-Betriebskosten um bis zu 30 Prozent Kosten senken Ihre Herausforderungen Durch wachsende Datenmengen in den SAP-Systemen

Mehr

4. WORKSHOP - OSBI Big Data und Datenvirtualisierung. Dr. Sebastian Streit & Maxim Zehe

4. WORKSHOP - OSBI Big Data und Datenvirtualisierung. Dr. Sebastian Streit & Maxim Zehe 4. WORKSHOP - OSBI Big Data und Datenvirtualisierung Dr. Sebastian Streit & Maxim Zehe F. Hoffmann-La Roche AG Gegründet 1896 in Basel Über 80.000 Mitarbeitende Führende Position in Pharma Fokussierung

Mehr

Business Mehrwerte von SAP HANA

Business Mehrwerte von SAP HANA Business Mehrwerte von SAP HANA von der Technologie zum Geschäft Halle, 07.05.2013 2013 GISA GmbH Leipziger Chaussee 191 a 06112 Halle (Saale) www.gisa.de Agenda GISA im Überblick Was ist SAP HANA? Was

Mehr

Die Realtime Big Data Architektur @ OTTO im Kontext von Process Excellence

Die Realtime Big Data Architektur @ OTTO im Kontext von Process Excellence Die Realtime Big Data Architektur @ OTTO im Kontext von Process Excellence Conny Dethloff Bonn, 28. Januar 2015 Process Excellence im Kontext Big Data bedeutet, Komplexität in internen Prozessen nicht

Mehr

Predictive Maintenance Anwendungsfeld für Methoden der Predictive Analytics als Teil von Industrie 4.0

Predictive Maintenance Anwendungsfeld für Methoden der Predictive Analytics als Teil von Industrie 4.0 Predictive Maintenance Anwendungsfeld für Methoden der Predictive Analytics als Teil von Industrie 4.0 Ingo Schwarzer Chief Technology Officer, DB Systel GmbH 11. November 2014 Inhalt Kurzvorstellung DB

Mehr

HP Big Data Anwendungsfälle

HP Big Data Anwendungsfälle HP Big Data Anwendungsfälle Bernd Mussmann, Strategist & Senior Principal HP Analytics & Data Management Services Agenda HP Day @TDWI 1 09:00-10:15 - BI Modernization: BI meets unstructured data 2 10.45-12.00

Mehr

Mission. TARGIT macht es einfach und bezahlbar für Organisationen datengetrieben zu werden

Mission. TARGIT macht es einfach und bezahlbar für Organisationen datengetrieben zu werden Mission TARGIT macht es einfach und bezahlbar für Organisationen datengetrieben zu werden Der Weg zu einem datengesteuerten Unternehmen # Datenquellen x Größe der Daten Basic BI & Analytics Aufbau eines

Mehr

Datenexplosion Auswirkungen auf Rechenzentren

Datenexplosion Auswirkungen auf Rechenzentren FINANCIAL INSTITUTIONS ENERGY INFRASTRUCTURE, MINING AND COMMODITIES TRANSPORT TECHNOLOGY AND INNOVATION PHARMACEUTICALS AND LIFE SCIENCES Datenexplosion Auswirkungen auf Rechenzentren RA Dr. Flemming

Mehr