Versuch P2-82: Absorption von Beta- und Gammastrahlung

Größe: px
Ab Seite anzeigen:

Download "Versuch P2-82: Absorption von Beta- und Gammastrahlung"

Transkript

1 Versuch P2-82: Absorption von Beta- und Gammastrahlung Sommersemester 2005 Gruppe Mi-25: Bastian Feigl Oliver Burghard Inhalt Vorbereitung 1 Einleitung und Grundlagen Einleitung Beta-Strahlung Gamma-Strahlung Nachweis von Gamma-Strahlung Geiger-Müller-Zählrohr Geiger-Müller-Zählrohr und Beta-Absorption Bestimmung der Zählrohrcharakteristik bei kleiner Zählrate Oszillographische Bestimmung der Totzeit Totzeitbestimmung aus Zählergebnissen Absorptionskurve von Aluminium der Beta-Strahlung von Sr-90/Y Aktivität der Co-60-Quelle Zeitintervall-Verteilung Gamma-Absorption Absorptionskurve von Blei der Gamma-Strahlung von Co-60, Massenabsorptionskoeffizient Absorptionsvermögen verschiedener Absorbermaterialien gleicher Dicke für Co

2 1 Einleitung und Grundlagen 1.1 Einleitung In diesem Versuch befassen wir uns mit der Funktionsweise des Geiger-Müller-Zählrohres und der Absorption von Beta- und Gammastrahlung in verschiedenen Materialien. 1.2 Beta-Strahlung Beta-Strahlung besteht aus hochenergetischen Elektronen, die beim Zerfall von instabilen Atomkernen entstehen. Dabei zerfallen Neutronen in Protonen und Elektronen. Zusammen mit einem Elektronen-Neutrino verlässt das Elektron den Kern. Dabei bleibt die Massenzahl des Kerns erhalten, die Ordnungszahl nimmt zu. Das Energiespektrum der Beta-Strahlung ist kontinuierlich bis zu einem Maximum, da sich die freiwerdende Energie beliebig auf Elektron und Neutrino verteilen kann. 1.3 Gamma-Strahlung Gamma-Strahlung sind hochenergetische Photonen, die entstehen, wenn ein Atom von einem angeregten Zustand in einen niederen Zustand fällt. 1.4 Nachweis von Gamma-Strahlung Die Photonen der Gamma-Strahlung können über Wechselwirkungen mit Materie nachgewiesen werden: Photoeffekt: Das Photon trifft auf ein Elektron und überträgt seine ganze Energie auf das Elektron. Dabei wird es selbst vernichtet. Dabei wird ein Teil der Energie zum Auslösen des Elektrons benötigt, der Rest geht in kinetische Energie. Comptoneffekt: Das Photon trifft auf ein freies Elektron, gibt aber nur einen Teil seiner Energie ab ( inelastischer Stoß ). Dabei wird das Photon gestreut. Die Elektronen können dann aufgrund ihrer kinetischen Energie nachgewiesen werden. 1.5 Geiger-Müller-Zählrohr Ein solches Zählrohr dient zur Detektion von verschiedenen Strahlungsarten. Es ist schematisch folgendermaßen aufgebaut: - 2 -

3 Im eigentlichen Zählrohr ist ein Gasgemisch niederen Druckes eingefüllt. In der Mitte ist ein dünner Draht. Zwischen diesem und der Mantelfläche wird eine Spannung angelegt. Fällt nun z.b. durch das Fenster ein Beta-Teilchen ein, so kann es das Gas ionisieren. Durch die angelegte Spannung wandern die Ionen zum Draht bzw. zum Mantel, ionisieren evtl. noch weitere Gasmoleküle und erzeugen am Ausgang einen Impuls. Dieser kann dann nachgewiesen werden. Die Zählrate ist abhängig von der Betriebsspannung. Diese Abhängikkeit heißt Zählrohrcharakteristik. Sie ist in 6 Bereiche untergliedert:: I. In diesem Bereich geringer Spannung erreichen nur ein Teil der Ionen den Draht bzw. Mantel, da viele Ionen durch Rekombination verloren gehen. II. Bei höherer Spannung nimmt die Rekombinationswahrscheinlichkeit stark ab. Praktisch alle Ionen erreichen den Draht. In diesem Teil ist die Zählrate unabhängig von der Betriebsspannung III.Bei noch größerer Spannung können die Ionen ihrerseits wiederum andere Moleküle ionisieren. Dadurch wird der Strom messbar groß. Die Stärke des Stromes ist abhängig von der Energie der Teilchen (Anfangsionisation). Dieser Bereich heißt Proportionalbereich. IV.Im Bereich der beschränkten Proportionalität verhindern Raumladungen die ungehinderte Stoßionisation V. Im Geiger-Bereich ist die durch Stoßionisation angesammelte Ladungsmenge unabhängig von der Primärionisation. Jede Primäronisation erzeugt einen gleich großen Impuls. Dies ist der eigentliche Arbeitsbereich des Zählrohres. Nach jedem Impuls ist das Zählrohr für eine kurze Zeit unempfindlich für weitere Impulse, da die bei der entstehenden Ionen aufgrund ihrer Masse eine Zeit lang im Raum verbleiben und den Draht abschirmen. VI.Bei noch höherer Spannung entsteht eine Dauerionisation

4 2 Geiger-Müller-Zählrohr und Beta-Absorption 2.1 Bestimmung der Zählrohrcharakteristik bei kleiner Zählrate Wir messen die Zählrate und die Impulshöhe in Abhängigkeit der Betriebsspannung bei einer maximalen Zählrate von 300/s, um den Einfluss der Totzeit auszuschalten. Die Zählrate stellen wir durch den Abstand Quelle-Zählrohr ein. 2.2 Oszillographische Bestimmung der Totzeit Um die Totzeit zu messen, triggern wir das Oszilloskop mit dem Impuls. Da während der Totzeit die Impulse deutlich kleiner sind, wird der Trigger hier nicht auslösen und wir können so die Totzeit ermitteln. 2.3 Totzeitbestimmung aus Zählergebnissen Wir bestimmen die Totzeit, indem wir die Zählrate N1 mit einem, N2 mit einem anderen und N12 mit beiden Präparaten gleichzeitig bestimmen. Dabei stellen wir die Abstände so ein, dass N12/T zunächst ca. 500/s und in einem zweiten Versuch 150/s beträgt. Dann können wir die Totzeit mit Hilfe folgender Formel bestimmen: = T 1 N 1 N 1N 2 N 12 N N 1 N 2 Wir verwenden als Quellen das Sr-90/Y-90-Beta-Präparat sowie das Co-60-Betapräparat. 2.4 Absorptionskurve von Aluminium der Beta-Strahlung von Sr-90/Y-90 Wenn Beta-Strahlung auf Materie trifft, so wechselwirkt sie mit ihr und verliert dadurch Energie. Die Absorptionskurve kann man nun bestimmen, indem man zwischen Quelle und Zählrohr (bei konstantem Abstand) Absorberplatten verschiedener Dicke einbringt und die Zählrate misst. Im Sr-90/Y-90-Präparat passieren zwei Zerfälle: Von Sr-90 zu Y-90 entstehen Elektronen mit einer maximalen Energie von 0,54 MeV, beim Zerfall Y-90 zu Zr-90 entstehen Elektronen einer Maximalenergie von 2,25 MeV. Die hochenergetische Strahlung kommt also vom Y-90-Zerfall, die niederenergetische vom Sr-90-Zerfall. Die Aktivität der beiden Zerfalle wird ungefähr gleich sein, da die Halbwertszeit des Sr-90 deutlich größer ist. Für die Einzelkomponenten erwarten wir einen exponentiellen Abfall in Abhängigkeit der Absorberdicke. Deshalb sollten wir bei kleinen Schichtdicken erheblich mehr Messpunkte nehmen. Bei logarithmischer Auftragung erwarten wir zwei getrennte lineare Bereiche. Der Knick kennzeichnet die Reichweite der Sr-90-Strahlung (energieärmer). Wir können also aus der Steigung des zweiten, flacheren Teils auf den Massenabsorptionskoeffizienten der Y-90- Strahlung von Aluminium schließen. Ziehen wir diese Steigung von der des ersten Teils ab, so erhalten wir den Massenabsorptionskoeffizienten von Aluminium für die Sr-90- Strahlung. Wir müssen beachten, dass die Abdeckung des Präparates, des Zählrohrfenster und des Luftweges nicht vernachlässigbar sind, sondern 12 µm Aluminiumdicke entsprechen. Um die Hintergrundstrahlung zu berücksichtigen, nehmen wir auch noch die Zählrate ohne Präparat auf

5 Um die auch noch die Totzeit einzubeziehen, korrigieren wir die gemessene Zählrate gemäß folgender Formel: N Korr = N 1 N N 0 N 0 : Hintergrundstrahlung Der Energie-Reichweite-Zusammenhang ist wie folgt: E Grenz =1,92 R 2 2 0,22 R g R[cm]: Reichweite, [ cm ]: Dichte des Absorbers, E Grenz[MeV ]: Grenzenergie Aktivität der Co-60-Quelle Um die Aktivität (Zerfälle pro Zeit) der Co-60-Quelle zu bestimmen, messen wir die Zählrate N in einem Zeitintervall T. Jedoch erfasst das Zählrohr ja nicht alle Zerfälle, weshalb wir Korrekturterme einführen müssen: Aufgrund der Lochblende messen wir nur innerhalb eines bestimmten Raumwinkels: = d 4 a 21 Dabei ist a der Abstand von der Quelle, d der Durchmesser der Blendenöffnung. Der geometrische Korrekturfaktor ergibt sich dann zu: c G = 4 Die Totzeit und Hintergrundstrahlung erfordern ebenfalls eine Korrektur. Korrektur für die Absorption in Material und Luft c m : Äquivalent zu einer 12µm- Aluminium-Platte. Damit ergibt sich: N A=c G c m T N N Zeitintervall-Verteilung Nun sollen die Zeitintervall-Verteilungen für n=1, 2, 4 Impulsen bestimmt werden. Wir erwarten folgende Verteilungen: n=1: I 1 t=r e r t n=2: I 2 t =t r 2 e r t n=4: I 4 t= t 3 6 r 4 e r t mit r= N ges T ges Als Quelle dient hier die Untergrundstrahlung. Die experimentellen und theoretischen Werte sollen verglichen werden

6 3 Gamma-Absorption 3.1 Absorptionskurve von Blei der Gamma-Strahlung von Co- 60, Massenabsorptionskoeffizient Hier soll analog zu 2.4 die Absorptionskurve von Blei für Gammastrahlung des Co-60 ermittelt werden. Somit messen wir wiederum die Zählrate in Abhängigkeit der Dicke der Bleischicht zwischen Präparat und Zählrohr. Ebenso muss die Zählrohrtotzeit sowie die Hintergrundstrahlung berücksichtigt werden. Da wir auch wieder einen exponentiellen Abfall erwarten, tragen wir die Zählrate logarithmisch über der Bleidicke auf. Aus der Steigung ermitteln wir den Massenabsorptionskoeffizienten. Auch die Halbwertsdicke von Blei (Zählrate auf Hälfte des ursprünglichen Wertes) können wir aus dem Diagramm ermitteln. 3.2 Absorptionsvermögen verschiedener Absorbermaterialien gleicher Dicke für Co-60 Nun messen wir das Absorptionsvermögen verschiedener Materialien, indem wir Materialproben gleicher Dicke zwischen Präparat und Zählrohr bringen. Den materialabhängigen Absorptionskoeffizienten erhalten wir mit: A M = N 0 N M N 0 wobei N 0 die Zählrate ohne Material, N M die Zählrate mit Material im Strahl ist. Die Messzeit muss hier natürlich gleich sein. Wir vergleichen den Absorptionskoeffizienten mit der Materialdichte. Dabei erwarten wir, dass Materialien höherer Dichte auch mehr Strahlung filtern, da hierbei ja die Wahrscheinlichkeit höher ist, dass ein Gammaquant mit der Materie wechselwirkt

AUSWERTUNG: BETA-/ GAMMA-ABSORBTION

AUSWERTUNG: BETA-/ GAMMA-ABSORBTION AUSWERTUNG: BETA-/ GAMMA-ABSORBTION TOBIAS FREY, FREYA GNAM 1. GEIGER-MÜLLER-ZÄHLROHR UND β-absorption 1.1. Zählrohrcharakteristik. Die Spannung zwischen Draht und Zylinder bestimmt entscheidend das Verhalten

Mehr

P2-80, 82: ABSORPTION VON BETA- UND GAMMASTRAHLUNG

P2-80, 82: ABSORPTION VON BETA- UND GAMMASTRAHLUNG P2-80, 82: ABSORPTION VON BETA- UND GAMMASTRAHLUNG GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1. Geiger-Müller-Zählrohr und β-absorption 1.1. Zählrohrcharakteristik. Es wird die Zählrate bei zunehmender

Mehr

Vorbereitung zum Versuch. Absorption von Betaund Gammastrahlung. 0 Grundlagen

Vorbereitung zum Versuch. Absorption von Betaund Gammastrahlung. 0 Grundlagen Vorbereitung zum Versuch Absorption von Betaund Gammastrahlung Kirstin Hübner (1348630) Armin Burgmeier (1347488) Gruppe 15 9. Juni 2008 0 Grundlagen 0.1 Radioaktive Strahlung In diesem Versuch wollen

Mehr

Absorption radioaktiver Strahlung Versuchsauswertung

Absorption radioaktiver Strahlung Versuchsauswertung Versuche P2-80,82,84 Absorption radioaktiver Strahlung Versuchsauswertung Marco A. Harrendorf und, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 27.06.2011 1 Inhaltsverzeichnis

Mehr

Einführungsseminar S2 zum Physikalischen Praktikum

Einführungsseminar S2 zum Physikalischen Praktikum Einführungsseminar S2 zum Physikalischen Praktikum 1. Organisatorisches 2. Unterweisung 3. Demo-Versuch Radioaktiver Zerfall 4. Am Schluss: Unterschriften! Praktischer Strahlenschutz Wechselwirkung von

Mehr

P2-80,82,84: Absorption radiaktiver Strahlung

P2-80,82,84: Absorption radiaktiver Strahlung Physikalisches Anfängerpraktikum (P) P-8,8,84: Absorption radiaktiver Strahlung Matthias Faulhaber, Matthias Ernst (Gruppe 19) Auswertung.1 Eigenschaften des Geiger-Müller-Zählrohrs.1.1 Messung der Einsatzspannung

Mehr

Beta- und Gamma-Absorption

Beta- und Gamma-Absorption Physikalisches Anfängerpraktikum 2 Gruppe Mo-16 Sommersemester 2006 Jens Küchenmeister (1253810) Julian Merkert (1229929) Versuch: P2-82 Beta- und Gamma-Absorption - Auswertung - Vorbemerkung Ziel dieses

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

11. GV: Radioaktivität

11. GV: Radioaktivität Physik Praktikum I: WS 005/06 Protokoll zum Praktikum Dienstag, 15.11.05 11. GV: Radioaktivität Protokollanten Jörg Mönnich - Anton Friesen - Betreuer R. Kerkhoff Radioaktivität Einleitung Unter Radioaktivität

Mehr

Radioaktivität. den 7 Oktober Dr. Emőke Bódis

Radioaktivität. den 7 Oktober Dr. Emőke Bódis Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.

Mehr

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung 43. Strahlenschutz und Dosimetrie 36. Lektion Wechselwirkung und Reichweite von Strahlung Lernziel: Die Wechselwirkung von radioaktiver Strahlung (α,β,γ( α,β,γ) ) ist unterschiedlich. Nur im Fall von α-

Mehr

Physik III - Anfängerpraktikum- Versuch Korrektur

Physik III - Anfängerpraktikum- Versuch Korrektur Physik III - Anfängerpraktikum- Versuch 704 - Korrektur Sebastian Rollke (103095) und Daniel Brenner (105292) 21. September 2005 Inhaltsverzeichnis 1 Einleitung und Zielsetzung 2 2 Theorie 2 2.1 Absorption.......................................

Mehr

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München.

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München. Röntgenstrahlen 1 Wilhelm Konrad Röntgen Foto: Deutsches Museum München. Röntgenröhre von 1896 2 1 ev = 1 Elektronenvolt = Energie die ein Elektron nach Durchlaufen der Potentialdifferenz 1V hat (1.6 10-19

Mehr

Physikalische Grundlagen ionisierender Strahlung

Physikalische Grundlagen ionisierender Strahlung Physikalische Grundlagen ionisierender Strahlung Bernd Kopka, Labor für Radioisotope an der Universität Göttingen www.radioisotope.de Einfaches Atommodell L-Schale K-Schale Kern Korrekte Schreibweise

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen γ-absorption (Ab) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen γ-absorption (Ab) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen γ-absorption (Ab) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 2 γ-absorption (Ab) 2.1 2.1 Einleitung........................................

Mehr

Versuch 1.2: Radioaktivität

Versuch 1.2: Radioaktivität 1 Versuch 1.2: Radioaktivität Sicherheitshinweis: Schwangere dürfen diesen Versuch nicht durchführen. Sollten Sie als Schwangere zu diesem Versuch eingeteilt worden sein, so wenden Sie sich zwecks Zuweisung

Mehr

Strahlung. Arten und Auswirkungen

Strahlung. Arten und Auswirkungen Strahlung Arten und Auswirkungen Themen Alpha-Strahlung (α) Strahlung Zerfall Entdeckung Verwendung Beta-Strahlung (β) Entstehung Wechselwirkung mit Materie Anwendungen Forschungsgeschichte Gamma-Strahlung

Mehr

Physik. Semester III Teil 2. Abiturwiederholung

Physik. Semester III Teil 2. Abiturwiederholung Semester III Teil 2 Selbstständige Auswertung von Experimenten zu Emissions- und Absorptionsspektren Grundlagen einer Atomvorstellung (Größe, Struktur, einfache Termschemata) und qualitative Deutungen

Mehr

Auswertung. D10: Radioaktivität

Auswertung. D10: Radioaktivität zum Versuch D10: Radioaktivität Jule Heier Partner: Alexander Fufaev Gruppe 334 Einleitung In diesem Versuch sollen verschiedene Eigenschaften, wie z.b. Absorption und Reichweite, von β- und γ-strahlung

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD 7 Kernphysik 7.1 - Grundversuch Radioaktivität Durchgeführt am 15.11.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger R. Kerkhoff Marius Schirmer E3-463 marius.schirmer@gmx.de

Mehr

Abstandsgesetz und Absorption von γ-strahlen

Abstandsgesetz und Absorption von γ-strahlen INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Abstandsgesetz und Absorption von γ-strahlen 1. Einleitung Ähnlich

Mehr

Versuch A07: Zählstatistik und β-spektrometer

Versuch A07: Zählstatistik und β-spektrometer Versuch A07: Zählstatistik und β-spektrometer 5. April 2018 I Theorie I.1 Das Zerfallsgesetz Instabile Atomkerne zerfallen spontan nach einem gewissen Zeitintervall dt, mit einer Wahrscheinlichkeit, die

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD 7 Kernphysik 7.5 - Absorption von Gammastrahlung Durchgeführt am 15.11.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger R. Kerkhoff Marius Schirmer E3-463 marius.schirmer@gmx.de

Mehr

Physikalische. Grundlagen. L. Kölling, Fw Minden

Physikalische. Grundlagen. L. Kölling, Fw Minden Physikalische Grundlagen L. Kölling, Fw Minden Radioaktivität kann man weder sehen, hören, fühlen, riechen oder schmecken. Daher muss sie der FA (SB) zumindest verstehen, um im Einsatzfall die erforderlichen

Mehr

Praktikumsprotokoll. Versuch Nr. 703 Das Geiger-Müller-Zählrohr. Frank Hommes und Kilian Klug

Praktikumsprotokoll. Versuch Nr. 703 Das Geiger-Müller-Zählrohr. Frank Hommes und Kilian Klug Praktikumsprotokoll Versuch Nr. 703 Das Geiger-Müller-Zählrohr und Durchgeführt am: 20 April 2004 Inhaltsverzeichnis 1 Einleitung 3 2 Theoretische Hintergründe 3 2.1 Spannungsabhängigkeit.......................

Mehr

Mathematisch-Naturwissenschaftliche Fakultät I Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum.

Mathematisch-Naturwissenschaftliche Fakultät I Humboldt-Universität zu Berlin Institut für Physik Physikalisches Grundpraktikum. Mathematisch-Naturwissenschaftliche Fakultät I Humboldt-Universität u Berlin Institut für Physik Physikalisches Grundpraktikum Versuchsprotokoll Statistik und Radioaktivität (F7) Arbeitsplat 1 durchgeführt

Mehr

NR - Natürliche Radioaktivität Praktikum Wintersemester 2005/06

NR - Natürliche Radioaktivität Praktikum Wintersemester 2005/06 NR - Natürliche Radioaktivität Praktikum Wintersemester 25/6 Alexander Rembold, Philipp Buchegger, Johannes Märkle Assistent Dr. Torsten Hehl Tübingen, den 7. Dezember 25 Theorie und Grundlagen Halbwertszeit

Mehr

Physikalisches Grundpraktikum I

Physikalisches Grundpraktikum I INSTITUT FÜR PHYSIK DER HUMBOLDT-UNIVERSITÄT ZU BERLIN Physikalisches Grundpraktikum I Versuchsprotokoll P2 : F7 Statistik und Radioaktivität Versuchsort: Raum 217-2 Versuchsbetreuer: E. von Seggern, D.

Mehr

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV 4) Wechselwirkungen zwischen Strahlung und Materie (1) Wechselwirkungen zwischen Strahlung und Materie sind Grundvoraussetzung für jede Anwendung oder schädigende Wirkung radioaktiver Strahlung unerwünschte

Mehr

1. Aufbau des Atomkerns

1. Aufbau des Atomkerns 801-1 1.1 Bausteine des Atomkerns VIII. Der Atomkern und Kernstrahlung 1. Aufbau des Atomkerns 1.1 Bausteine des Atomkerns Der Atomkern ist aus den Nukleonen aufgebaut. Dazu gehören die Protonen (p) und

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I K20 Name: Halbwertszeit von Rn Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Absorption von β- und γ- Strahlung

Absorption von β- und γ- Strahlung Versuch 253 Absorption von β- und γ- Strahlung diverse Präparatehalter und Kollimatoren Aluminium- und Bleiabsorber Manometer Messaufbau für -Strahler II Literatur Standardwerke der Physik: Gerthsen, Bergmann-Schäfer,

Mehr

(in)stabile Kerne & Radioaktivität

(in)stabile Kerne & Radioaktivität Übersicht (in)stabile Kerne & Radioaktivität Zerfallsgesetz Natürliche und künstliche Radioaktivität Einteilung der natürlichen Radionuklide Zerfallsreihen Zerfallsarten Untersuchung der Strahlungsarten

Mehr

Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die

Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Atomkerne von Cl bestehen. b) Erkläre, was man unter Isotopen versteht. Gib ein Beispiel an. 3, Cl c) Im Periodensystem wird die

Mehr

NR Natürliche Radioaktivität

NR Natürliche Radioaktivität NR Natürliche Radioaktivität Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 rten der Radioaktivität........................... 2 1.2 ktivität und Halbwertszeit.........................

Mehr

Natürliche Radioaktivität

Natürliche Radioaktivität Natürliche Radioaktivität Definition Natürliche Radioaktivität Die Eigenschaft von Atomkernen sich spontan in andere umzuwandeln, wobei Energie in Form von Teilchen oder Strahlung frei wird, nennt man

Mehr

Energieverlust von Teilchen in Materie

Energieverlust von Teilchen in Materie Energieverlust von Teilchen in Materie Doris Reiter Energieverlust von Teilchen in Materie p.1/34 Einleitung Teilchen sind charakterisiert durch Masse, Ladung, Impuls Baryonen: p, n,, Leptonen: Mesonen

Mehr

Beta- und Gamma-Absorption

Beta- und Gamma-Absorption Physikalisches Anfängerpraktikum 2 Gruppe Mo-16 Sommersemester 2006 Jens Küchenmeister (1253810) Julian Merkert (1229929) Versuch: P2-82 Beta- und Gamma-Absorption - Vorbereitung - Vorbemerkung In diesem

Mehr

Versuch 25: Messung ionisierender Strahlung

Versuch 25: Messung ionisierender Strahlung Versuch 25: Messung ionisierender Strahlung Die Abstandsabhängigkeit und der Wirkungsquerschnitt von α- und γ-strahlung aus einem Americium-24-Präparat sollen untersucht werden. In einem zweiten Teil sollen

Mehr

Praktikumsprotokoll. Versuch Nr. 704 Absorption von γ- und β-strahlung. Frank Hommes und Kilian Klug

Praktikumsprotokoll. Versuch Nr. 704 Absorption von γ- und β-strahlung. Frank Hommes und Kilian Klug Praktikumsprotokoll Versuch Nr. 704 Absorption von γ- und β-strahlung und Durchgeführt am: 27 April 2004 Inhaltsverzeichnis 1 Einleitung 3 2 Theoretische Hintergründe 3 2.1 γ-strahlung.............................

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

Wechselwirkung von Neutronen

Wechselwirkung von Neutronen Wechselwirkung von Neutronen Inhalt des 8.Kapitels Freie Neutronen Kernreaktionen und Kernspaltung Neutronenenergien Reaktionsarten von Neutronen Neutronenwechselwirkungen im Gewebe Abschirmung von Neutronen

Mehr

Abschwächung von γ-strahlung

Abschwächung von γ-strahlung K10 Name: Abschwächung von γ-strahlung Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine

Mehr

Schwächung von γ-strahlen

Schwächung von γ-strahlen AKP-47-Neu-1 Schwächung von γ-strahlen 1 Vorbereitung Vorbereitung von Versuch 46 Schwächung von γ-strahlung Lit.: GERTHSEN, WALCHER 6.4.4.0 Abschnitt 3 Streuung eines Hertzschen Oszillators (klassische

Mehr

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1 Hüllenstrahlung Inhalt des 4.Kapitels Charakteristische Photonen- und Röntgenstrahlung - Röntgenfluoreszenz Augerelektronen Fluoreszenz- und Augerelektronenausbeute Bremsstrahlung Erzeugung von Röntgenstrahlung

Mehr

Absorption von α-, β- und γ- Strahlung

Absorption von α-, β- und γ- Strahlung Versuch 253 Absorption von α-, β- und γ- Strahlung γ-präparat ( 60 Co) diverse Präparatehalter und Kollimatoren Manometer Messaufbau für -Strahler Aluminium- und Bleiabsorber Vakuumpumpe II Literatur Standardwerke

Mehr

2.1.3 Wechselwirkung von Photonen in Materie

2.1.3 Wechselwirkung von Photonen in Materie 2.1.3 Wechselwirkung von Photonen in Materie Photo-Effekt (dominant b. kleinen Energien) Compton-Effekt Paarerzeugung (dominant b. großen Energien) Literatur: W.R. Leo, Techniques for Nuclear and Particle

Mehr

2) Kernstabilität und radioaktive Strahlung (2)

2) Kernstabilität und radioaktive Strahlung (2) 2) Kernstabilität und radioaktive Strahlung (2) Periodensystem der Elemente vs. Nuklidkarte ca. 115 unterschiedliche chemische Elemente Periodensystem der Elemente 7 2) Kernstabilität und radioaktive Strahlung

Mehr

Kapitel 3: Kernstruktur des Atoms. Kathodenstrahlrohr: 3.1 Durchgang von Elektronen durch Materie

Kapitel 3: Kernstruktur des Atoms. Kathodenstrahlrohr: 3.1 Durchgang von Elektronen durch Materie 03. Kernstruktur Page 1 Kapitel 3: Kernstruktur des Atoms Kathodenstrahlrohr: 3.1 Durchgang von Elektronen durch Materie Elektronen erzeugt im Kathodenstrahlrohr wechselwirken mit Gasatomen im Rohr. Elektronen

Mehr

Institut für Physik und Werkstoffe Labor für Physik

Institut für Physik und Werkstoffe Labor für Physik Name : Fachhochschule Flensburg Institut für Physik und Werkstoffe Labor für Physik Name: Versuch-Nr: K4 Absorption von - Strahlen und Bestimmung der Halbwertsdicke von Blei Gliederung: Seite Schwächung

Mehr

Detektoren für radioaktive Strahlung

Detektoren für radioaktive Strahlung G-11 Geräte Detektoren für radioaktive Strahlung 28.02.06 Universität Ulm, Vorlesungssammlung Physik Verfügbare Detektoren Nebelkammer Geiger-Müller-Zählrohr α-, β- und γ- Strahlung Szintillationsdetektor

Mehr

3.3 Zählstatistik und Beta-Spektrometer

3.3 Zählstatistik und Beta-Spektrometer Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 3 - Atomphysik 3.3 Zählstatistik und Beta-Spektrometer 1 Theorie 1.1 Das Zerfallgesetz Instabile Atomkerne zerfallen spontan nach einem gewissen Zeitintervall

Mehr

1 Dorn Bader Physik der Struktur der Materie

1 Dorn Bader Physik der Struktur der Materie 1 Dorn Bader Physik der Struktur der Materie 1.1 S. 308 Nachweisgeräte A 2: a) Was lässt sich aus der Länge der Spuren in einer Nebelkammer folgern? Die Länge der Spuren in der Nebelkammer sind ein Maß

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Abschwächung von γ-strahlung Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Radiologie Modul I. Teil 1 Grundlagen Röntgen

Radiologie Modul I. Teil 1 Grundlagen Röntgen Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE

Mehr

Wechselwirkung Strahlung-Materie Kernreaktionen

Wechselwirkung Strahlung-Materie Kernreaktionen Wintersemester 2011/2012 Radioaktivität und Radiochemie Wechselwirkung Strahlung-Materie Kernreaktionen 10.11.2011 Udo Gerstmann Bundesamt für Strahlenschutz ugerstmann@bfs.de & gerstmann@gmx.de 089-31603-2430

Mehr

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten R. Brinkmann http://brinkmann-du.de Seite 1 25.11.2013 Radioaktivität und Strahlenschutz FOS: Energie von Strahlungsteilchen und Gammaquanten Energieeinheit Elektronenvolt (ev) Bekannte Energieeinheiten:

Mehr

Radioaktiver Zerfall des Atomkernes: α-zerfall

Radioaktiver Zerfall des Atomkernes: α-zerfall Radioaktiver Zerfall des Atomkernes: α-zerfall Schwere Atomkerne (hohes Z, hohes N) sind instabil gegen spontanen Zerfall. Die mögliche Emission einzelner Protonen oder einzelner Neutronen ist nicht häufig.

Mehr

Stundenprotokoll vom : Compton Effekt

Stundenprotokoll vom : Compton Effekt Stundenprotokoll vom 9.12.2011: Compton Effekt Zunächst beschäftigten wir uns mit den einzelnen Graphen des Photoeffekts (grün), des Compton-Effekts (gelb) und mit der Paarbildung (blau). Anschließend

Mehr

3.3 Zählstatistik und Beta-Spektrometer

3.3 Zählstatistik und Beta-Spektrometer Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 3 - Atomphysik 3.3 Zählstatistik und Beta-Spektrometer Stichwörter Beta Zerfall, Drehimpulserhaltung, Ladungserhaltung, Energieerhaltung, Zerfallsgesetz,

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Radioaktivität & X-Strahlen Physikalbor 01 Michel

Mehr

Protokoll. 1. Aufgabenstellung:

Protokoll. 1. Aufgabenstellung: Protokoll 1. Aufgabenstellung: Es werden eine Szintillationsmeßsonde, verbunden mit einem Kernstrahlungsmessplatz verwendet. Zwischen eine Strahlenquelle (z.b.: Tc-99m, Ba- 133 oder Cs- 137) und den Detektor

Mehr

In der Abbildung ist ein vereinfachtes Energieniveauschema eines Lasers dargestellt.

In der Abbildung ist ein vereinfachtes Energieniveauschema eines Lasers dargestellt. Klausur Physik III, 7.3.2016 Aufg. 1/5 Aufgabe 1) In der Abbildung ist ein vereinfachtes Energieniveauschema eines Lasers dargestellt. 1. Nennen Sie die wesentlichen Prozesse, die bei der Erzeugung von

Mehr

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften Praxisseminar Strahlenschutz Teil 4: Messtechnik Markus Drapalik 07.11.2012 22.11.2012 Praxisseminar Strahlenschutz Teil 4: Messtechnik 1 1 Inhalt Wiederholung ionisierende Strahlung Prinzipien der Messtechnik

Mehr

Technologie/Informatik Kernaufbau und Kernzerfälle. Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d.

Technologie/Informatik Kernaufbau und Kernzerfälle. Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d. Technologie/Informatik Kernaufbau und Kernzerfälle Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d. Saale Übersicht Kernaufbau Rutherford-Experiment, Nukleonen Schreibweise,

Mehr

Strahlungslose Übergänge. Pumpen Laser

Strahlungslose Übergänge. Pumpen Laser Prof Ch Berger, Physik f Maschinenbauer, WS 02/03 15 Vorlesung 44 Strahlungsprozesse 441 Das Zerfallsgesetz Elektronen aus energetisch hoher liegenden Zustanden gehen in die tieferen Zustande uber, falls

Mehr

Versuch FP I-8. Messung des Wirkungsquerschnittes der Compton-Streuung

Versuch FP I-8. Messung des Wirkungsquerschnittes der Compton-Streuung Versuch FP I-8 Messung des Wirkungsquerschnittes der Compton-Streuung Zielsetzung Dieser Versuch soll einerseits mit der Technik des Streuexperiments, dem Umgang mit γ-strahlen, sowie mit deren Nachweis

Mehr

Messung der Intensität der -Strahlung hinter einem Absorber in Abhängigkeit von der Absorberdicke. Bestätigung des Lambertschen Schwächungsgesetzes.

Messung der Intensität der -Strahlung hinter einem Absorber in Abhängigkeit von der Absorberdicke. Bestätigung des Lambertschen Schwächungsgesetzes. Atom und Kernphysik Kernphysik -Spektroskopie LEYBOLD Handblätter Physik P6.5.5.3 Absorption von -Strahlung Versuchsziele Messung der Intensität der -Strahlung hinter einem Absorber in Abhängigkeit von

Mehr

Die Lage der Emissionsbanden der charakteristischen Röntgenstrahlung (anderer Name: Eigenstrahlung) wird bestimmt durch durch das Material der Kathode durch das Material der Anode die Größe der Anodenspannung

Mehr

Versuch 29 Ak-vierungsanalyse

Versuch 29 Ak-vierungsanalyse Versuch 29 Ak-vierungsanalyse Betreuer WS 2016-2017: Oleg Kalekin Raum: 314 Tel.: 09131-85- 27118 Email: Oleg.Kalekin@physik.uni- erlangen.de Standort: Raum 133 (Kontrollraum Tandembeschleuniger) Literatur:

Mehr

Radioaktivität, die natürlichste Sache der Welt (Anhang)

Radioaktivität, die natürlichste Sache der Welt (Anhang) Radioaktivität, die natürlichste Sache der Welt (Anhang) 6. Mai 2014 Inhaltsverzeichnis 1 Anhang 2 1.1 Mathematische Grundlagen.......................... 3 1.1.1 Logarithmieren.............................

Mehr

Bei diesem Versuch haben wir die Impulshöhenspektren verschiedener radioaktiver Präparate aufgenommen.

Bei diesem Versuch haben wir die Impulshöhenspektren verschiedener radioaktiver Präparate aufgenommen. AUSWERTUNG: γ-spektroskopie UND STATISTIK TOBIAS FREY, FREYA GNAM 1. IMPULSHÖHENSPEKTREN Bei diesem Versuch haben wir die Impulshöhenspektren verschiedener radioaktiver Präparate aufgenommen. 1.1. Messung

Mehr

9. Kernphysik 9.1. Zusammensetzung der Atomkerne

9. Kernphysik 9.1. Zusammensetzung der Atomkerne Prof. Dieter Suter Physik B2 SS 01 9. Kernphysik 9.1. Zusammensetzung der Atomkerne 9.1.1. Nukelonen Die Atomkerne bestehen aus Protonen und Neutronen. Die Zahl der Nukleonen wird durch die Massenzahl

Mehr

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl.

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl. Klausurinformation Zeit: Mittwoch, 3.Februar, 12:00, Dauer :90 Minuten Ort: Veterinärmediziner: Großer Phys. Hörsaal ( = Hörsaal der Vorlesung) Geowissenschaftler u.a.: Raum A140, Hauptgebäude 1. Stock,

Mehr

Bildgebung mit Röntgenstrahlen. Wechselwirkung mit Materie

Bildgebung mit Röntgenstrahlen. Wechselwirkung mit Materie Wechselwirkung mit Materie Scanogramm Röntgen- Quelle Detektor ntwicklung Verarbeitung Tomogramm Bohrsches Atommodell M (18e - ) L (8e - ) K (2e - ) Wechselwirkung mit Materie Kohärente Streuung Röntgenquant

Mehr

Physik 4, Übung 6, Prof. Förster

Physik 4, Übung 6, Prof. Förster Physik 4, Übung 6, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

13 Radioaktivität. I in na. Der Ionisationsstrom ist ein Maß für die pro Sekunde erzeugte Ladung Q und damit für die Aktivität des Präparats.

13 Radioaktivität. I in na. Der Ionisationsstrom ist ein Maß für die pro Sekunde erzeugte Ladung Q und damit für die Aktivität des Präparats. 13 Radioaktivität 13.1 Historisches Röntgen, Becquerel, Curie 13.2 Nachweismethoden Einführungsversuch: Die rad. Strahlung ionisiert die Luft und entlädt ein aufgeladenes Elektroskop a) Ionisationskammer

Mehr

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung Markus Drapalik 14.03.2013 26.03.2013 Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung 1 1 Inhalt Aufbau des Atoms Atomarer Zerfall

Mehr

Aufbau der Atome und Atomkerne

Aufbau der Atome und Atomkerne ufbau der tome und tomkerne tome bestehen aus dem tomkern (d 10-15 m) und der Elektronenhülle (d 10-10 m). Der Raum dazwischen ist leer. (Rutherfordscher Streuversuch (1911): Ernest Rutherford beschoss

Mehr

Abgabetermin

Abgabetermin Aufgaben Serie 1 1 Abgabetermin 20.10.2016 1. Streuexperiment Illustrieren Sie die Streuexperimente von Rutherford. Welche Aussagen über Grösse und Struktur des Kerns lassen sich daraus ziehen? Welches

Mehr

Schwächung von Kernstrahlung Seite 1

Schwächung von Kernstrahlung Seite 1 1. Aufgabenstellung Schwächung von Kernstrahlung Seite 1 1.1. Die Impulszahl-Spannungs-Charakteristik eines Auslösezählrohrs ist aufzunehmen. Plateaulänge, Plateausteigung und günstigster Arbeitspunkt

Mehr

Versuch 19: Geiger-Müller-Zählrohr

Versuch 19: Geiger-Müller-Zählrohr Versuch 19: Geiger-Müller-Zählrohr 1. Einordung in den Kernlehrplan Kompetenzen gemäß KLP: Die Schülerinnen und Schüler - erläutern den Aufbau und die Funktionsweise von Nachweisgeräten für ionisierende

Mehr

Schwächung von Kernstrahlung Seite 1

Schwächung von Kernstrahlung Seite 1 1 Aufgabenstellung Schwächung von Kernstrahlung Seite 1 1.1 Die Impulszahl-Spannungs-Charakteristik eines Auslösezählrohrs ist aufzunehmen. Plateaulänge, Plateausteigung und günstigster Arbeitspunkt sind

Mehr

Strahlungsarten. Ionisierende Strahlung kann Schäden am Körper verursachen. Wie stark die Schäden sind, ist von verschiedenen Dingen abhängig:

Strahlungsarten. Ionisierende Strahlung kann Schäden am Körper verursachen. Wie stark die Schäden sind, ist von verschiedenen Dingen abhängig: Drei Arten von Strahlung: Information Ionisierende Strahlung kann Schäden am Körper verursachen. Wie stark die Schäden sind, ist von verschiedenen Dingen abhängig: Dauer der Bestrahlung Stärke der Bestrahlung

Mehr

Protokoll zum Grundversuch Radioaktität

Protokoll zum Grundversuch Radioaktität Protokoll zum Grundversuch Radioaktität Fabian Schmid-Michels & Nils Brüdigam Universität Bielefeld Sommersemester 2007 Grundpraktikum II 12.06.2007 Inhaltsverzeichnis 1 Ziel 2 2 Theorie 2 2.1 Nuklid....................................

Mehr

Lösungen zu den Aufg. S. 363/4

Lösungen zu den Aufg. S. 363/4 Lösungen zu den Aufg. S. 363/4 9/1 Die gemessene Gegenspannung (s. Tab.) entspricht der max. kin. Energie der Photoelektronen; die Energie der Photonen = E kin der Elektronen + Austrittsarbeit ==> h f

Mehr

Strahlungsdetektoren. Strahlungsdetektoren. Szintillationsdetektor. Szintillationsdetektor. Tl-haltiges NaI. ionisierende Strahlung << >> Materie

Strahlungsdetektoren. Strahlungsdetektoren. Szintillationsdetektor. Szintillationsdetektor. Tl-haltiges NaI. ionisierende Strahlung << >> Materie Strahlungsdetektoren ionisierende Strahlung > Materie elektromagnetische Wechselwirkung Wechselwirkung nicht elektromagnetische Wechselwirkung Strahlungsdetektoren Nachweis über elektromagnetische

Mehr

Messmethoden zum Nachweis von Radionukliden in Wasser

Messmethoden zum Nachweis von Radionukliden in Wasser Messmethoden zum Nachweis von Radionukliden in Wasser Dipl.-Ing. (FH) Christoph Wilhelm - SUM KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

1.2 Teilchendetektoren

1.2 Teilchendetektoren KAPTEL. WEKZEUGE DE KENPHYSK 6.2 Teilchendetektoren.2. Das fotografische Verfahren Energiereiche geladene Teilchen hinterlassen Spuren auf Fotoplatten. Aus der Korndichte und der Länge der Spuren kann

Mehr

Lagerung des Abfalls. radioaktiver Abfall

Lagerung des Abfalls. radioaktiver Abfall Lagerung des Abfalls radioaktiver Abfall Radioaktivität Was ist Radioaktivität? Welche Eigenschaften besitz sie? Welche Auswirkungen kann sie haben? Warnung vor radioaktiver Strahlung Internationale Strahlenschutzzeichen

Mehr

Versuch 703 Das Geiger-Müller-Zählrohr

Versuch 703 Das Geiger-Müller-Zählrohr Experimentelle Übungen für Physiker I (WS 05/06) Das Geiger-Müller-Zählrohr 13.12.2005 Abtestiert am 16.01.2006 Ziel des durchgeführten Versuchs war die Ermittlung der Charakteristiken eines Geiger-Müller-Zählrohres.

Mehr

Praktikumsprotokoll. vom 25.06.2002. Thema: Radioaktiver Zerfall, radioaktive Strahlung. Tutor: Arne Henning. Gruppe: Sven Siebler Martin Podszus

Praktikumsprotokoll. vom 25.06.2002. Thema: Radioaktiver Zerfall, radioaktive Strahlung. Tutor: Arne Henning. Gruppe: Sven Siebler Martin Podszus Praktikumsprotokoll vom 25.6.22 Thema: Radioaktiver Zerfall, radioaktive Strahlung Tutor: Arne Henning Gruppe: Sven Siebler Martin Podszus Versuch 1: Reichweite von α -Strahlung 1.1 Theorie: Die Reichweite

Mehr

Wechselwirkungen der γ-strahlung

Wechselwirkungen der γ-strahlung Wechselwirkungen der γ-strahlung Die den Strahlungsquanten innewohnende Energie wird bei der Wechselwirkung teilweise oder vollständig an die umgebende Materie abgegeben/übertragen! Erzielbare Wirkungen

Mehr

Zusammenhang. Aktivität Zählrate - Dosisleistung. Strahlungsquelle Aktivität Becquerel. Strahlenbelastung Äquivalentdosisleistung

Zusammenhang. Aktivität Zählrate - Dosisleistung. Strahlungsquelle Aktivität Becquerel. Strahlenbelastung Äquivalentdosisleistung Zusammenhang Aktivität Zählrate - Dosisleistung Strahlungsquelle Aktivität Becquerel Strahlenbelastung Äquivalentdosisleistung µsv/h Strahlungsmessgerät Impulse, Anzahl, Zeit Strahlungsquelle Cs-37 Strahlungsquelle

Mehr

42. Radioaktivität. 35. Lektion Radioaktivität

42. Radioaktivität. 35. Lektion Radioaktivität 42. Radioaktivität 35. Lektion Radioaktivität Lernziel: Unstabile Kerne zerfallen unter Emission von α, β, oder γ Strahlung Begriffe Begriffe Radioaktiver Zerfall ktivität Natürliche Radioaktivität Künstliche

Mehr

KAT e. Beta - Absorption. 1 Aufbau

KAT e. Beta - Absorption. 1 Aufbau Beta - Absorption 1 Aufbau Es soll nun die Absorption von Beta-Strahlung durch Materie (in unserem Fall Aluminium) untersucht werden. Dazu wurde mittels eines Szintillationszählers die Aktivität eines

Mehr

Praktikum Radioaktivität und Dosimetrie" Absorption von β-strahlung

Praktikum Radioaktivität und Dosimetrie Absorption von β-strahlung Praktikum Raioaktivität un Dosimetrie" Absorption von β-strahlung 1. Aufgabenstellung 1.1 Bestimmen Sie ie Schichticke von Glimmerplättchen aus er Absorptionskurve. 1. Ermitteln Sie en Massenabsorptionskoeffizienten

Mehr

Energie wird normalerweise in Joule gemessen. Ein Joule (J) einspricht einem Newtonmeter

Energie wird normalerweise in Joule gemessen. Ein Joule (J) einspricht einem Newtonmeter Maße wie Gammastrahlen abgeschwächt werden. Im Gegensatz zu den Gammastrahlen sind die Neutronenstrahlen auch Teilchenstrahlen wie Alpha- und Betastrahlen. Die Reichweiten von Strahlen mit einer Energie

Mehr