13 Radioaktivität. I in na. Der Ionisationsstrom ist ein Maß für die pro Sekunde erzeugte Ladung Q und damit für die Aktivität des Präparats.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "13 Radioaktivität. I in na. Der Ionisationsstrom ist ein Maß für die pro Sekunde erzeugte Ladung Q und damit für die Aktivität des Präparats."

Transkript

1 13 Radioaktivität 13.1 Historisches Röntgen, Becquerel, Curie 13.2 Nachweismethoden Einführungsversuch: Die rad. Strahlung ionisiert die Luft und entlädt ein aufgeladenes Elektroskop a) Ionisationskammer Um die erzeugten Ionen messen zu können, verwendet man eine Büchse als Kondensator und legt eine Saugspannung an. Das heißt dann Ionisationskammer. Der Versuchsaufbau: I in na Isolator na V 300 U in V Der Ionisationsstrom ist ein Maß für die pro Sekunde erzeugte Ladung Q und damit für die Aktivität des Präparats. b) Geiger Zähler Hans Geiger und sein Mitarbeiter Hans Müller - beide Mitarbeiter von Rutherford entwickelten die Ionisationskammer weiter zum Geiger-Müller-Zählrohr. sehr dünnes Glimmer fenster Rad. Strahlung Metall oder metallisiertes Glas Edelgas 0,1 bar Draht Isolator Die einfallende radioaktive Strahlung ionisiert das Gas. Die ausgeschlagenen Elektronen werden zum Draht hin beschleunigt und erzeugen damit einen Stromstoß. Dieser bewirkt am Widerstand einen Spannungsstoß, der im Lautsprecher ein Knacken erzeugt. Die Spannung bricht im Zählrohr zusammen und die Stoßionisation kommt dadurch zum Erliegen (Totzeit ca 200 µs ). 300 V

2 Strom Spannungskennlinie: I A P J U Je nach angelegter Spannung unterscheidet man 3 Betriebsbereiche: Jonisationskammerbereich: Die durch radioaktive Strahlung erzeugten Elektronen werden vom pos. Draht abgesaugt. Die pos. Ionen werden wegen ihrer Trägheit nicht berücksichtigt. Bei zunehmender Spannung sind irgendwann alle abgesaugt und es entsteht ein Plateau. Proportionalbereich: Jedes durch radioaktive Strahlung erzeugte Elektron löst infolge hoher Spannung durch Stoßionisation Sekundärelektronen aus. Der Ionisationsstrom ist zur Zahl der einfallenden Teilchen proportional. Strahlung kann nach ihrem Ionisationsvermögen unterschieden werden. Die Ionisation ist jedoch immer noch lokal begrenzt. Auslösebereich: Bei noch höherer Spannung entsteht in der Ionenlawine Licht, welches über den Photoeffekt zusätzlich im gesamten Rohr Elektronen auslöst. In diesem Bereich bewirkt jedes Teilchen ein Knacksen im Lautsprecher. Bei sehr Spannung wird das Rohr zerstört. c) Nebelkammer nach Wilson Rutherford: Das originellste und wunderbarste Instrument der Wissenschaft. Ein Wasser-Spiritus-Luft Gemisch im Deckel des Zylinders verdampft und kondensiert am Boden des Gefäßes, der von einem Peltier Element auf 35 C gekühlt wird. Es entsteht ein übersättigter Dampf, der bevorzugt an Ionen entlang der radioaktiven Strahlung kondensiert. d) Szintillationszähler Radioaktive Strahlung ruft in Stoffen wie ZnS oder NaJ Lichtblitze hervor. Diese werden normalerweise mit Hilfe eines Photomultipliers verstärkt.

3 NaJ D D Lichtleiter K A Vorteil: sehr flink ( Faktor 10 gegenüber Zählrohr) Die Natur der radioaktiven Strahlung; Trinität a) Reichweite und Abschirmung der rad. Strahlung Ein Teil der Strahlung wird durch ein Blatt Papier bereits abgehalten und hat in Luft eine Reichweite von ca. 3 cm ( siehe Nebelkammer). Rutherford nannte sie α - Strahlung. Ein Teil wird erst durch ein Buch oder dünne Bleiplättchen absorbiert. R. nannte sie β - Strahlung. Becquerel antdeckte als 3 Komponente die γ - Strahlung. Sie wird durch dicke Bleischichten oder durch eine Bibliothek abgehalten. b) Rad. Strahlung im Magnetfeld Dazu hat M. Curie bereits 1902 folgende Skizze veröffentlicht: Ra a) Die Ablenkung der α- Strahlen kann im Schulversuch schlecht gezeigt werden. Es handelt sich um positiv geladene Teilchen mit einheitlicher Energie ( diskretes Energiespektrum ). b) Die Ablenkung der β - Strahlung kann folgendermaßen gezeigt werden: N Ra S Zählrohr

4 Mit Hilfe eines Geschwindigkeitsfilters kann man aus dem Krümmungsradius e/m bestimmen. Kaufmann und Bucherer ( 2, Semester) fanden jedoch keinen einheitlichen Wert. Erst ein relativistischer Ansatz brachte Klärung: β - Strahlen sind schnelle relativistische Elektronen. Die unterschiedlichen Krümmungssradien sind bedingt durch ein kontinuierliches Geschwindigkeits- bzw.. Energiespektrum. c) γ - Strahlung erfährt in elektromagnetischen Feldern keine Ablenkung. c) Identifizierung der Teilchenart -Strahlung: Relativistische Elektronen! Die Energie beträgt 1 MeV (!), weit mehr als die Ionisationsenergie 50 kv. Die b-elektronen stammen aus dem Kern! Ein Neutron des Kerns wird in ein Proton und ein β -Elektron umgewandelt, d.h. A bleibt gleich und Z erhöht sich um 1. Bsp.: Pb Bi + 0 1e+ν Woher kommt die Energie? Warum ist sie nicht konstant? Man muss annehmen, dass die max. Energie des β-spektrums der Energiedifferenz zwischen Mutter- und Tochterkern entspricht - diese wäre jedoch diskret. Ein weiteres Teilchen kommt ins Spiel: das Antineutrino bzw. Neutrino (von Pauli vorgeschlagen und von Enrico Fermi so bezeichnet). Die unterschiedliche Restenergie wird durch dieses kleine neutrale Teilchen abgeführt. Impulserhaltung: Das Neutrino rettete auch den Impulserhaltungssatz. Ohne Neutrino müssten Kern und β - Teilchen geradlinig auseinanderfliegen; dies ist nicht der Fall. p p K p K p p =0 p Bei Protonenüberschuß (oberhalb der Stabilitätslinie in der Nuklidkarte ) tritt auch der β + - Zerfall auf. Ein Proton wandelt sich in ein Neutron um, unter Aussendung eines Positrons und eines Neutrinos P 30 14Si e+ν Im Potenzialtopfmodell lässt sich der β Zerfall folgendermaßen deuten: Durch Betastrahlung wandeln sich so lange Protonen in Neutronen um oder umgekehrt, bis die

5 Niveaus der Protonen und der Neutronen zu der gleichen Energie aufgefüllt sind. Diese Energie wird als Fermienergie bezeichnet. Die Kerne sind dann stabil. α -Strahlung: Schon Rutherford identifizierte die α -Strahlung als He ++ -Ionen. Beim α -Zerfall specken die Kerne ab und werden stabiler! Bsp: Ra Rn 4 + 2He Zwei Protonen und zwei Neutronen bilden ein α Teilchen, das unter Nutzung des Tunneleffekts den Atomkern verlässt. Eine Erklärung dafür, dass schwere Kerne keine einzelnen Nukleonen, sondern α Teilchen aussenden, geben die energetischen Verhältnisse wieder. In einem schweren Kern liegt die mittlere Bindungsenergie je Nukleon im obersten Energieniveau bei etwa 6 MeV, in einem α Teilchen bei etwa 7 MeV. Vereinigen sich zwei Protonen und zwei Neutronen eines schweren Kerns zu einem α Teilchen, so liegt das α Teilchen energetisch über dem Nullniveau des Potezialtopfs und kann mit einer gewissen Wahrscheinlichkeit den Potenzialwall durchtunneln, so wie es in der Skizze oben anschaulich dargestellt ist. Die Energie des α Teilchens liegt in der Größenordnung von 2 bis 5 MeV. Die Energiewerte sind diskret und für die Energieniveaus des betreffenden Atomkerns charakteristisch. γ-strahlung Sehr harte em-strahlung in einer Größenordnung von 1 MeV ( Hz). Auch Kerne haben verschiedene Energiezustände. Beim Übergang wird γ -Strahlung emittiert. A und Z ändern sich nicht. Nach einem α oder β Zerfall befinden sich die Kerne zunächst haufig in einem angeregten Zustand. Der Übergang in den Grundzustand findet dann unter Abstrahlung eines γ Quants statt. Bsp.: Ra 222 Rn 86 Die γ Strahlung ist diskret und für das jeweilige Nuklid charakteristisch. Dies nutzt man bei der γ Spektroskopie aus. Sie ist eine wichtige Methode zur Untersuchung radioaktiver Substanzen, beispielsweise radioaktiver Verunreinigungen. γ Strahlung ist sehr schwach ionisierend und deshalb in der Nebelkammer nur indirekt durch Photo- oder Comptonelektronen beobachtbar. Zur Detektion eignet sich ein Szintillationszähler oder ein Geigerzähler. Das Bragg-Verfahren ist ungeeignet.

Radioaktivität. den 7 Oktober Dr. Emőke Bódis

Radioaktivität. den 7 Oktober Dr. Emőke Bódis Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.

Mehr

Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die

Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Atomkerne von Cl bestehen. b) Erkläre, was man unter Isotopen versteht. Gib ein Beispiel an. 3, Cl c) Im Periodensystem wird die

Mehr

Physikalische Grundlagen ionisierender Strahlung

Physikalische Grundlagen ionisierender Strahlung Physikalische Grundlagen ionisierender Strahlung Bernd Kopka, Labor für Radioisotope an der Universität Göttingen www.radioisotope.de Einfaches Atommodell L-Schale K-Schale Kern Korrekte Schreibweise

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München.

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München. Röntgenstrahlen 1 Wilhelm Konrad Röntgen Foto: Deutsches Museum München. Röntgenröhre von 1896 2 1 ev = 1 Elektronenvolt = Energie die ein Elektron nach Durchlaufen der Potentialdifferenz 1V hat (1.6 10-19

Mehr

Aufbau der Atome und Atomkerne

Aufbau der Atome und Atomkerne ufbau der tome und tomkerne tome bestehen aus dem tomkern (d 10-15 m) und der Elektronenhülle (d 10-10 m). Der Raum dazwischen ist leer. (Rutherfordscher Streuversuch (1911): Ernest Rutherford beschoss

Mehr

41. Kerne. 34. Lektion. Kernzerfälle

41. Kerne. 34. Lektion. Kernzerfälle 41. Kerne 34. Lektion Kernzerfälle Lernziel: Stabilität von Kernen ist an das Verhältnis von Protonen zu Neutronen geknüpft. Zu viele oder zu wenige Neutronen führen zum spontanen Zerfall. Begriffe Stabilität

Mehr

Kernmodell der Quantenphysik

Kernmodell der Quantenphysik M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis In diesem Abschnitt 1.1 Aufbau 1.2 Starke Wechselwirkungen Aufbau Tröpfchenmodell Atomkerns Wesentliche Eigenschaften von n können im Tröpfchenmodell

Mehr

Radioaktiver Zerfall des Atomkernes: α-zerfall

Radioaktiver Zerfall des Atomkernes: α-zerfall Radioaktiver Zerfall des Atomkernes: α-zerfall Schwere Atomkerne (hohes Z, hohes N) sind instabil gegen spontanen Zerfall. Die mögliche Emission einzelner Protonen oder einzelner Neutronen ist nicht häufig.

Mehr

Physik für Mediziner Radioaktivität

Physik für Mediziner  Radioaktivität Physik für Mediziner http://www.mh-hannover.de/physik.html Radioaktivität Peter-Alexander Kovermann Institut für Neurophysiologie Kovermann.peter@mh-hannover.de Der Aufbau von Atomen 0-5 - 0-4 m 0-0 -4

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

1 Natürliche Radioaktivität

1 Natürliche Radioaktivität 1 NATÜRLICHE RADIOAKTIVITÄT 1 1 Natürliche Radioaktivität 1.1 Entdeckung 1896: Henri BEQUEREL: Versuch zur Fluoreszenz = Emission einer durchdringenden Stahlung bei fluoreszierenden Uran-Verbindungen Eigenschaften:

Mehr

Technologie/Informatik Kernaufbau und Kernzerfälle. Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d.

Technologie/Informatik Kernaufbau und Kernzerfälle. Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d. Technologie/Informatik Kernaufbau und Kernzerfälle Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d. Saale Übersicht Kernaufbau Rutherford-Experiment, Nukleonen Schreibweise,

Mehr

2) Kernstabilität und radioaktive Strahlung (2)

2) Kernstabilität und radioaktive Strahlung (2) 2) Kernstabilität und radioaktive Strahlung (2) Periodensystem der Elemente vs. Nuklidkarte ca. 115 unterschiedliche chemische Elemente Periodensystem der Elemente 7 2) Kernstabilität und radioaktive Strahlung

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität ität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 1553K 15.5.3 Kettenreaktion 15. Kernphysik

Mehr

Natürliche Radioaktivität

Natürliche Radioaktivität Natürliche Radioaktivität Definition Natürliche Radioaktivität Die Eigenschaft von Atomkernen sich spontan in andere umzuwandeln, wobei Energie in Form von Teilchen oder Strahlung frei wird, nennt man

Mehr

(in)stabile Kerne & Radioaktivität

(in)stabile Kerne & Radioaktivität Übersicht (in)stabile Kerne & Radioaktivität Zerfallsgesetz Natürliche und künstliche Radioaktivität Einteilung der natürlichen Radionuklide Zerfallsreihen Zerfallsarten Untersuchung der Strahlungsarten

Mehr

9. Kernphysik 9.1. Zusammensetzung der Atomkerne

9. Kernphysik 9.1. Zusammensetzung der Atomkerne Prof. Dieter Suter Physik B2 SS 01 9. Kernphysik 9.1. Zusammensetzung der Atomkerne 9.1.1. Nukelonen Die Atomkerne bestehen aus Protonen und Neutronen. Die Zahl der Nukleonen wird durch die Massenzahl

Mehr

Atomphysik NWA Klasse 9

Atomphysik NWA Klasse 9 Atomphysik NWA Klasse 9 Radioaktive Strahlung Strahlung, die im Inneren der Atomkerne entsteht heißt radioaktive Strahlung. Wir unterscheiden zwischen Teilchen- und Wellenstrahlung! Strahlung in der Natur

Mehr

Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität

Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität Radioaktive Strahlung Entstehung Nutzen Gefahren du weisst, Lernziele zu Radioaktivität 1 dass Elementarteilchen nur bedingt «elementar» sind. welche unterschiedlichen Arten von radioaktiven Strahlungen

Mehr

d 10 m Cusanus-Gymnasium Wittlich Das Bohrsche Atomodell Nils Bohr Atomdurchmesser 10 Kerndurchmesser 14 d 10 m Atom

d 10 m Cusanus-Gymnasium Wittlich Das Bohrsche Atomodell Nils Bohr Atomdurchmesser 10 Kerndurchmesser 14 d 10 m Atom Das Bohrsche Atomodell Nils Bohr 1885-1962 Atomdurchmesser 10 d 10 m Atom Kerndurchmesser 14 http://www.matrixquantenenergie.de d 10 m Kern 14 dkern 10 m 10 datom 10 m Masse und Ladung der Elementarteilchen

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität Theoretische Grundlagen Physikalisches Praktikum Versuch 8: Radioaktivität Radioaktivität spontane Umwandlung instabiler tomkerne natürliche Radioaktivität: langlebige Urnuklide und deren Zerfallsprodukte

Mehr

15 Kernphysik Physik für E-Techniker. 15 Kernphysik

15 Kernphysik Physik für E-Techniker. 15 Kernphysik 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.

Mehr

Abgabetermin

Abgabetermin Aufgaben Serie 1 1 Abgabetermin 20.10.2016 1. Streuexperiment Illustrieren Sie die Streuexperimente von Rutherford. Welche Aussagen über Grösse und Struktur des Kerns lassen sich daraus ziehen? Welches

Mehr

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl.

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl. Klausurinformation Zeit: Mittwoch, 3.Februar, 12:00, Dauer :90 Minuten Ort: Veterinärmediziner: Großer Phys. Hörsaal ( = Hörsaal der Vorlesung) Geowissenschaftler u.a.: Raum A140, Hauptgebäude 1. Stock,

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #28 10/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Reichweite radioaktiver Strahlung Alpha-Strahlung: Wenige cm in Luft Abschirmung durch Blatt Papier,

Mehr

durch Teilungsversuche durch Spektraluntersuchungen Jedes Atom besitzt einen Atomkern, in dem fast die gesamte Masse vereinigt ist.

durch Teilungsversuche durch Spektraluntersuchungen Jedes Atom besitzt einen Atomkern, in dem fast die gesamte Masse vereinigt ist. 1. Kreuze die richtige Aussage über Atome an: Sie sind sehr kleine, unteilbare Körper aus einem einheitlichen (homogenen) Stoff. Sie sind so klein, dass man ihren Aufbau nicht erforschen kann. Sie sind

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #47 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #47 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 007 VL #47 am 0.07.007 Vladimir Dyakonov Kernphysik 1 Zusammensetzung von Kernen Atomkerne bestehen

Mehr

Das Magnetfeld. Das elektrische Feld

Das Magnetfeld. Das elektrische Feld Seite 1 von 5 Magnetisches und elektrisches Feld Das Magnetfeld beschreibt Eigenschaften der Umgebung eines Magneten. Auch bewegte Ladungen rufen Magnetfelder hervor. Mithilfe von Feldlinienbilder können

Mehr

Strahlung. Arten und Auswirkungen

Strahlung. Arten und Auswirkungen Strahlung Arten und Auswirkungen Themen Alpha-Strahlung (α) Strahlung Zerfall Entdeckung Verwendung Beta-Strahlung (β) Entstehung Wechselwirkung mit Materie Anwendungen Forschungsgeschichte Gamma-Strahlung

Mehr

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1

Jetzt noch die Strahlung aus der Elektronenhülle. Hüllenstrahlung. Kein Radioaktiver Zerfall. Kapitel 4 1 Hüllenstrahlung Inhalt des 4.Kapitels Charakteristische Photonen- und Röntgenstrahlung - Röntgenfluoreszenz Augerelektronen Fluoreszenz- und Augerelektronenausbeute Bremsstrahlung Erzeugung von Röntgenstrahlung

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne Inhalt 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion Der Atomkern

Mehr

11. GV: Radioaktivität

11. GV: Radioaktivität Physik Praktikum I: WS 005/06 Protokoll zum Praktikum Dienstag, 15.11.05 11. GV: Radioaktivität Protokollanten Jörg Mönnich - Anton Friesen - Betreuer R. Kerkhoff Radioaktivität Einleitung Unter Radioaktivität

Mehr

Radioaktive Zerfallsarten

Radioaktive Zerfallsarten C1 Radioaktive Zerfallsarten Damit ein Nuklid radioaktiv zerfallen kann, muss die entsprechende Reaktion "exotherm" sein. Die Summe der Ruhemassen aller entstehenden Teilchen muss kleiner sein als die

Mehr

t ½ =ln(2)/(1,2*1/h). 0,7/(1,2*1/h) 0,6h 4

t ½ =ln(2)/(1,2*1/h). 0,7/(1,2*1/h) 0,6h 4 1 Wie kann man α, β, γ-strahlen unterscheiden? 1 Im elektrischen Feld (+ geladene Platte zieht e - an, - geladene Platte α-teilchen) und magnetischen Feld (α rechte Hand- Regel, β linke Hand-Regel). γ-strahlen

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I K20 Name: Halbwertszeit von Rn Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

1.2 Teilchendetektoren

1.2 Teilchendetektoren KAPTEL. WEKZEUGE DE KENPHYSK 6.2 Teilchendetektoren.2. Das fotografische Verfahren Energiereiche geladene Teilchen hinterlassen Spuren auf Fotoplatten. Aus der Korndichte und der Länge der Spuren kann

Mehr

Feldbegriff und Feldlinienbilder. Elektrisches Feld. Magnetisches Feld. Kraft auf Ladungsträger im elektrischen Feld

Feldbegriff und Feldlinienbilder. Elektrisches Feld. Magnetisches Feld. Kraft auf Ladungsträger im elektrischen Feld Feldbegriff und Feldlinienbilder Elektrisches Feld Als Feld bezeichnet man den Bereich um einen Körper, in dem ohne Berührung eine Kraft wirkt beim elektrischen Feld wirkt die elektrische Kraft. Ein Feld

Mehr

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung

43. Strahlenschutz und Dosimetrie. 36. Lektion Wechselwirkung und Reichweite von Strahlung 43. Strahlenschutz und Dosimetrie 36. Lektion Wechselwirkung und Reichweite von Strahlung Lernziel: Die Wechselwirkung von radioaktiver Strahlung (α,β,γ( α,β,γ) ) ist unterschiedlich. Nur im Fall von α-

Mehr

Ergebnis: Atome haben einen Durchmesser im Bereich von m (Zehnmillionstelmillimeter).

Ergebnis: Atome haben einen Durchmesser im Bereich von m (Zehnmillionstelmillimeter). Atome 1 Größenordnung Ölfleckversuch: Auf die Wasseroberfläche wird eine so kleine Menge an Öl aufgebracht, dass sich eine monomolekulare Schicht (nur ein Molekül dick) bildet. Der Trick besteht darin,

Mehr

Radiologie Modul I. Teil 1 Grundlagen Röntgen

Radiologie Modul I. Teil 1 Grundlagen Röntgen Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE

Mehr

Thomas Kuster. 30. Mai 2007

Thomas Kuster. 30. Mai 2007 Zerfälle Thomas Kuster 30. Mai 2007 1 Information ˆ Unterrichtsziele Kernumwandlung kennenlernen (Element wird in ein anderes Element umgewandelt) Die gebildeten Kerne (Tochterkerne) im Periodensystem

Mehr

5) Messung radioaktiver Strahlung (1)

5) Messung radioaktiver Strahlung (1) 5) Messung radioaktiver Strahlung (1) Registrierung von Wechselwirkungen zwischen Strahlung und Materie Universelles Prinzip: Messung der Ionisierungswirkung Messung der Ionisierung Messung der Dosis.

Mehr

Versuch A07: Zählstatistik und β-spektrometer

Versuch A07: Zählstatistik und β-spektrometer Versuch A07: Zählstatistik und β-spektrometer 5. April 2018 I Theorie I.1 Das Zerfallsgesetz Instabile Atomkerne zerfallen spontan nach einem gewissen Zeitintervall dt, mit einer Wahrscheinlichkeit, die

Mehr

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung

Radioaktiver Zerfall Strahlung Nukliderzeugung. Nukliderzeugung Radioaktiver Zerfall Strahlung Nukliderzeugung Wiederholung: Struktur der Materie Radioaktivität Nuklidkarte, Nuklide Zerfallsarten Strahlung Aktivität Nukliderzeugung Was ist Radioaktivität? Eigenschaft

Mehr

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften

Markus Drapalik. Universität für Bodenkultur Wien Institut für Sicherheits- und Risikowissenschaften Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung Markus Drapalik 14.03.2013 26.03.2013 Praxisseminar Strahlenschutz Teil 2: Ionisierende Strahlung 1 1 Inhalt Aufbau des Atoms Atomarer Zerfall

Mehr

11.4 Detektion von radioaktiver Strahlung. 11.4.1 Die Wilsonsche Nebelkammer

11.4 Detektion von radioaktiver Strahlung. 11.4.1 Die Wilsonsche Nebelkammer 11.4 Detektion von radioaktiver Strahlung Jegliche radioaktive Strahlung die beim radioaktiven Zerfall von instabilen Atomkernen entsteht ist unsichtbar. Dies gilt sowohl für die Alpha- und Betastrahlung,

Mehr

Physikalische. Grundlagen. L. Kölling, Fw Minden

Physikalische. Grundlagen. L. Kölling, Fw Minden Physikalische Grundlagen L. Kölling, Fw Minden Radioaktivität kann man weder sehen, hören, fühlen, riechen oder schmecken. Daher muss sie der FA (SB) zumindest verstehen, um im Einsatzfall die erforderlichen

Mehr

2. Der Aufbau der Atome wird mit dem Rutherford schen und dem Bohr schen Atommodellen beschrieben. Ordne die Aussagen zu und verbinde.

2. Der Aufbau der Atome wird mit dem Rutherford schen und dem Bohr schen Atommodellen beschrieben. Ordne die Aussagen zu und verbinde. Atommodelle 1. Vervollständige den Lückentext. Atome bestehen aus einer mit negativ geladenen und einem mit positiv geladenen und elektrisch neutralen. Die Masse des Atoms ist im konzentriert. Die Massenzahl

Mehr

Der Streuversuch. Klick dich in den Streuversuch ein. Los geht s! Vorüberlegungen. Versuchsaufbau. animierte Versuchsaufbau. Durchführung.

Der Streuversuch. Klick dich in den Streuversuch ein. Los geht s! Vorüberlegungen. Versuchsaufbau. animierte Versuchsaufbau. Durchführung. Der Streuversuch Der Streuversuch wurde in Manchester von den Physikern Rutherford, Geiger und Marsden durchgeführt. Sie begannen 1906 mit dem Versuch und benötigten sieben Jahre um das Geheimnis des Aufbaus

Mehr

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Erste Atommodelle, Dalton Thomson, Rutherford, Atombau, Coulomb-Gesetz, Proton, Elektron, Neutron, weitere Elementarteilchen, atomare Masseneinheit u, 118 bekannte

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD 7 Kernphysik 7.1 - Grundversuch Radioaktivität Durchgeführt am 15.11.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger R. Kerkhoff Marius Schirmer E3-463 marius.schirmer@gmx.de

Mehr

Radioaktivität Haller/ Hannover-Kolleg 1

Radioaktivität Haller/ Hannover-Kolleg 1 Radioaktivität 17.09.2007 Haller/ Hannover-Kolleg 1 Radioaktivität 17.09.2007 Haller/ Hannover-Kolleg 2 Radioaktivität 1. Was verstehe ich darunter? 2. Welche Wirkungen hat die Radioaktivität? 3. Muss

Mehr

Halbwertszeit (Barium)

Halbwertszeit (Barium) Universität Potsdam Institut für Physik und Astronomie Grundpraktikum K3 Halbwertszeit (Barium) ACHTUNG: Dieses Experiment ist nicht für Schwangere zugelassen! Bitte rechtzeitig ein anderes Experiment

Mehr

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten R. Brinkmann http://brinkmann-du.de Seite 1 25.11.2013 Radioaktivität und Strahlenschutz FOS: Energie von Strahlungsteilchen und Gammaquanten Energieeinheit Elektronenvolt (ev) Bekannte Energieeinheiten:

Mehr

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität R. Brinkmann http://brinkmann-du.de Seite 25..23 -, Beta- und Gammastrahlen Radioaktivität und Strahlenschutz FOS: Kernumwandlungen und Radioaktivität Bestimmte Nuklide haben die Eigenschaft, sich von

Mehr

Radioaktivität und seine Strahlung

Radioaktivität und seine Strahlung Radioaktivität und seine Strahlung Radioaktivität (radioactivité wurde 1898 von Marie Curie eingeführt) ist ein Phänomen der Kerne von tomen. Darum ist die Radioaktivität heute in die Kernphysik eingeordnet.

Mehr

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick)

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick) Masse etwa 1 u = 1.6605e-27 kg = 931.5 MeV/c^2 Neutron (Entdeckung 1932 James Chadwick) Kraft Reichweite (cm) Stärke bei 10 13 cm im Vergleich zu starker Kraft Gravitation unendlich 10 38 elektrische Kraft

Mehr

Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen.

Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen. Atommodell nach Rutherford 1911 führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen. Beobachtung: Fast alle Teilchen fliegen ungestört durch.

Mehr

11. Kernzerfälle und Kernspaltung

11. Kernzerfälle und Kernspaltung 11. Kernzerfälle und Kernspaltung 1. Zerfallsgesetz 2. α Zerfall 3. Kernspaltung 4. ß Zerfall 5. γ - Zerfall 1 11.1 Das Zerfallsgesetz 2 Zerfallsketten 3 4 11.2 α-zerfall Abspaltung eines 4 He Kerns 5

Mehr

Reichweite von ß-Strahlen

Reichweite von ß-Strahlen Reichweite von ßStrahlen Atommodell: Nach dem Bohrschen Atommodell besteht ein Atom aus dem positiven Atomkern und der negativen Elektronenhülle. Der Durchmesser eines Atoms beträgt etwa 1 1 m, der Durchmesser

Mehr

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik Fortgeschrittene Experimentalphysik für Lehramtsstudierende Markus Schumacher 30.5.2013 Teil II: Kern- und Teilchenphysik Prof. Markus Schumacher Sommersemester 2013 Kapitel 4: Zerfälle instabiler Kerne

Mehr

5. Kernzerfälle und Kernspaltung

5. Kernzerfälle und Kernspaltung 5. Kernzerfälle und Kernspaltung 1. Zerfallsgesetz 2. α Zerfall 3. Kernspaltung 4. ß Zerfall 5. γ Zerfall 1 5.1 Das Zerfallsgesetz 2 Mittlere Lebensdauer und Linienbreite 3 Mehrere Zerfallskanäle 4 Zerfallsketten

Mehr

Arbeitsfragen zur Vorbereitung auf den Quali

Arbeitsfragen zur Vorbereitung auf den Quali Arbeitsfragen zur Vorbereitung auf den Quali Atombau 1 Was bedeutet das Wort Atom? 2 Welche Aussage mache Dalton über die Atome? 3 Was ist der größte Teil eines Atoms? 4 Was sind Moleküle? 5 Durch welchen

Mehr

Strahlungsarten. Ionisierende Strahlung kann Schäden am Körper verursachen. Wie stark die Schäden sind, ist von verschiedenen Dingen abhängig:

Strahlungsarten. Ionisierende Strahlung kann Schäden am Körper verursachen. Wie stark die Schäden sind, ist von verschiedenen Dingen abhängig: Drei Arten von Strahlung: Information Ionisierende Strahlung kann Schäden am Körper verursachen. Wie stark die Schäden sind, ist von verschiedenen Dingen abhängig: Dauer der Bestrahlung Stärke der Bestrahlung

Mehr

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV 4) Wechselwirkungen zwischen Strahlung und Materie (1) Wechselwirkungen zwischen Strahlung und Materie sind Grundvoraussetzung für jede Anwendung oder schädigende Wirkung radioaktiver Strahlung unerwünschte

Mehr

1 Dorn Bader Physik der Struktur der Materie

1 Dorn Bader Physik der Struktur der Materie 1 Dorn Bader Physik der Struktur der Materie 1.1 S. 308 Nachweisgeräte A 2: a) Was lässt sich aus der Länge der Spuren in einer Nebelkammer folgern? Die Länge der Spuren in der Nebelkammer sind ein Maß

Mehr

Uran. Uran ist ein silberglänzendes, weiches, radioaktives Metall. Es bildet eine Vielzahl verschiedener Legierungen.

Uran. Uran ist ein silberglänzendes, weiches, radioaktives Metall. Es bildet eine Vielzahl verschiedener Legierungen. Uran Uran ist ein silberglänzendes, weiches, radioaktives Metall. Es bildet eine Vielzahl verschiedener Legierungen. Bei Raumtemperatur läuft auch massives Uranmetall an der Luft an. Dabei bilden sich

Mehr

Grundwissen Physik 9. Jahrgangsstufe

Grundwissen Physik 9. Jahrgangsstufe Grundwissen Physik 9. Jahrgangsstufe I. Elektrizitätslehre und Magnetismus 1. a) Geladene Teilchen, die sich in einem Magnetfeld senkrecht zu den Magnetfeldlinien bewegen, erfahren eine Kraft (= Lorentzkraft),

Mehr

Versuch 25: Messung ionisierender Strahlung

Versuch 25: Messung ionisierender Strahlung Versuch 25: Messung ionisierender Strahlung Die Abstandsabhängigkeit und der Wirkungsquerschnitt von α- und γ-strahlung aus einem Americium-24-Präparat sollen untersucht werden. In einem zweiten Teil sollen

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Reichweite von α-strahlen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Elektronen, Protonen und Neutronen haben folgende Eigenschaften, die in Tabelle 2.1 wiedergegeben sind:

Elektronen, Protonen und Neutronen haben folgende Eigenschaften, die in Tabelle 2.1 wiedergegeben sind: Aufbau der Atome.1 Elektronen, Protonen, Neutronen, Isotope Atome bestehen aus Elektronen, die die Atomhülle bilden, sowie den im Kern vereinigten Protonen und Neutronen. Die elektromagnetischen Wechselwirkungen

Mehr

Beispiele für elektrische Felder: Frei bewegliche Ladungen werden im elektrischen Feld entlang der Feldlinien beschleunigt (Anwendung: Oszilloskop)

Beispiele für elektrische Felder: Frei bewegliche Ladungen werden im elektrischen Feld entlang der Feldlinien beschleunigt (Anwendung: Oszilloskop) Grundwissen Physik 9. Jahrgangsstufe Gymnasium Eckental I. Elektrik 1. Magnetisches und elektrisches Feld a) Elektrisches Feld Feldbegriff: Im Raum um elektrisch geladene Körper wirkt auf Ladungen eine

Mehr

Grundwissen. Physik. Jahrgangsstufe 9

Grundwissen. Physik. Jahrgangsstufe 9 Grundwissen Physik Jahrgangsstufe 9 Grundwissen Physik Jahrgangsstufe 9 Seite 1 1. Elektrische Felder und Magnetfelder 1.1 Elektrisches Feld Elektrisches Kraftgesetz: Gleichnamige Ladungen stoßen sich

Mehr

KAPITEL 3. Literatur zur Kernphysik

KAPITEL 3. Literatur zur Kernphysik KAPITEL 3 Literatur zur Kernphysik T. Mayer-Kuckuk, Kernphysik (Standardwerk) Teubner Verlag, 199 K. Bethge, Kernphysik, Springer Verlag, 1996 A. Das, T. Ferbel, Kern- und Teilchenphysik, Spektrum Akademischer

Mehr

Thomas Kuster. 30. Mai 2007

Thomas Kuster. 30. Mai 2007 Zerfälle Thomas Kuster 30. Mai 2007 1 Information ˆ Unterrichtsziele Kernumwandlung kennenlernen (Element wird in ein anderes Element umgewandelt) Die gebildeten Kerne (Tochterkerne) im Periodensystem

Mehr

Strahlenschutzkurs für Zahnmediziner. Geladene Teilchen. Wechselwirkung der Strahlungen mit der Materie

Strahlenschutzkurs für Zahnmediziner. Geladene Teilchen. Wechselwirkung der Strahlungen mit der Materie Wechselwirkung der Strahlungen mit der Materie Strahlenschutzkurs für Zahnmediziner 2. Wechselwirkung der Strahlungen mit der Materie. Messung der ionisierenden Strahlungen. Dosisbegriffe α β Geladene

Mehr

Atome. Definition: das kleinste Teilchen eines chemischen Elementes, das mit chemischen Verfahren nicht mehr zerlegbar ist.

Atome. Definition: das kleinste Teilchen eines chemischen Elementes, das mit chemischen Verfahren nicht mehr zerlegbar ist. Atome Definition: das kleinste Teilchen eines chemischen Elementes, das mit chemischen Verfahren nicht mehr zerlegbar ist. Das Atom besitzt einen positiv geladene Atomkern und eine negative Elektronenhülle.

Mehr

Halbwertszeit (Thoron)

Halbwertszeit (Thoron) Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 05/2013 K2 Halbwertszeit (Thoron) ACHTUNG: Dieses Experiment ist nicht für Schwangere zugelassen! Bitte rechtzeitig ein anderes Experiment

Mehr

Praktikum Radioaktivität und Dosimetrie" Alpha-Strahlung

Praktikum Radioaktivität und Dosimetrie Alpha-Strahlung Praktikum Radioaktivität und Dosimetrie" Alpha-Strahlung 1. Aufgabenstellung 1.1 Bestimmung der Luftäquivalenz der Abdeckung eines Ra-226-Präparates mittels der experimentellen Reichweitebestimmung der

Mehr

42. Radioaktivität. 35. Lektion Radioaktivität

42. Radioaktivität. 35. Lektion Radioaktivität 42. Radioaktivität 35. Lektion Radioaktivität Lernziel: Unstabile Kerne zerfallen unter Emission von α, β, oder γ Strahlung Begriffe Begriffe Radioaktiver Zerfall ktivität Natürliche Radioaktivität Künstliche

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

Protokoll zum Grundversuch Radioaktität

Protokoll zum Grundversuch Radioaktität Protokoll zum Grundversuch Radioaktität Fabian Schmid-Michels & Nils Brüdigam Universität Bielefeld Sommersemester 2007 Grundpraktikum II 12.06.2007 Inhaltsverzeichnis 1 Ziel 2 2 Theorie 2 2.1 Nuklid....................................

Mehr

Detektoren für radioaktive Strahlung

Detektoren für radioaktive Strahlung G-11 Geräte Detektoren für radioaktive Strahlung 28.02.06 Universität Ulm, Vorlesungssammlung Physik Verfügbare Detektoren Nebelkammer Geiger-Müller-Zählrohr α-, β- und γ- Strahlung Szintillationsdetektor

Mehr

Energie wird normalerweise in Joule gemessen. Ein Joule (J) einspricht einem Newtonmeter

Energie wird normalerweise in Joule gemessen. Ein Joule (J) einspricht einem Newtonmeter Maße wie Gammastrahlen abgeschwächt werden. Im Gegensatz zu den Gammastrahlen sind die Neutronenstrahlen auch Teilchenstrahlen wie Alpha- und Betastrahlen. Die Reichweiten von Strahlen mit einer Energie

Mehr

1) Teilchendetektion über Cherenkov-Strahlung

1) Teilchendetektion über Cherenkov-Strahlung 1) Teilchendetektion über Cherenkov-Strahlung Eine Methode, Teilchen zu identifizieren und energetisch zu vermessen, ist die Detektion der durch sie hervorgerufenen Cherenkov-Strahlung. Sie entsteht, wenn

Mehr

Einführungsseminar S2 zum Physikalischen Praktikum

Einführungsseminar S2 zum Physikalischen Praktikum Einführungsseminar S2 zum Physikalischen Praktikum 1. Organisatorisches 2. Unterweisung 3. Demo-Versuch Radioaktiver Zerfall 4. Am Schluss: Unterschriften! Praktischer Strahlenschutz Wechselwirkung von

Mehr

A. PHYSIKALISCHE GRUNDLAGEN DER IONISIERENDEN STRAHLUNG. B. Kopka. Labor für Radioisotope der Georg-August-Universität Göttingen

A. PHYSIKALISCHE GRUNDLAGEN DER IONISIERENDEN STRAHLUNG. B. Kopka. Labor für Radioisotope der Georg-August-Universität Göttingen A. PHYSIKALISCHE GRUNDLAGEN DER IONISIERENDEN STRAHLUNG B. Kopka Labor für Radioisotope der Georg-August-Universität Göttingen 1. Aufbau der Materie 1.1. Die Atomhülle 1.2. Der Atomkern 2. Strahlenarten

Mehr

Unterlagen für die Lehrkraft. Abiturprüfung Physik, Leistungskurs. Bearbeitung einer Aufgabe, die fachspezifisches Material enthält

Unterlagen für die Lehrkraft. Abiturprüfung Physik, Leistungskurs. Bearbeitung einer Aufgabe, die fachspezifisches Material enthält Seite 1 von 1 Unterlagen für die Lehrkraft Abiturprüfung 015 Physik, Leistungskurs 1. Aufgabenart Bearbeitung einer Aufgabe, die fachspezifisches Material enthält. Aufgabenstellung 1 Aufgabe: Radioaktivität

Mehr

Radioaktivität, Kernspaltung. medizinische, friedliche und kriegerische Nutzungen der Radioaktivität

Radioaktivität, Kernspaltung. medizinische, friedliche und kriegerische Nutzungen der Radioaktivität Radioaktivität, Kernspaltung. medizinische, friedliche und kriegerische Nutzungen der Radioaktivität LaCh Seite 1 von 7 1. Grundlagen der Atomtheorie... 3 Aufbau eines Atoms... 3 2. Eigenschaften der radioaktiven

Mehr

Abstandsgesetz und Absorption von γ-strahlen

Abstandsgesetz und Absorption von γ-strahlen INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Abstandsgesetz und Absorption von γ-strahlen 1. Einleitung Ähnlich

Mehr

Das Neutron. Eigenschaften des Neutrons m n = 1.001m p m i = m g ± 10 4 τ n = ± 0.8 s

Das Neutron. Eigenschaften des Neutrons m n = 1.001m p m i = m g ± 10 4 τ n = ± 0.8 s Vorlesung Fundamentale Experimente mit ultrakalten Neutronen (FundExpUCN) Die Entdeckung des Neutrons Fundamentale Eigenschaften des Neutrons Reaktorphysik und Erzeugung von Neutronen Spallationsneutronenquellen

Mehr

Kernkräfte und Potentialtopfmodell des Kerns

Kernkräfte und Potentialtopfmodell des Kerns Kernkräfte und Potentialtopfmodell des Kerns Kernkräfte Die zentrale Frage dieses Abschnitts lautet: Warum haltet der Kern trotz der abstoßenden Columbkraft zwischen den Protonen zusammen? Die Antwort

Mehr

Synopse Physik Saarland Einführungsphase Klasse 10

Synopse Physik Saarland Einführungsphase Klasse 10 Synopse Physik Saarland Einführungsphase Klasse 10 mit dem Lehrwerk Impulse Physik Mittelstufe ISBN: 978-3-12-772552-0 Ust Thema Fachinhalte Impulse Physik Mittelstufe 11 Kapitel 1: Atome und Atomkerne,

Mehr

Physik am Samstagmorgen 19. November Radioaktivität. Ein unbestechlicher Zeitzeuge. Christiane Rhodius

Physik am Samstagmorgen 19. November Radioaktivität. Ein unbestechlicher Zeitzeuge. Christiane Rhodius Physik am Samstagmorgen 19. November 2005 Radioaktivität Ein unbestechlicher Zeitzeuge Christiane Rhodius Archäochronometrie Warum und wie datieren wir? Ereignisse innerhalb der menschlichen Kulturentwicklung

Mehr

NR - Natürliche Radioaktivität Praktikum Wintersemester 2005/06

NR - Natürliche Radioaktivität Praktikum Wintersemester 2005/06 NR - Natürliche Radioaktivität Praktikum Wintersemester 25/6 Alexander Rembold, Philipp Buchegger, Johannes Märkle Assistent Dr. Torsten Hehl Tübingen, den 7. Dezember 25 Theorie und Grundlagen Halbwertszeit

Mehr

Messung radioaktiver Strahlung

Messung radioaktiver Strahlung α β γ Messung radioaktiver Strahlung Radioaktive Strahlung misst man mit dem Geiger-Müller- Zählrohr, kurz: Geigerzähler. Nulleffekt: Schwache radioaktive Strahlung, der wir ständig ausgesetzt sind. Nulleffekt

Mehr

Das Betaspektrum. PG 287III Protokoll. Michaela Heinrich Mirko Stubenrauch (P) Daniel Seidlitz Sven Schramm Ole Hitzemann Christian Martick

Das Betaspektrum. PG 287III Protokoll. Michaela Heinrich Mirko Stubenrauch (P) Daniel Seidlitz Sven Schramm Ole Hitzemann Christian Martick PG 287III Protokoll Das Betaspektrum Protokoll zum Versuch vom 05..2003 Projektgruppe: (Tutor Konstantin Lenzke) Michaela Heinrich Mirko Stubenrauch (P) Daniel Seidlitz Sven Schramm Ole Hitzemann Christian

Mehr

Kernphysik. Physik Klasse 9. Quelle: AkadOR W. Wagner, Didaktik der Chemie, Universität Bayreuth (verändert für Kl.9/Sachsen

Kernphysik. Physik Klasse 9. Quelle: AkadOR W. Wagner, Didaktik der Chemie, Universität Bayreuth (verändert für Kl.9/Sachsen Kernphysik Physik Klasse 9 Quelle: AkadOR W. Wagner, Didaktik der Chemie, Universität Bayreuth (verändert für Kl.9/Sachsen Lehrplan Atomodelle Niels Bohr Rutherford Begriff: Modell Ein Modell zeichnet

Mehr