11.4 Detektion von radioaktiver Strahlung Die Wilsonsche Nebelkammer

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "11.4 Detektion von radioaktiver Strahlung. 11.4.1 Die Wilsonsche Nebelkammer"

Transkript

1 11.4 Detektion von radioaktiver Strahlung Jegliche radioaktive Strahlung die beim radioaktiven Zerfall von instabilen Atomkernen entsteht ist unsichtbar. Dies gilt sowohl für die Alpha- und Betastrahlung, als auch für die Gammastrahlung. Der erste Nachweis dieser unsichtbaren Strahlung gelang Henri Becquerel mit Hilfe von fotographischen Platten. Diese wurden durch die radioaktive Strahlung belichtet und es entstanden dunkle Flecken an den Stellen auf den Fotoplatten an denen radioaktive Präparate wie zum Beispiel Uransalze positioniert wurden. Zur genaueren Untersuchung der radioaktiven Strahlung sind Fotoplatten jedoch ungeeignet, da diese über sehr lange Zeiträume belichtet werden müssen. Im folgenden Kapitel sollen nun vier Messgeräte zum Nachweis und zur Untersuchung von radioaktiver Strahlung vorgestellt werden Die Wilsonsche Nebelkammer In einer Wilsonschen Nebelkammer wird ein Tuch oder ein Filzlappen am Boden der Kammer mit einem Gemisch aus Alkohol und Wasser angefeuchtet. In der Nebelkammer wird ein radioaktives Präparat positioniert und die Kammer mit einem durchsichtigen Kunststoffdeckel luftdicht verschlossen. [66] DESY Nebelkammer

2 Mit einer Luftpumpe kann nun ruckartig Luft aus der Nebelkammer abgepumpt werden. In der Nebelkammer entsteht hierdurch ein Unterdruck wodurch ein Teil des Alkohol-Wasser-Gemischs in den gasförmigen Zustand übergeht. Dieser Alkohol-Wasser-Dampf ist immer noch unsichtbar. Emittiert jedoch das radioaktive Präparat in der Nebelkammer ein Alpha- oder Betateilchen, so bilden sich im Dampf feine nebelförmige Spuren, ähnlich zu den Kondensstreifen von Flugzeugen. Diese Nebelspuren entstehen, wenn die Alpha- oder Betateilchen auf ihrem Weg durch die Nebelkammer, Moleküle des Alkohol-Wasser-Dampfes ionisieren. An die positiv geladenen Ionen lagern sich in kugelförmigen Schalen die in der Nähe befindlichen Wasserdipole an. Dieser Effekt wird Kondensation genannt. Entlang der gesamten Flugbahn der Alpha- bzw. Betateilchen entstehen auf diese Weise winzige Wassertröpfchen, die in Form von Nebelspuren für das menschliche Auge sichtbar werden. Mit Hilfe der Wilsonschen Nebelkammer ist es möglich nachzuweisen, dass Alpha- und Betateilchen elektrisch geladen sind. Hierzu wird die Kammer in einem homogenen magnetischen Feld positioniert. Durch das magnetische Feld werden die Alpha- und Betateilchen auf Kreisbahnen abgelenkt (Lorentzkraft). Aus der Ablenkrichtung und dem Radius der Kreisbahn, kann dann auf die Energie der Teilchen geschlossen werden Die Ionisationskammer Ein großer Nachteil der Wilsonschen Nebelkammer ist es, dass keine Messungen der Intensität der radioaktiven Strahlung möglich ist. Dieser Nachteil wird in einer sog. Ionisationskammer behoben. Eine Ionisationskammer besteht aus einem mit Gas gefüllten, meist zylinderförmigen Gehäuse, in dem sich ein Plattenkondensator befindet. Zwischen den Platten wird eine regelbare Hochspannung angelegt.

3 Trifft radioaktive Strahlung auf die Gasatome in der Ionisationskammer so können einige Gasatome durch die radioaktive Strahlung ionisiert werden, das heißt es werden Elektronen vollständig aus der Atomhülle der Gasatome herausgelöst (Stoßionisation). Die dabei entstehenden positiv geladenen Ionen werden im elektrischen Feld zwischen den Kondensatorplatten in Richtung der negativ geladenen Platte beschleunigt. Die Anzahl der auf der negativen Platte auftreffenden positiven Ionen kann nun mit einem sehr empfindlichen Messgerät (Amperemeter mit Messverstärker) in Form eines Entladungsstrom gemessen werden. Die an den Kondensatorplatten angelegte Spannung muss sehr hoch sein, damit die Ionen möglichst stark in Richtung der negativ geladenen Platte beschleunigt werden. Würden sich die Ionen nur langsam bewegen, so könnten sie auf dem Weg zur negativ geladenen Platte mit freien Elektronen rekombinieren und würden somit nicht mehr gemessen. Erst bei einer hinreichend hohen Spannung und damit bei einer hinreichend hohen Feldstärke im Kondensator tragen sämtliche, durch die radioaktive Strahlung ionisierten Gasionen zum Entladungsstrom bei. Die Stromstärke erreicht in diesem Fall einen Sättigungswert (siehe Diagramm). Eine weitere Erhöhung der Spannung führt, nachdem der Sättigungswert erreicht ist, nicht mehr zu einer weiteren Erhöhung der Entladungsstromstärke, da diese nun nur noch durch die die Anzahl der Ionisationsvorgänge in der Kammer bestimmt wird. Der Sättigungswert der Entladungsstromstärke ist somit ein Maß für die Fähigkeit eines radioaktiven Präparates Gasatome zu ionisieren. Da die ionisierende Wirkung je nach radioaktivem Präparat unterschiedlich ist, unterscheidet sich jeweils auch der Sättigungswert des Entladestroms. Auf diese Weise kann mit der Ionisationskammer die ionisierende Wirkung und damit die Gefährlichkeit von radioaktiver Strahlung bestimmt werden Das Geiger-Müller-Zählrohr

4 Das bekannteste und am häufigsten verwendete Messgerät zur Detektion von radioaktiver Strahlung ist das Geiger-Müller-Zählrohr, kurz Geiger-Zähler. Der Aufbau des Geiger-Müller-Zählrohr ähnelt stark dem Aufbau einer Ionisationskammer. Auch das Geiger-Müllerzählrohr besteht aus einem zylinderförmigen Gehäuse aus Aluminium das mit einem Edelgas (in der Regel Argon) gefüllt ist. An einer Seite des Zählrohrs befindet sich ein strahlungsdurchlässiges Fenster aus Glimmer oder Mylar. In der Mitte des Zylinders befindet sich ein gerader Anodendraht. Zwischen Gehäuse und Anodendraht wird wie in der Ionisationskammer eine Hochspannung angelegt. Wichtig: Der Anodendraht ist dabei positiv geladen. Gelangt nun radioaktive Strahlung durch das Eintrittsfenster, so kann diese durch Stoßionisation einige Gasatome im Zählrohr ionisieren. Die bei der Ionisation freiwerdenden Elektronen werden durch das elektrische Feld zwischen Gehäuse und Anodendraht stark in Richtung des Anodendrahts beschleunigt. Dabei nimmt die kinetische Energie der Elektronen so stark zu, dass sie weitere Atome ionisieren können. Auf diese Weise kommt es zu einem lawinenartigen Anstieg der Anzahl der Ladungsträger im Zählrohr (Gasentladung). Die Elektronenlawine kann in Form eines Stromstoßes von einem Messgerät registriert werden. Der Stromstoß wird elektronisch verstärkt und von einer Zählerschaltung registriert. In Form eines akustischen Signals (Knacken) kann die Messung eines Ionisationsvorgangs signalisiert werden. Nachdem eine Elektronenlawine im Geiger-Müller-Zählrohr gemessen wurde, ist der Raum um den Anodendraht aufgrund der hohen Anzahl an Gasionen positiv geladen. Das elektrische Feld im Raum um den Anodendraht wird somit abgeschirmt und es kann für kurze Zeit nicht zu einer weiteren Gasentladung kommen. Erst wenn die Ionenwolke zur Kathode (Gehäuse) gewandert ist kann der Prozess erneut ausgelöst werden. Die Zeitspanne in der das Geiger-Müller-Zählrohr aus diesem Grund nicht messen kann wird mit Totzeit bezeichnet. Die Messergebnisse von Geiger-Müller- Zählrohren müssen somit unter Berücksichtigung der Totzeit korrigiert werden.

5 Totzeitkorrektur: Dabei ist die gemessene Zählrate, die Totzeit des Geiger-Müller-Zählrohrs und die korrigierte Zählrate. Anmerkung: Auch wenn sich keine radioaktiven Präparate in der Nähe des Geiger-Zählers befinden registriert das Zählrohr in unregelmäßigen Zeitabständen Impulse. Diese entstehen durch ionisierende Strahlung aus dem Weltall, oder durch natürliche bzw. durch den Menschen hervorgerufene Hintergrundstrahlung. Die Anzahl der Impulse bezeichnet man in diesem Fall mit Nullrate oder Nulleffekt. Bei genauen Messungen muss die Nullrate von den Messwerten subtrahiert werden Der Szintillationszähler In einem Szintillationszähler wird radioaktive Strahlung mit Hilfe eines Szintillationskristalls zum Beispiel aus Natriumiodid oder Zinksulfid detektiert. In diesem Kristall werden durch radioaktive Strahlung Atome des Kristallgitters in einen angeregten Zustand versetzt. Beim Übergang in den Grundzustand emittieren diese angeregten Atome Licht, in Form von Photonen bzw. Lichtblitzen. Diese Lichtblitze treffen nun wiederum auf eine lichtempfindliche Fotokathode hinter dem Kristall in der aufgrund des Photoelektrischen Effekts Elektronen herausgelöst werden. Diese Elektronen werden in einem Sekundärelektronenvervielfacher (SEV) beschleunigt und vervielfacht (Verstärkungsfaktor ca ). In einem elektronischen Messgerät (Vielkanalanalysator VKA) werden die Elektronen in Form eines Spannungsimpulses gemessen. Die Stärke des Spannungsimpulses ist dabei proportional zur Energie der ionisierenden Strahlung. Mit einem Szintillationszähler können somit Energiespektren von radioaktiver Strahlung aufgenommen werden.

Atomphysik NWA Klasse 9

Atomphysik NWA Klasse 9 Atomphysik NWA Klasse 9 Radioaktive Strahlung Strahlung, die im Inneren der Atomkerne entsteht heißt radioaktive Strahlung. Wir unterscheiden zwischen Teilchen- und Wellenstrahlung! Strahlung in der Natur

Mehr

3. Stromtransport in Gasen i) Erzeugung von Ladungsträgern ii) Unselbständige Entladung iii) Selbständige Entladung

3. Stromtransport in Gasen i) Erzeugung von Ladungsträgern ii) Unselbständige Entladung iii) Selbständige Entladung Netz Hochspannung 0 1 0 20 Elektrische Leitung 1. Leitungsmechanismen Bändermodell 2. Ladungstransport in Festkörpern i) Temperaturabhängigkeit Leiter ii) Eigen- und Fremdleitung in Halbleitern iii) Stromtransport

Mehr

Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die

Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Atomkerne von Cl bestehen. b) Erkläre, was man unter Isotopen versteht. Gib ein Beispiel an. 3, Cl c) Im Periodensystem wird die

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Abschwächung von γ-strahlung Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Vorbereitung zum Versuch. Absorption von Betaund Gammastrahlung. 0 Grundlagen

Vorbereitung zum Versuch. Absorption von Betaund Gammastrahlung. 0 Grundlagen Vorbereitung zum Versuch Absorption von Betaund Gammastrahlung Kirstin Hübner (1348630) Armin Burgmeier (1347488) Gruppe 15 9. Juni 2008 0 Grundlagen 0.1 Radioaktive Strahlung In diesem Versuch wollen

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Messung von c und e/m Autor: Noé Lutz Assistent:

Mehr

Praktikumsprotokoll. Versuch Nr. 703 Das Geiger-Müller-Zählrohr. Frank Hommes und Kilian Klug

Praktikumsprotokoll. Versuch Nr. 703 Das Geiger-Müller-Zählrohr. Frank Hommes und Kilian Klug Praktikumsprotokoll Versuch Nr. 703 Das Geiger-Müller-Zählrohr und Durchgeführt am: 20 April 2004 Inhaltsverzeichnis 1 Einleitung 3 2 Theoretische Hintergründe 3 2.1 Spannungsabhängigkeit.......................

Mehr

13 Radioaktivität. I in na. Der Ionisationsstrom ist ein Maß für die pro Sekunde erzeugte Ladung Q und damit für die Aktivität des Präparats.

13 Radioaktivität. I in na. Der Ionisationsstrom ist ein Maß für die pro Sekunde erzeugte Ladung Q und damit für die Aktivität des Präparats. 13 Radioaktivität 13.1 Historisches Röntgen, Becquerel, Curie 13.2 Nachweismethoden Einführungsversuch: Die rad. Strahlung ionisiert die Luft und entlädt ein aufgeladenes Elektroskop a) Ionisationskammer

Mehr

14. elektrischer Strom

14. elektrischer Strom Ladungstransport, elektrischer Strom 14. elektrischer Strom In Festkörpern: Isolatoren: alle Elektronen fest am Atom gebunden, bei Zimmertemperatur keine freien Elektronen -> kein Stromfluß Metalle: Ladungsträger

Mehr

Messung radioaktiver Strahlung

Messung radioaktiver Strahlung α β γ Messung radioaktiver Strahlung Radioaktive Strahlung misst man mit dem Geiger-Müller- Zählrohr, kurz: Geigerzähler. Nulleffekt: Schwache radioaktive Strahlung, der wir ständig ausgesetzt sind. Nulleffekt

Mehr

RADIOAKTIVITÄT 12255 MEDIENBEGLEITHEFT

RADIOAKTIVITÄT 12255 MEDIENBEGLEITHEFT RADIOAKTIVITÄT 12255 MEDIENBEGLEITHEFT zur DVD 15 Minuten, Produktionsjahr 2006 Verwendung: Schulstufe: Didaktische Ziele: Physik 9. 12. Schulstufe (5. 8. Klasse) Die Schüler sollen 3 Schlüsselbegriffe

Mehr

Messung von Kernstrahlung

Messung von Kernstrahlung E1 Messung von Kernstrahlung Der Nachweis der radioaktiven Strahlung beruht auf den Ionisations- oder Anregungsprozessen, die in Materie durch die Strahlung ausgelöst werden. Eine besonders oft verwendete

Mehr

Aufbau der Atome und Atomkerne

Aufbau der Atome und Atomkerne ufbau der tome und tomkerne tome bestehen aus dem tomkern (d 10-15 m) und der Elektronenhülle (d 10-10 m). Der Raum dazwischen ist leer. (Rutherfordscher Streuversuch (1911): Ernest Rutherford beschoss

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD 7 Kernphysik 7.1 - Grundversuch Radioaktivität Durchgeführt am 15.11.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger R. Kerkhoff Marius Schirmer E3-463 marius.schirmer@gmx.de

Mehr

Der elektropneumatische Feinstaubfilter

Der elektropneumatische Feinstaubfilter Der elektropneumatische Feinstaubfilter Der elektronische Feinstaubfilter ist ein Feinstaubabscheider, der ins besondere Feinstaubartikel im Bereich von 0,05 0,5 µm aus Gasen entfernt und der vorzugsweise

Mehr

Technologie/Informatik Kernaufbau und Kernzerfälle. Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d.

Technologie/Informatik Kernaufbau und Kernzerfälle. Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d. Technologie/Informatik Kernaufbau und Kernzerfälle Dipl.-Phys. Michael Conzelmann, StR Staatliche FOS und BOS Bad Neustadt a. d. Saale Übersicht Kernaufbau Rutherford-Experiment, Nukleonen Schreibweise,

Mehr

1 Natürliche Radioaktivität

1 Natürliche Radioaktivität 1 NATÜRLICHE RADIOAKTIVITÄT 1 1 Natürliche Radioaktivität 1.1 Entdeckung 1896: Henri BEQUEREL: Versuch zur Fluoreszenz = Emission einer durchdringenden Stahlung bei fluoreszierenden Uran-Verbindungen Eigenschaften:

Mehr

Was ist radioaktive Strahlung?

Was ist radioaktive Strahlung? Was ist radioaktive Strahlung? Wir haben ja gelernt, dass das Licht zu den Radiowellen gehört. Wir haben mit unserem Kurzwellenradio die Radiowellen eingefangen und ihre Modulation in Schallwellen umgewandelt,

Mehr

Radioaktivität II. Gamma Absorption. (Lehrer AB) Abstract:

Radioaktivität II. Gamma Absorption. (Lehrer AB) Abstract: Radioaktivität II Gamma Absorption (Lehrer AB) Abstract: Den SchülerInnen soll der Umgang mit radioaktiven Stoffen nähergebracht werden. Im Rahmen dieses Versuches nehmen die SchülerInnen Messwerte eines

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität

Theoretische Grundlagen Physikalisches Praktikum. Versuch 8: Radioaktivität Theoretische Grundlagen Physikalisches Praktikum Versuch 8: Radioaktivität Radioaktivität spontane Umwandlung instabiler tomkerne natürliche Radioaktivität: langlebige Urnuklide und deren Zerfallsprodukte

Mehr

Szintillationszähler Zählstatistik

Szintillationszähler Zählstatistik Physikalisches Grundpraktikum IV Universität Rostock :: Institut für Physik 10 Szintillationszähler Zählstatistik Name: Daniel Schick Betreuer: Dr. Enenkel & Dr. Holzhüter Versuch ausgeführt: 01.06.05

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I K20 Name: Halbwertszeit von Rn Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

KAT e. Beta - Absorption. 1 Aufbau

KAT e. Beta - Absorption. 1 Aufbau Beta - Absorption 1 Aufbau Es soll nun die Absorption von Beta-Strahlung durch Materie (in unserem Fall Aluminium) untersucht werden. Dazu wurde mittels eines Szintillationszählers die Aktivität eines

Mehr

3. Halbleiter und Elektronik

3. Halbleiter und Elektronik 3. Halbleiter und Elektronik Halbleiter sind Stoe, welche die Eigenschaften von Leitern sowie Nichtleitern miteinander vereinen. Prinzipiell sind die Elektronen in einem Kristallgitter fest eingebunden

Mehr

1.2 Teilchendetektoren

1.2 Teilchendetektoren KAPTEL. WEKZEUGE DE KENPHYSK 6.2 Teilchendetektoren.2. Das fotografische Verfahren Energiereiche geladene Teilchen hinterlassen Spuren auf Fotoplatten. Aus der Korndichte und der Länge der Spuren kann

Mehr

Protokoll Grundpraktikum I: F7 Statistik und Radioaktivität

Protokoll Grundpraktikum I: F7 Statistik und Radioaktivität Protokoll Grundpraktikum I: F7 Statistik und Radioaktivität Sebastian Pfitzner 13. Mai 013 Durchführung: Sebastian Pfitzner (553983), Anna Andrle (55077) Arbeitsplatz: Platz Betreuer: Michael Große Versuchsdatum:

Mehr

Übersicht. Wechselwirkung ionisierender Strahlung mit Atomen Nulleffekt Strahlungsdetektoren

Übersicht. Wechselwirkung ionisierender Strahlung mit Atomen Nulleffekt Strahlungsdetektoren Übersicht Wechselwirkung ionisierender Strahlung mit Atomen Nulleffekt Strahlungsdetektoren Übersicht Gasionisationsdetektoren Szintillationszähler Halbleiterdetektor Strahlungsmessgeräte WW ion. Strahlung

Mehr

Die Entdeckung der Kosmischen Strahlung

Die Entdeckung der Kosmischen Strahlung Die Entdeckung der Kosmischen Strahlung Gerhard Gojakovich Institut für Astrophysik Universität Wien 16. November 2012 Inhaltsverzeichnis Die Ionisation der Luft Bekannte Effekte Verwendete Geräte Erste

Mehr

Schichtdickenmessung mit radioaktiven Präparaten (SchiRad)

Schichtdickenmessung mit radioaktiven Präparaten (SchiRad) TU Ilmenau Ausgabe: September 2015 Fakultät für Elektrotechnik und Informationstechnik Dr. Ho, Prof. Sp, Dr. Ku Institut für Werkstofftechnik 1 Versuchsziel Schichtdickenmessung mit radioaktiven Präparaten

Mehr

Protokoll. Versuch Nr. XVI: Messen mit ionisierender Strahlung. Gruppe 18:

Protokoll. Versuch Nr. XVI: Messen mit ionisierender Strahlung. Gruppe 18: Protokoll Versuch Nr. XVI: Messen mit ionisierender Strahlung Gruppe 18: Tuncer Canbek 108096245659 Sahin Hatap 108097213237 Ilhami Karatas 108096208063 Valentin Tsiguelnic 108097217641 Versuchsdatum:

Mehr

Versuch 19: Geiger-Müller-Zählrohr

Versuch 19: Geiger-Müller-Zählrohr Versuch 19: Geiger-Müller-Zählrohr 1. Einordung in den Kernlehrplan Kompetenzen gemäß KLP: Die Schülerinnen und Schüler - erläutern den Aufbau und die Funktionsweise von Nachweisgeräten für ionisierende

Mehr

Der radioaktive Zerfall ist ein zufälliger und nicht deterministischer Prozess. Im Mittel gehorcht er folgendem Gesetz:

Der radioaktive Zerfall ist ein zufälliger und nicht deterministischer Prozess. Im Mittel gehorcht er folgendem Gesetz: Radioaktiver Zerfall Der radioaktive Zerfall ist ein zufälliger und nicht deterministischer Prozess. Im Mittel gehorcht er folgendem Gesetz: (1) Nt () = Ne λt Aktivität Die Aktivität ist als Anzahl der

Mehr

Myonen, Botschafter aus einer anderen Generation. Verena Klose TU Dresden Institut für Kern- u. Teilchenphysik

Myonen, Botschafter aus einer anderen Generation. Verena Klose TU Dresden Institut für Kern- u. Teilchenphysik Myonen, Botschafter aus einer anderen Generation Verena Klose TU Dresden Institut für Kern- u. Teilchenphysik Übersicht Ein kurzer Ausflug vom Weltall in die Welt des unsichtbaren Kleinen Ein prominentes

Mehr

3.4. Leitungsmechanismen

3.4. Leitungsmechanismen a) Metalle 3.4. Leitungsmechanismen - Metall besteht aus positiv geladenen Metallionen und frei beweglichen Leitungselektronen (freie Elektronengas), Bsp.: Cu 2+ + 2e - - elektrische Leitung durch freie

Mehr

Beispiele für elektrische Felder: Frei bewegliche Ladungen werden im elektrischen Feld entlang der Feldlinien beschleunigt (Anwendung: Oszilloskop)

Beispiele für elektrische Felder: Frei bewegliche Ladungen werden im elektrischen Feld entlang der Feldlinien beschleunigt (Anwendung: Oszilloskop) Grundwissen Physik 9. Jahrgangsstufe Gymnasium Eckental I. Elektrik 1. Magnetisches und elektrisches Feld a) Elektrisches Feld Feldbegriff: Im Raum um elektrisch geladene Körper wirkt auf Ladungen eine

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #28 10/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Reichweite radioaktiver Strahlung Alpha-Strahlung: Wenige cm in Luft Abschirmung durch Blatt Papier,

Mehr

Gibt es myonische Atome?

Gibt es myonische Atome? Minitest 7 Das Myon it ist ein Elementarteilchen, t das dem Elektron ähnelt, jedoch jd eine deutlich höhere Masse (105,6 MeV/c 2 statt 0,511 MeV/c 2 ) aufweist. Wie das Elektron ist es mit einer Elementarladung

Mehr

SMB-20 Geiger Counter V1.0

SMB-20 Geiger Counter V1.0 SMB-20 Geiger Counter V1.0 Inhalt 1 Radioaktive Strahlung... 4 2 Das Messprinzip... 5 3 Einsatzgebiete des SMB-20 Geiger Counter... 5 4 Aufbau... 6 5 Funktionsbeschreibung... 8 5.1 Display... 9 5.2 USB...

Mehr

Praktikum II NR: Natürliche Radioativität

Praktikum II NR: Natürliche Radioativität Praktikum II NR: Natürliche Radioativität Betreuer: Dr. Torsten Hehl Hanno Rein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 06. April 2004 Made with L A TEX and Gnuplot

Mehr

Grundlagen der physikalischen Chemie 1 - Aufbau der Materie

Grundlagen der physikalischen Chemie 1 - Aufbau der Materie Grundlagen der physikalischen Chemie 1 - Aufbau der Materie Michael Schlapa Phillippe Laurentiu 17. April 2012 Semester Thema Dozent Klausurzulassung Klausur Übung Literatur 2012 SS Michael Schmitt mschmitt@uni-duesseldorf.de

Mehr

Versuch 703 Das Geiger-Müller-Zählrohr

Versuch 703 Das Geiger-Müller-Zählrohr Experimentelle Übungen für Physiker I (WS 05/06) Das Geiger-Müller-Zählrohr 13.12.2005 Abtestiert am 16.01.2006 Ziel des durchgeführten Versuchs war die Ermittlung der Charakteristiken eines Geiger-Müller-Zählrohres.

Mehr

Fortgeschrittenen - Praktikum. Gamma Spektroskopie

Fortgeschrittenen - Praktikum. Gamma Spektroskopie Fortgeschrittenen - Praktikum Gamma Spektroskopie Versuchsleiter: Bernd Zimmermann Autor: Daniel Bruns Gruppe: 10, Donnerstag Daniel Bruns, Simon Berning Versuchsdatum: 14.12.2006 Gamma Spektroskopie;

Mehr

Q 4 - Radioaktivität

Q 4 - Radioaktivität Universität - GH Essen Fachbereich 7 Physik 19.9.01 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER Versuch: Q 4 - Radioaktivität 1. Grundlagen Aufbau des Atomkerns, natürliche und künstliche Radioaktivität, Zerfallsreihen,

Mehr

NACHWEIS IONISIERENDER STRAHLUNG; TEILCHENMODELL

NACHWEIS IONISIERENDER STRAHLUNG; TEILCHENMODELL Universität Regensburg FAKULTÄT FÜR PHYSIK Arbeitsgruppe Didaktik der Physik NACHWEIS IONISIERENDER STRAHLUNG; TEILCHENMODELL GRUPPE 1: AUFBAU DER MATERIE AUS KLEINEN TEILCHEN 1.1 Führen Sie mehrere kleine

Mehr

Physikalisches Anfängerpraktikum Universität Hannover Sommersemester 2009 Kais Abdelkhalek - Vitali Müller. Versuch: D10 - Radioaktivität Auswertung

Physikalisches Anfängerpraktikum Universität Hannover Sommersemester 2009 Kais Abdelkhalek - Vitali Müller. Versuch: D10 - Radioaktivität Auswertung Physikalisches Anfängerpraktikum Universität Hannover Sommersemester 2009 Kais Abdelkhalek - Vitali Müller Versuch: D0 - Radioaktivität Auswertung Radioaktivität beschreibt die Eigenschaft von Substanzen

Mehr

Physikalische Grundlagen ionisierender Strahlung

Physikalische Grundlagen ionisierender Strahlung Physikalische Grundlagen ionisierender Strahlung Bernd Kopka, Labor für Radioisotope an der Universität Göttingen www.radioisotope.de Einfaches Atommodell L-Schale K-Schale Kern Korrekte Schreibweise

Mehr

Versuch 29. Radioaktivität. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de

Versuch 29. Radioaktivität. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de Physikalisches Praktikum für das Hauptfach Physik Versuch 29 Radioaktivität Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent:

Mehr

stabile und instabile Kerne

stabile und instabile Kerne 6.4 Stabile und instabile Kerne; Alpha, Beta, GammaStrahlung; Nachweis hochenergetischer Strahlung mit Ionisationskammer, Zählrohr und Nebelkammer; Verschiebungssätze, Zerfallsreihen Historisches Die Geschichte

Mehr

Physikalisches Fortgeschrittenenpraktikum Gamma-Koinzidenzspektroskopie. Vorbereitung

Physikalisches Fortgeschrittenenpraktikum Gamma-Koinzidenzspektroskopie. Vorbereitung Physikalisches Fortgeschrittenenpraktikum Gamma-Koinzidenzspektroskopie Vorbereitung Armin Burgmeier Robert Schittny 1 Grundlagen 1.1 Gammastrahlung Gammastrahlung ist die durchdringendste radioaktive

Mehr

Versuch P2-82: Absorption von Beta- und Gammastrahlung

Versuch P2-82: Absorption von Beta- und Gammastrahlung Versuch P2-82: Absorption von Beta- und Gammastrahlung Sommersemester 2005 Gruppe Mi-25: Bastian Feigl Oliver Burghard Inhalt Vorbereitung 1 Einleitung und Grundlagen...2 1.1 Einleitung... 2 1.2 Beta-Strahlung...

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

1. Theorie: Kondensator:

1. Theorie: Kondensator: 1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und

Mehr

Röntgenstrahlung (Mediziner)

Röntgenstrahlung (Mediziner) 1 Röntgenstrahlung (Mediziner) Versuchsziele: Physikalische Grundlagen der Röntgenstrahlung zeigen und somit die Wirkungsweise der Röntgenstrahlung in der Medizin erklären. Grundlagen: Vor dem Versuch

Mehr

Praktikumsprotokoll. vom 25.06.2002. Thema: Radioaktiver Zerfall, radioaktive Strahlung. Tutor: Arne Henning. Gruppe: Sven Siebler Martin Podszus

Praktikumsprotokoll. vom 25.06.2002. Thema: Radioaktiver Zerfall, radioaktive Strahlung. Tutor: Arne Henning. Gruppe: Sven Siebler Martin Podszus Praktikumsprotokoll vom 25.6.22 Thema: Radioaktiver Zerfall, radioaktive Strahlung Tutor: Arne Henning Gruppe: Sven Siebler Martin Podszus Versuch 1: Reichweite von α -Strahlung 1.1 Theorie: Die Reichweite

Mehr

Radioaktivität, die natürlichste Sache der Welt

Radioaktivität, die natürlichste Sache der Welt Radioaktivität, die natürlichste Sache der Welt 6. Mai 214 Inhaltsverzeichnis 1 Vorwort 2 1.1 Physik macht Spaß! Oder?........................... 2 1.2 Grundsätze des Strahlenschutzes........................

Mehr

Ideal für: Raspberry Pi, Gooseberry Board, Hackberry, Wandboard, Mele A 1000, ODROID und andere µc Boards. Auch für PC geeignet.

Ideal für: Raspberry Pi, Gooseberry Board, Hackberry, Wandboard, Mele A 1000, ODROID und andere µc Boards. Auch für PC geeignet. Produkt Geigerzähler, SBM-20 Driver Interface (Prod. Nr. #R02) Merkmale: Außenabmessungen (mm) L 118 B 27 H 16 Messbereich 27 nsv/h.. 20 msv/h Spannungsversorgung 4,7..14,0 V DC Stromverbrauch 1..2 ma

Mehr

Physikalisches Praktikum 4. Semester

Physikalisches Praktikum 4. Semester Torsten Leddig 08.Juni 2005 Mathias Arbeiter Betreuer: Dr.Enenkel Physikalisches Praktikum 4. Semester - γ-szintillationsspektroskopie - 1 Vorbetrachtung jedes radioaktive Präparat weist ein charakteristisches

Mehr

Abschwächung von γ-strahlung

Abschwächung von γ-strahlung K10 Name: Abschwächung von γ-strahlung Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine

Mehr

Physik. Abiturwiederholung. Das Elektrische Feld

Physik. Abiturwiederholung. Das Elektrische Feld Das Elektrische Feld Strom Strom ist bewegte Ladung, die Stromstärke ergibt sich also als Veränderung der Ladung nach der Zeit, also durch die Ableitung. Somit kann man die Ladung als Fläche betrachten,

Mehr

Beta- und Gamma-Absorption

Beta- und Gamma-Absorption Physikalisches Anfängerpraktikum 2 Gruppe Mo-16 Sommersemester 2006 Jens Küchenmeister (1253810) Julian Merkert (1229929) Versuch: P2-82 Beta- und Gamma-Absorption - Vorbereitung - Vorbemerkung In diesem

Mehr

Messung kosmischer Myonen

Messung kosmischer Myonen Messung kosmischer Myonen - Fortbildung für Lehrkräfte Belina von Krosigk Prof. Dr. Kai Zuber, Arnd Sörensen 27. 04. 2013 1 Kosmische Strahlung 2 Kosmische Teilchenschauer Primäre kosmische Strahlung:

Mehr

Michelson-Interferometer & photoelektrischer Effekt

Michelson-Interferometer & photoelektrischer Effekt Michelson-Interferometer & photoelektrischer Effekt Branche: TP: Autoren: Klasse: Physik / Physique Michelson-Interferometer & photoelektrischer Effekt Cedric Rey David Schneider 2T Datum: 01.04.2008 &

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Reichweite von α-strahlen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Versuch B 12: Geschwindigkeit von.-teilchen

Versuch B 12: Geschwindigkeit von.-teilchen - B12.1 - Versuch B 12: Geschwindigkeit von.-teilchen 1. Literatur: Gerthsen/Kneser/Vogel, Physik Bergmann-Schaefer, Lehrbuch der Experimentalphysik, Bd. IV,2: Aufbau der Materie Schpolski, Atomphysik,

Mehr

Elektrizitätslehre 2.

Elektrizitätslehre 2. Elektrizitätslehre. Energieumwandlung (Arbeit) im elektrischen Feld Bewegung einer Ladung gegen die Feldstärke: E s Endposition s Anfangsposition g W F Hub s r F Hub r Fq FHub Eq W qes W ist unabhängig

Mehr

Einführungsseminar S2 zum Physikalischen Praktikum

Einführungsseminar S2 zum Physikalischen Praktikum Einführungsseminar S2 zum Physikalischen Praktikum 1. Organisatorisches 2. Unterweisung 3. Demo-Versuch Radioaktiver Zerfall 4. Am Schluss: Unterschriften! Praktischer Strahlenschutz Wechselwirkung von

Mehr

Netzwerk Teilchenwelt

Netzwerk Teilchenwelt Netzwerk Teilchenwelt Ziel: moderne Teilchenphysik entdecken und erleben 18.10.2011 Carolin Schwerdt, Netzwerk Teilchenwelt c/o DESY Spuren hochenergetischer Teilchen im CMS-Detektor Spuren kosmischer

Mehr

Gasgefüllte Strahlungsdetektoren

Gasgefüllte Strahlungsdetektoren Gasgefüllte Strahlungsdetektoren Inhalt 0. Einleitung 1. Teil A: Ionisationskammern 1.1. Die Ionisationskammer 2. Teil B: Zählrohre 2.1 Das Proportionalzählrohr 2.2 Das Geiger-Müller-Zählrohr 2.3 Empfindlichkeit

Mehr

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Feld Unterschiede: Beschreibung Ursache Kräfte auf elektrisches Feld Das elektrische Feld ist der besondere Zustand des

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg PROTOKOLL Modul: Versuch: Physikalische Eigenschaften I. VERSUCHSZIEL Die

Mehr

K9H PhysikalischesGrundpraktikum

K9H PhysikalischesGrundpraktikum K9H PhysikalischesGrundpraktikum Abteilung Kernphysik Szintillationsdetektoren, Koinzidenzspektroskopie und ihre Anwendung 1 Lernziele Im Versuch K9 lernen Sie einen der wichtigsten Detektortypen im Bereich

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #35 am 28.06.2007 Vladimir Dyakonov Leitungsmechanismen Ladungstransport in Festkörpern Ladungsträger

Mehr

4. Semester Erweitertes Anforderungsniveau 4. Radioaktivität, Atomkerne (RLP 4.8)

4. Semester Erweitertes Anforderungsniveau 4. Radioaktivität, Atomkerne (RLP 4.8) 4. Semester Erweitertes Anforderungsniveau 4. Radioaktivität, Atomkerne (RLP 4.8) 4.1 Radioaktive Strahlung (9 h) 4.2 Zerfallsgesetze (6 h) 4.3 Biologische Wirkung radioaktiver Strahlung (4 h) 4.4 Kernspaltung

Mehr

Physikalisches Praktikum I. PTC und NTC Widerstände. Fachbereich Physik. Energielücke. E g. Valenzband. Matrikelnummer:

Physikalisches Praktikum I. PTC und NTC Widerstände. Fachbereich Physik. Energielücke. E g. Valenzband. Matrikelnummer: Fachbereich Physik Physikalisches Praktikum I Name: PTC und NTC Widerstände Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von

Mehr

Quantenphysik in der Sekundarstufe I

Quantenphysik in der Sekundarstufe I Quantenphysik in der Sekundarstufe I Atome und Atomhülle Quantenphysik in der Sek I, Folie 1 Inhalt Voraussetzungen 1. Der Aufbau der Atome 2. Größe und Dichte der Atomhülle 3. Die verschiedenen Zustände

Mehr

11. GV: Radioaktivität

11. GV: Radioaktivität Physik Praktikum I: WS 005/06 Protokoll zum Praktikum Dienstag, 15.11.05 11. GV: Radioaktivität Protokollanten Jörg Mönnich - Anton Friesen - Betreuer R. Kerkhoff Radioaktivität Einleitung Unter Radioaktivität

Mehr

Schulversuchspraktikum. 4. Protokoll. Kernphysik. (5. und 8. Klasse Oberstufe) Dana Eva Ernst 9955579

Schulversuchspraktikum. 4. Protokoll. Kernphysik. (5. und 8. Klasse Oberstufe) Dana Eva Ernst 9955579 Schulversuchspraktikum 4. Protokoll Kernphysik (5. und 8. Klasse Oberstufe) Dana Eva Ernst 9955579 Linz, am 24.11.2002 Inhaltsverzeichnis Kapitel I - Thema und Ziele 3 Kapitel II - Grundbegriffe 2.1. Radioaktivität

Mehr

Text 1 Expertengruppe B: Der Aufbau des Atomkerns

Text 1 Expertengruppe B: Der Aufbau des Atomkerns Text 1 Expertengruppe B: Der Aufbau des Atomkerns Durch Experimente mit Gasentladungsröhren (ähnlich den heutigen Leuchtstoffröhren) kam man schon im 19. Jahrhundert zu der Erkenntnis, dass Atome Teilchen

Mehr

Praktikum Radioaktivität und Dosimetrie" GEIGER-MÜLLER-Zählrohr

Praktikum Radioaktivität und Dosimetrie GEIGER-MÜLLER-Zählrohr Praktikum Radioaktivität und Dosimetrie" GEIGER-MÜLLER-Zählrohr 1. Aufgabenstellung 1.1 Aufnahme der Charakteristik eines GEIGER-MÜLLER-Zählrohres und graphische Darstellung. Aus dem Graph sind Einsatzspannung,

Mehr

Kernphysik UNTERSTUFE

Kernphysik UNTERSTUFE 0 SVPRAKTIKUM Wintersemester 01/02 Kernphysik UNTERSTUFE von Tosun Muhammet (9856877) 1) GRUNDLAGEN 1 a) Motivation 1 b) Vorraussetzungen 1 c) Lernziele lt. Lehrplan 2) EIN BISSCHEN THEORIE 2 3) VERSUCHE

Mehr

Physik GK ph1, 2. Kursarbeit Elektromagnetismus Lösung =10V ein Strom von =2mA. Berechne R 0.

Physik GK ph1, 2. Kursarbeit Elektromagnetismus Lösung =10V ein Strom von =2mA. Berechne R 0. Physik GK ph,. Kursarbeit Elektromagnetismus Lösung.04.05 Aufgabe : Stromkreise / Ohmsches Gesetz. Durch einen Widerstand R 0 fließt bei einer Spannung von U 0 =0V ein Strom von I 0 =ma. Berechne R 0.

Mehr

Grundwissen Physik 9. Jahrgangsstufe

Grundwissen Physik 9. Jahrgangsstufe Grundwissen Physik 9. Jahrgangsstufe I. Elektrizitätslehre und Magnetismus 1. a) Geladene Teilchen, die sich in einem Magnetfeld senkrecht zu den Magnetfeldlinien bewegen, erfahren eine Kraft (= Lorentzkraft),

Mehr

Uran. Uran ist ein silberglänzendes, weiches, radioaktives Metall. Es bildet eine Vielzahl verschiedener Legierungen.

Uran. Uran ist ein silberglänzendes, weiches, radioaktives Metall. Es bildet eine Vielzahl verschiedener Legierungen. Uran Uran ist ein silberglänzendes, weiches, radioaktives Metall. Es bildet eine Vielzahl verschiedener Legierungen. Bei Raumtemperatur läuft auch massives Uranmetall an der Luft an. Dabei bilden sich

Mehr

Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen

Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II Experimente mit Elektronen 1 Lösungen zum Niedersachsen Physik Abitur 2012-Grundlegendes Anforderungsniveau Aufgabe II xperimente mit lektronen 1 1.1 U dient zum rwärmen der Glühkathode in der Vakuumröhre. Durch den glühelektrischen

Mehr

Massenspektrometrie (MS)

Massenspektrometrie (MS) Massenspektrometrie (MS) Die Massenspektrometrie ist unter den heute routinemäßig verwendeten Methoden die jüngste, denn ihre Anwendung begann erst um 1960. Seit den Arbeiten von BIEMANN über Fragmentierungsmuster

Mehr

2/2: AUFBAU DER ATOMHÜLLE Tatsächlich gilt: Modul 2 - Lernumgebung 2 - Aufbau der Atomhülle

2/2: AUFBAU DER ATOMHÜLLE Tatsächlich gilt: Modul 2 - Lernumgebung 2 - Aufbau der Atomhülle Tatsächlich gilt: Modul 2 - Lernumgebung 2 - Aufbau der Atomhülle Informationsblatt: Zusammenhang von Farbe und des Lichts Die der Lichtteilchen nimmt vom roten über gelbes und grünes Licht bis hin zum

Mehr

Versuch 28. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de

Versuch 28. Wintersemester 2005 / 2006. Daniel Scholz. physik@mehr-davon.de Physikalisches Praktikum für das Hauptfach Physik Versuch 28 Röntgenstrahlung Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent:

Mehr

Grundwissen Physik (9. Klasse)

Grundwissen Physik (9. Klasse) Grundwissen Physik (9. Klasse) 1 Elektrodynamik 1.1 Grundbegriffe Elektrische Ladung: Es gibt zwei Arten elektrischer Ladung, die man als positiv bzw. negativ bezeichnet. Kräfte zwischen Ladungen: Gleichnamige

Mehr

Das magnetische Feld

Das magnetische Feld Das Magnetfeld wird durch Objekte erzeugt und wirkt gleichzeitig auf Objekte repräsentiert die Kraftwirkung aufgrund des physikalischen Phänomens Magnetismus ist gerichtet und wirkt vom Nordpol zum Südpol

Mehr

1 Dorn Bader Physik der Struktur der Materie

1 Dorn Bader Physik der Struktur der Materie 1 Dorn Bader Physik der Struktur der Materie 1.1 S. 308 Nachweisgeräte A 2: a) Was lässt sich aus der Länge der Spuren in einer Nebelkammer folgern? Die Länge der Spuren in der Nebelkammer sind ein Maß

Mehr

Lernaufgabe: Halbleiterdiode 1

Lernaufgabe: Halbleiterdiode 1 1 Organisation Gruppeneinteilung nach Plan / Zeit für die Bearbeitung: 60 Minuten Lernziele - Die Funktionsweise und das Schaltverhalten einiger Diodentypen angeben können - Schaltkreise mit Dioden aufbauen

Mehr

ANALYSEN GUTACHTEN BERATUNGEN. aktuelle Kurzinformationen zu

ANALYSEN GUTACHTEN BERATUNGEN. aktuelle Kurzinformationen zu ANALYSEN GUTACHTEN BERATUNGEN aktuelle Kurzinformationen zu Radioaktivität Stand Mai 2011 Institut Kirchhoff Berlin GmbH Radioaktivität Radioaktivität (von lat. radius, Strahl ; Strahlungsaktivität), radioaktiver

Mehr

Abstandsgesetz und Absorption von γ-strahlen

Abstandsgesetz und Absorption von γ-strahlen INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Abstandsgesetz und Absorption von γ-strahlen 1. Einleitung Ähnlich

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

t ½ =ln(2)/(1,2*1/h). 0,7/(1,2*1/h) 0,6h 4

t ½ =ln(2)/(1,2*1/h). 0,7/(1,2*1/h) 0,6h 4 1 Wie kann man α, β, γ-strahlen unterscheiden? 1 Im elektrischen Feld (+ geladene Platte zieht e - an, - geladene Platte α-teilchen) und magnetischen Feld (α rechte Hand- Regel, β linke Hand-Regel). γ-strahlen

Mehr

Halbwertszeit (Barium)

Halbwertszeit (Barium) Universität Potsdam Institut für Physik und Astronomie Grundpraktikum K3 Halbwertszeit (Barium) ACHTUNG: Dieses Experiment ist nicht für Schwangere zugelassen! Bitte rechtzeitig ein anderes Experiment

Mehr

Versuch O

Versuch O 1 Grundlagen Plancksches Wirkungsquantum Das Plancksche Wirkungsquantum gibt den Zusammenhang zwischen Energie und Frequenz wieder und verknüpft damit die Welleneigenschaft mit der Teilcheneigenschaft.

Mehr