Energie aus Kernkraft Seminar Uni Potsdam, Institut für Physik und Astronomie

Größe: px
Ab Seite anzeigen:

Download "Energie aus Kernkraft Seminar Uni Potsdam, Institut für Physik und Astronomie"

Transkript

1 Energie aus Kernkraft Seminar Uni Potsdam, Institut für Physik und Astronomie , Regenstein, Gebert, Schmidt, Wüsthoff, Guber, Polster 1

2 physikalische Grundlagen der Kernenergietechnik , Christoph Guber 2

3 Roadmap Begriffe Wie fest sind Nukleonen gebunden? Spaltung: warum U, warum U235, Wirk.-querschnitte, Energiebilanzen, Moderation, Kettenreaktion, verzögerte Neutronen, Brutreaktionen Forschungsreaktoren im Pulsbetrieb gute Nacht - Geschichte

4 Erinnerung Positiv geladene Teilchen stoßen sich ab El/stat Abstoßung zwischen zwei Protonen im Abstand 10^-15m: F~250N -> m=f/g=23kg!!! Offensichtlich gibt es eine auf dieser kurzen Reichweite viel stärkere Kernkraft

5 Bausteine der Welt

6 Bausteine der Welt Proton: udu Neutron: dud Konstituenten-& See -quarks in den Nukleonen -Kernkräfte zwischen Nukleonen Als Rest der Farb -kräfte (speziell Austausch von Mesonen (q-anti-q-paare))

7 Was ist ein Potential V(x)?

8 Was ist Bindungsenergie? = Energie, die man aufwenden muss, gebundenes System in seine Einzelteile zu zerlegen, bzw. einen einzelnen Baustein zu entfernen Dieses Energie wird beim Zusammenbauen FREI Bsp.: eff. Gravitations- potential

9 Wie stark sind Nukleonen im Kern gebunden? Halbempirische Formel von Hans Bethe & C.F.Weizsäcker:

10 Volumenterm Kurze Reichweite der Kernkraft nahezu NUR zwischen direkt benachbarten Nukleonen

11 Oberflächenterm Je größer die Oberfläche, desto kleiner EBind

12 Asymmetrieterm Pauliprinzip: Maximierung von EBind für N=Z

13 Asymmetrieterm Pauliprinzip: Maximierung von EBind für A=Z

14 Coulombterm -Kernkraft nur zwischen nächsten Nachbarn, Protonen sehen aber die positive Ladung ALLER anderen Protonen im Kern

15 Paarungsterm Gepaarte Nukleonen fester gebunden (letztes Nukleon muss nicht in neues Paulizimmer) Besser noch: Magische gg-kerne: Volle Schalen wie im Atom- Modell Helium, Xenon, z.b.:

16 Halbempirische Formel von Hans Bethe & C.F.Weizsäcker:

17 Kernspaltung Masse der Produkte kleiner als Masse der Edukte steckt jetzt vorwiegend in Ekin

18 Kernspaltung Masse der Produkte kleiner als Masse der Edukte steckt jetzt vorwiegend in Ekin

19 Warum U-235 oder was ist ein Wirkungsquerschnitt? Spaltung vs. Absorption

20 Spaltbarriere

21 Spaltverteilung / Energiebilanz Nachzerfallswärme: Radioaktiver Zerfall der instabilen Spaltprodukte (zu viele n)

22 Spaltverteilung / Energiebilanz

23 Moderation <En>=1,5Mev Wir brauchen En=0,025eV=kT Idee: Stöße Wie schwer sollte Stoßpartner sein? -> Wasserstoffkerne

24 Absorption vs. Abbremsung

25 Temperatureffekte Wie reagiert Reaktor auf Leistungs-bzw. Temperaturerhöhung (Temperaturkoeffizient dr/dt)? -Dopplerverbreiterung der Absorptionsresonanzen -Moderation-u. Kühlmitteltemperaturkoeffizient Bsp: Dampfblaseneffekt bei SWR und RBMK: Leistung steigt Temperatur steigt Dampfblasenbildung Weniger Neutronen werden absorbiert (reaktivitätssteigernder Effekt) Neutronen werden schlechter abgebremst (moderiert) (reaktivitätssenkender Effekt) Bei SWR dominiert 2. Effekt, bei RBMK 1. Effekt gewisse Selbstregelung vs. Durchgehen

26 Kettenreaktion / Kritikalität kritisch durch: Masse/Geometrie/Moderation/Reflektoren (Neutronen-)Multiplikationsfaktor k: Nn+1 = k * Nn Stabile Kettenreaktion <->k=1 Zeit zw. 2 Generationen: ~0,00021s Bsp. k:=1.001 Wann hat sich Neutronenzahl verdoppelt?

27 Kettenreaktion / Kritikalität kritisch durch: Masse/Geometrie/Reflektoren/Moderation Multiplikationsfaktor k: Nn+1 = k * Nn Stabile Kettenreaktion <->k=1 Generationenzeit ~0,00021s k:=1.001 Antwort: 0,15s BOOM!!!

28 Kettenreaktion / Kritikalität Warum endet nicht jeder Kernreaktor als Atombombe? Antwort: ß=0,65% der Neutronen werden verzögert (13s) emittiert. Wieder: k:=1,001 Wann hat sich Neutronenzahl verdoppelt?

29 Kettenreaktion / Kritikalität Warum endet nicht jeder Kernreaktor als Atombombe? Antwort: ß=0,65% der Neutronen werden verzögert (13s) emittiert. Wieder: k:=1,001 Wann hat sich Neutronenzahl verdoppelt? Antwort: 60s Verzögerte Neutronen erhöhen Verdopplungszeit um Vielfaches Dadurch Regelung überhaupt erst denkbar

30 Kettenreaktion / Kritikalität kritisch durch: Masse/Geometrie/Reflektoren/Moderation Reaktivität in Dollar & Cent R:=1-1/k R=1$ <-> R=ß k<1 unterkritisch R<0 k=1 kritisch R=0 1< k< 1+ß verzögert kritisch 0<R<ß k > 1+ß prompt kritisch R>ß

31 Kettenreaktion / Kritikalität kritisch durch: Masse/Geometrie/Reflektoren/Moderation Reaktivität in Dollar & Cent R:=1-1/k R=1$ <-> R=ß k<1 unterkritisch R<0 k=1 kritisch R=0 1< k< 1+ß verzögert kritisch 0<R<ß k > 1+ß prompt kritisch R>ß

32 Forschungsreaktoren im Pulsbetrieb ß:= 1Dollar Tscherenkov-Strahlung Reaktivität R:= 1-1/k in Einheiten von Dollar und Cent R=2$ und ß=0,0065 ->k=1,01317 ß-Strahlung & Sekundärelektronen schneller als Licht

33 Brutreaktionen U238+n -> U239* -ß-> Np239 ß-> Pu239 -T1/2 (Pu239)= Jahre -Pu239 gut mit langsamen Neutronen spaltbar ->Wiederaufbereitung und MOX-Brennelemente -in schnellen Brutreaktoren wird mehr Brennstoff erzeugt als verbraucht -in LWR: ca. 1/3 der Energie aus Spaltung von Pu

34 Auf selbe Art entstehen auch andere Isotope von Pu, Am, Cm mit z.t. sehr hässlichen Halbwertszeiten Problem bei der Endlagerung Partitionierung und Transmutation? Xenon-u. Samariumvergiftung

35 Die letzten Tage im Leben des Louis Slotin

36 Energie aus Kernkraft Seminar Uni Potsdam, Institut für Physik und Astronomie , Regenstein, Gebert, Schmidt, Wüsthoff, Guber, Polster 36

Energie aus Kernkraft Seminar Uni Potsdam, Institut für Physik und Astronomie

Energie aus Kernkraft Seminar Uni Potsdam, Institut für Physik und Astronomie Energie aus Kernkraft Seminar Uni Potsdam, Institut für Physik und Astronomie 12.04.2011, Regenstein, Gebert, Schmidt, Wüsthoff, Guber, Polster 1 Was haben wir vor? 12.04.2011 2 Was haben wir vor? Loriot

Mehr

Kernreaktionen. d + 2 H 3 He + n, Q= 3.26MeV d + 3 H 4 He + n, Q= 17.6MeV Quellstärke /s mit keV Deuteronen Energieabhängigkeit

Kernreaktionen. d + 2 H 3 He + n, Q= 3.26MeV d + 3 H 4 He + n, Q= 17.6MeV Quellstärke /s mit keV Deuteronen Energieabhängigkeit Kernreaktionen d + 2 H 3 He + n, Q= 3.26MeV d + 3 H 4 He + n, Q= 17.6MeV Quellstärke 10 10 /s mit 100-300keV Deuteronen Energieabhängigkeit 4 E n = E d + 2 (2 E d E n ) 1/2 cos(θ) + 3Q E d = 300 kev Emission

Mehr

n U f 1 * + f 2 * + ν n

n U f 1 * + f 2 * + ν n Ergänzungen zu Kapitel 3.5: Kernspaltung Ablauf des Spaltprozesses: n + 235 U f 1 * + f 2 * + ν n Es entstehen i. Allg. hochangeregte Spaltprozesse f 1 *, f 2 * Diese liegen weit weg vom Tal der stabilen

Mehr

Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel

Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Kernphysik I Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Massendefekt und Bindungsenergie Kerne sind die einzigen gebundenen Systeme,

Mehr

Reactor Operating. Inhalte

Reactor Operating. Inhalte Reactor Operating Kernkraftwerke Gundremmingen Siedewasserreaktor Inhalte Kritikalität Neutronenflüsse Neutronenbilanzen Reaktivität Überschussreaktivität Verzögerte Neutronen Reaktorperiode Anfahren des

Mehr

15 Kernphysik Physik für E-Techniker. 15 Kernphysik

15 Kernphysik Physik für E-Techniker. 15 Kernphysik 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität ität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 1553K 15.5.3 Kettenreaktion 15. Kernphysik

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne Inhalt 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion Der Atomkern

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 426 - Physik B3 9.3 Kernenergie Kernenergie ist eine interessante Möglichkeit, nutzbare Energie zu gewinnen. Das kann man sehen wenn man vergleicht, wie viel Energie in 1 kg unterschiedlicher

Mehr

Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel

Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Kernphysik I Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Massendefekt und Bindungsenergie Kerne sind die einzigen gebundenen Systeme,

Mehr

Wiederholung: Spaltung und Fusion

Wiederholung: Spaltung und Fusion Wiederholung: Spaltung und Fusion Tröpfchenmodell: Stabilste Kerne liegen im Bereich A~60 Große Energiemenge kann bei der Spaltung eines schweren Kernes in zwei mittelschwere Kerne und bei der Fusion von

Mehr

41. Kerne. 33. Lektion Kerne

41. Kerne. 33. Lektion Kerne 41. Kerne 33. Lektion Kerne Lernziel: Kerne bestehen aus Protonen und Neutronen, die mit starken, ladungsunabhängigen und kurzreichweitigen Kräften zusammengehalten werden Begriffe Protonen, Neutronen

Mehr

Radioaktivität. den 7 Oktober Dr. Emőke Bódis

Radioaktivität. den 7 Oktober Dr. Emőke Bódis Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.

Mehr

Atomkerne und Kernmaterie

Atomkerne und Kernmaterie Atomkerne und Kernmaterie Atomkerne 1000 m 10 cm 1 cm < 0.01 mm Kernmaterie ρ = 4 10 17 kg/m³ Struktur von Atomkernen Atomkerne sind eine Agglomeration von Nukleonen (Protonen und Neutronen), die durch

Mehr

Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität

Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität Radioaktive Strahlung Entstehung Nutzen Gefahren du weisst, Lernziele zu Radioaktivität 1 dass Elementarteilchen nur bedingt «elementar» sind. welche unterschiedlichen Arten von radioaktiven Strahlungen

Mehr

41. Kerne. 34. Lektion. Kernzerfälle

41. Kerne. 34. Lektion. Kernzerfälle 41. Kerne 34. Lektion Kernzerfälle Lernziel: Stabilität von Kernen ist an das Verhältnis von Protonen zu Neutronen geknüpft. Zu viele oder zu wenige Neutronen führen zum spontanen Zerfall. Begriffe Stabilität

Mehr

Kernmodelle. Tröpfchenmodell ( > Massen/Bindungsenergien, Neutronenüberschuss schwerer Kerne)

Kernmodelle. Tröpfchenmodell ( > Massen/Bindungsenergien, Neutronenüberschuss schwerer Kerne) Kernmodelle Plural! Kein Modell beschreibt alle Kerneigenschaften Nukleonen im Kern wechselwirken im Wesentlichen nur mit nächsten Nachbarnukleonen, daher Kerneigenschaften im Prinzip aus Nukleon Nukleon

Mehr

9. Kernphysik 9.1. Zusammensetzung der Atomkerne

9. Kernphysik 9.1. Zusammensetzung der Atomkerne Prof. Dieter Suter Physik B2 SS 01 9. Kernphysik 9.1. Zusammensetzung der Atomkerne 9.1.1. Nukelonen Die Atomkerne bestehen aus Protonen und Neutronen. Die Zahl der Nukleonen wird durch die Massenzahl

Mehr

4. Radiochemie und Kerntechnik

4. Radiochemie und Kerntechnik 4. Radiochemie und Kerntechnik Bindungsenergiekurve - Für alle Atomkerne mit Nukleonenzahlen zwischen 30 und 150 beträgt die mittlere Bindungsenergie je Nukleon ca. 8,5 MeV die halbempirische Bethe-Weizsäcker-Formel

Mehr

Kernenergie. Handout zum Vortrag im Rahmen des Fortgeschrittenenseminars im SS 13. Sonja Spies. Betreuung: Prof. Dr. Frank Maas

Kernenergie. Handout zum Vortrag im Rahmen des Fortgeschrittenenseminars im SS 13. Sonja Spies. Betreuung: Prof. Dr. Frank Maas Kernenergie Handout zum Vortrag im Rahmen des Fortgeschrittenenseminars im SS 13 Sonja Spies Betreuung: Prof. Dr. Frank Maas 1 Inhaltsverzeichnis 1 Einleitung 2 2 Physikalische Grundlagen 2 2.1 Bindungsenergie.........................

Mehr

Wechselwirkung von Neutronen

Wechselwirkung von Neutronen Wechselwirkung von Neutronen Inhalt des 8.Kapitels Freie Neutronen Kernreaktionen und Kernspaltung Neutronenenergien Reaktionsarten von Neutronen Neutronenwechselwirkungen im Gewebe Abschirmung von Neutronen

Mehr

Kernreaktionen chemisch beschrieben

Kernreaktionen chemisch beschrieben Physics Meets Chemistry Kernreaktionen chemisch beschrieben 1 Kernreaktionen chemisch beschrieben 1. Ausgangslage 2. Ziele 3. Unterrichtsvorschlag mit Übungen Physics Meets Chemistry Kernreaktionen chemisch

Mehr

Oberthema: Atom- und Kernenergie Datum: Thema: Kernkraftwerke (nach Lehrbuch Dorn-Bader zusammengestellt) Seite: 2 von 6

Oberthema: Atom- und Kernenergie Datum: Thema: Kernkraftwerke (nach Lehrbuch Dorn-Bader zusammengestellt) Seite: 2 von 6 Thema: Kernkraftwerke (nach Lehrbuch Dorn-Bader zusammengestellt) Seite: 2 von 6 Grundlagen der Kernspaltung 1. Neutronen müssen langsam sein! Warum müssen kernspaltende Neutronen langsam sein? Viele Neutronen,

Mehr

Kernenergie

Kernenergie Johannes Gutenberg - Universität Mainz Institut für Kernphysik Seminar: Kern- und Teilchenphysik (Fortgeschrittenen - Praktikum) Leitung: PD Dr. Patrick Achenbach Wintersemester 2011 / 2012 Kernenergie

Mehr

Atomenergie durch Kernspaltung

Atomenergie durch Kernspaltung Atomenergie durch Sommerakademie Salem 2008 Die Zukunft der Energie 17. August - 30. August 2008 Atomenergie durch Inhalt 1 Kernphysik Grundlagen Bindungsenergie Bethe-Weizsäcker-Formel Radioaktivität

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

3) Natürliche und künstliche Radioaktivität (1)

3) Natürliche und künstliche Radioaktivität (1) 3) Natürliche und künstliche Radioaktivität (1) Kosmische Strahlung - Protonen (93 %) - Alpha-Teilchen (6.3 %) - schwerere Kerne (0. %) - Ohne Zerfallsreihen - 0 radioaktive Nuklide, die primordial auf

Mehr

Atombau. Chemie. Zusammenfassungen. Prüfung Mittwoch, 14. Dezember Elektrische Ladung. Elementarteilchen. Kern und Hülle

Atombau. Chemie. Zusammenfassungen. Prüfung Mittwoch, 14. Dezember Elektrische Ladung. Elementarteilchen. Kern und Hülle Chemie Atombau Zusammenfassungen Prüfung Mittwoch, 14. Dezember 2016 Elektrische Ladung Elementarteilchen Kern und Hülle Atomsorten, Nuklide, Isotope Energieniveaus und Schalenmodell Steffi Alle saliorel

Mehr

Protokoll zum Versuch Reaktor (RE) im Fortgeschrittenenpraktikum

Protokoll zum Versuch Reaktor (RE) im Fortgeschrittenenpraktikum 21 November, 2008 Protokoll zum Versuch Reaktor (RE) im Fortgeschrittenenpraktikum Klaus Steiniger, Alexander Wagner, Gruppe 850 klaus.steiniger@physik.tu-dresden.de, alexander.wagner2@mailbox.tu-dresden.de

Mehr

Kernmodelle! Inhalt: Kernradien Bindungenergien MassenbesFmmung Tröpfchenmodell Fermigas Model Kernspin und magnefsches Moment Schalenmodell

Kernmodelle! Inhalt: Kernradien Bindungenergien MassenbesFmmung Tröpfchenmodell Fermigas Model Kernspin und magnefsches Moment Schalenmodell Inhalt: Kernradien Bindungenergien MassenbesFmmung Tröpfchenmodell Fermigas Model Kernspin und magnefsches Moment Schalenmodell Kernmodelle! Kerne sind zusammengesetzte Systeme aus Protonen und Neutronen:

Mehr

Struktur des Atomkerns

Struktur des Atomkerns Struktur des Atomkerns den 6 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Struktur des Atomkerns. Die Eigenschaften des Kernkraftes. Bindungsenergie. Massendefekt. Tröpfchenmodell und Schallmodell. Magische

Mehr

Experimentalphysik 4 - SS11 Physik der Atome und Kerne

Experimentalphysik 4 - SS11 Physik der Atome und Kerne Experimentalphysik 4 - SS Physik der Atome und Kerne Prof. Dr. Tilman Pfau 5. Physikalisches Institut Übungsblatt 06 Besprechung: 8. Juni Aufgabe : Koeffizient a C des Coulomb-Terms 4 Punkte In dieser

Mehr

Neutronen aus Kernreaktionen, welche in Teilchenbeschleunigern ausgelöst wurden Beispiel: < 0,5 ev 0,5 ev bis 10 kev 10 kev bis 20 MeV > 20 MeV

Neutronen aus Kernreaktionen, welche in Teilchenbeschleunigern ausgelöst wurden Beispiel: < 0,5 ev 0,5 ev bis 10 kev 10 kev bis 20 MeV > 20 MeV KERN-/TEILCHENPHYSIK Neutronen Neutronenquellen Freie Neutronen werden durch Kernreaktionen erzeugt. Dabei gibt es eine Vielzahl von Möglichkeiten, die sich nach der Neutronenausbeute, der Neutronenenergie

Mehr

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick)

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick) Masse etwa 1 u = 1.6605e-27 kg = 931.5 MeV/c^2 Neutron (Entdeckung 1932 James Chadwick) Kraft Reichweite (cm) Stärke bei 10 13 cm im Vergleich zu starker Kraft Gravitation unendlich 10 38 elektrische Kraft

Mehr

7 Ausblick auf Kerntechnik und Elementarteilchenphysik

7 Ausblick auf Kerntechnik und Elementarteilchenphysik 7 Ausblick auf Kerntechnik und Elementarteilchenphysik 7.1 Grundlagen der Kernenergietechnik; Kernspaltung, Kernenergie; Entsorgung, Wiederaufbereitung Kernspaltung 1938 entdeckten Otto Hahn (1879-1968,

Mehr

2) Kernstabilität und radioaktive Strahlung (2)

2) Kernstabilität und radioaktive Strahlung (2) 2) Kernstabilität und radioaktive Strahlung (2) Periodensystem der Elemente vs. Nuklidkarte ca. 115 unterschiedliche chemische Elemente Periodensystem der Elemente 7 2) Kernstabilität und radioaktive Strahlung

Mehr

Bindungsenergie pro Nukleon

Bindungsenergie pro Nukleon Q 2 = konst Bindungsenergie pro Nukleon a a 1 Volumen a2 a Oberfläche a3 a Coulomb a4 a Symm a5 a Paar Qualitativer Energieverlauf bei Variation des Abstandes 1/v 1/ E Zahl n der Stöße bis zur Thermalisierung

Mehr

1. Aufbau des Atomkerns

1. Aufbau des Atomkerns 801-1 1.1 Bausteine des Atomkerns VIII. Der Atomkern und Kernstrahlung 1. Aufbau des Atomkerns 1.1 Bausteine des Atomkerns Der Atomkern ist aus den Nukleonen aufgebaut. Dazu gehören die Protonen (p) und

Mehr

Arbeitsfragen zur Vorbereitung auf den Quali

Arbeitsfragen zur Vorbereitung auf den Quali Arbeitsfragen zur Vorbereitung auf den Quali Atombau 1 Was bedeutet das Wort Atom? 2 Welche Aussage mache Dalton über die Atome? 3 Was ist der größte Teil eines Atoms? 4 Was sind Moleküle? 5 Durch welchen

Mehr

B Kernenergie. 1 Physikalische Grundlagen. 1.1 Maßeinheiten der Atomphysik. 1.2 Massendefekt

B Kernenergie. 1 Physikalische Grundlagen. 1.1 Maßeinheiten der Atomphysik. 1.2 Massendefekt -VI.B1- B Kernenergie 1 Physikalische Grundlagen 1.1 Maßeinheiten der Atomphysik Da die üblichen Einheiten für Masse und Energie in der Atom und Kernphysik zu groß sind, benutzt man hier üblicherweise

Mehr

Ergebnis: Atome haben einen Durchmesser im Bereich von m (Zehnmillionstelmillimeter).

Ergebnis: Atome haben einen Durchmesser im Bereich von m (Zehnmillionstelmillimeter). Atome 1 Größenordnung Ölfleckversuch: Auf die Wasseroberfläche wird eine so kleine Menge an Öl aufgebracht, dass sich eine monomolekulare Schicht (nur ein Molekül dick) bildet. Der Trick besteht darin,

Mehr

= strahlungsaktiv; Teilchen oder Energie abstrahlend. Eine dem Licht verwandte energiereiche Strahlung, die bei vielen Kernprozessen auftritt.

= strahlungsaktiv; Teilchen oder Energie abstrahlend. Eine dem Licht verwandte energiereiche Strahlung, die bei vielen Kernprozessen auftritt. Radioaktivität 1 Die Bausteine des Kernes (n 0 und p + ) halten mittels der sehr starken aber nur über eine sehr kurze Distanz wirkenden Kernkräfte zusammen. Sie verhindern ein Auseinanderbrechen der Kerne

Mehr

1. Prinzipien der Kernenergienutzung. 3. Ein technischer Vorschlag zur Transmutation. 4. Die Grundlagenforschung bei der GSI

1. Prinzipien der Kernenergienutzung. 3. Ein technischer Vorschlag zur Transmutation. 4. Die Grundlagenforschung bei der GSI Zur Lösung des Problems radioaktiver Abfälle mit kernphysikalischen Methoden Karl-Heinz Schmidt, GSI 1. Prinzipien der Kernenergienutzung 2. Das Abfallproblem 3. Ein technischer Vorschlag zur Transmutation

Mehr

Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) Sommersemester 2017

Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) Sommersemester 2017 Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) Sommersemester 2017 Übungsblatt Nr. 6: Musterlösungen Aufgabe 1: Zerfallsreihen und radioaktives Gleichgewicht a) Die Anzahl der Nuklide in

Mehr

Kapitel 5. Kernmodelle. 5.1 Tröpfchenmodell

Kapitel 5. Kernmodelle. 5.1 Tröpfchenmodell Kapitel 5 Kernmodelle Da Atomkerne Vielteilchensysteme sind, kann man sie praktisch nicht mit analytischen Methoden berechnen, und ist deshalb auf Modelle angewiessen. Die wichtigsten gängigen Kernmodelle

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

2.7 Kernspaltung 100 KAPITEL 2. KERN- UND TEILCHENPHYSIK

2.7 Kernspaltung 100 KAPITEL 2. KERN- UND TEILCHENPHYSIK 100 KAPITEL 2. KERN- UND TEILCHENPHYSIK 8 Bindungsenergie/A [MeV] 6 4 0 50 100 150 200 250 Massenzahl A Abbildung 2.16: Experimentelle Werte für die Bindungsenergie pro Nukleon für die Atomkerne mit verschiedenen

Mehr

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München.

Röntgenstrahlen. Röntgenröhre von Wilhelm Konrad Röntgen. Foto: Deutsches Museum München. Röntgenstrahlen 1 Wilhelm Konrad Röntgen Foto: Deutsches Museum München. Röntgenröhre von 1896 2 1 ev = 1 Elektronenvolt = Energie die ein Elektron nach Durchlaufen der Potentialdifferenz 1V hat (1.6 10-19

Mehr

Energie wird normalerweise in Joule gemessen. Ein Joule (J) einspricht einem Newtonmeter

Energie wird normalerweise in Joule gemessen. Ein Joule (J) einspricht einem Newtonmeter Maße wie Gammastrahlen abgeschwächt werden. Im Gegensatz zu den Gammastrahlen sind die Neutronenstrahlen auch Teilchenstrahlen wie Alpha- und Betastrahlen. Die Reichweiten von Strahlen mit einer Energie

Mehr

Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI)

Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI) Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI) Günter Quast, Roger Wolf, Pablo Goldenzweig 08. Juni 2017 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT University

Mehr

Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen)

Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) KIT-Fakultät für Physik Institut für Experimentelle Kernphysik Prof. Dr. Günter Quast Priv. Doz. Dr. Roger Wolf Dr. Pablo Goldenzweig Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) Sommersemester

Mehr

Kernspaltung. Posten 11

Kernspaltung. Posten 11 Posten 11 Kernspaltung Sozialform Dreier-Gruppen (auch Einzel- oder Partnerarbeit möglich) Bearbeitungszeit 30 Minuten Voraussetzung Posten 5 "E=mc 2 " Posten 6 "Sind Massen immer gleich massiv?" 11.1

Mehr

11. Kernphysik. [55] Ianus Münze

11. Kernphysik. [55] Ianus Münze 11. Kernphysik Der griechische Gott Ianus ist einer der ältesten römischen Gottheiten. Er gehört zur rein römischen Mythologie, das heißt es gibt in der griechischen Götterwelt keine vergleichbare Gestalt.

Mehr

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten

Radioaktivität und Strahlenschutz. FOS: Energie von Strahlungsteilchen und Gammaquanten R. Brinkmann http://brinkmann-du.de Seite 1 25.11.2013 Radioaktivität und Strahlenschutz FOS: Energie von Strahlungsteilchen und Gammaquanten Energieeinheit Elektronenvolt (ev) Bekannte Energieeinheiten:

Mehr

Kernphysik. Physik Klasse 9. Quelle: AkadOR W. Wagner, Didaktik der Chemie, Universität Bayreuth (verändert für Kl.9/Sachsen

Kernphysik. Physik Klasse 9. Quelle: AkadOR W. Wagner, Didaktik der Chemie, Universität Bayreuth (verändert für Kl.9/Sachsen Kernphysik Physik Klasse 9 Quelle: AkadOR W. Wagner, Didaktik der Chemie, Universität Bayreuth (verändert für Kl.9/Sachsen Lehrplan Atomodelle Niels Bohr Rutherford Begriff: Modell Ein Modell zeichnet

Mehr

6. Elementarteilchen

6. Elementarteilchen 6. Elementarteilchen Ein Ziel der Physik war und ist, die Vielfalt der Natur auf möglichst einfache, evtl. auch wenige Gesetze zurückzuführen. Die Idee hinter der Atomvorstellung des Demokrit war, unteilbare

Mehr

a) Notieren Sie die grundlegenden Modellvorstellungen zum Tröpfchenmodell.

a) Notieren Sie die grundlegenden Modellvorstellungen zum Tröpfchenmodell. ufgabe a) Notieren Sie die grundlegenden Modellvorstellungen zum Tröpfchenmodell. b) Interpretieren Sie die einzelnen Terme der semiempirischen Massenformel von v. Weizsäcker: W m c m c N ges n p 5 c)

Mehr

Wintersemester 2011/2012. Radioaktivität und Radiochemie. Kernphysik Udo Gerstmann

Wintersemester 2011/2012. Radioaktivität und Radiochemie. Kernphysik Udo Gerstmann Wintersemester 2011/2012 Radioaktivität und Radiochemie Kernphysik 27.10.2011 Udo Gerstmann Bundesamt für Strahlenschutz ugerstmann@bfs.de & gerstmann@gmx.de 089-31603-2430 Der Atomkern besteht aus Protonen

Mehr

Radioaktivität, Kernspaltung. medizinische, friedliche und kriegerische Nutzungen der Radioaktivität

Radioaktivität, Kernspaltung. medizinische, friedliche und kriegerische Nutzungen der Radioaktivität Radioaktivität, Kernspaltung. medizinische, friedliche und kriegerische Nutzungen der Radioaktivität LaCh Seite 1 von 7 1. Grundlagen der Atomtheorie... 3 Aufbau eines Atoms... 3 2. Eigenschaften der radioaktiven

Mehr

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV 4) Wechselwirkungen zwischen Strahlung und Materie (1) Wechselwirkungen zwischen Strahlung und Materie sind Grundvoraussetzung für jede Anwendung oder schädigende Wirkung radioaktiver Strahlung unerwünschte

Mehr

Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI)

Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI) Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI) Günter Quast, Roger Wolf, Pablo Goldenzweig 06. Juni 2017 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT University

Mehr

a) Notieren Sie die grundlegenden Modellvorstellungen zum Tröpfchenmodell.

a) Notieren Sie die grundlegenden Modellvorstellungen zum Tröpfchenmodell. ufgabe eizsäckersche Massenformel a) Notieren Sie die grundlegenden Modellvorstellungen zum Tröpfchenmodell. b) Interpretieren Sie die einzelnen Terme der semiempirischen Massenformel von v. eizsäcker:

Mehr

Standardmodell der Teilchenphysik

Standardmodell der Teilchenphysik Standardmodell der Teilchenphysik Eine Übersicht Bjoern Walk bwalk@students.uni-mainz.de 30. Oktober 2006 / Seminar des fortgeschrittenen Praktikums Gliederung Grundlagen Teilchen Früh entdeckte Teilchen

Mehr

Kernchemie und Kernreaktionen

Kernchemie und Kernreaktionen Kernchemie und Kernreaktionen Die Kernchemie befaßt sich mit der Herstellung, Analyse und chemische Abtrennung von Radionukliden. Weiterhin werden ihre Methoden in der Umweltanalytik verwendet. Radioaktive

Mehr

Lösungen der Kontrollaufgaben

Lösungen der Kontrollaufgaben Lösungen der Kontrollaufgaben Lösungen zu den Kontrollaufgaben 1.1 1.) 1000 2.) Glas und PVC ziehen einander an. - Begründung: Da offenbar Hartgummi und PVC gleichartig geladen sind (Abstossung), Glas

Mehr

Kernenergie A = N + Z. A Massenzahl N Neutronenzahl Z Protonenzahl

Kernenergie A = N + Z. A Massenzahl N Neutronenzahl Z Protonenzahl Kernenergie A = N + Z A Massenzahl N Neutronenzahl Z Protonenzahl Massendefekt: M Z m p + N m n M A Bindungsenergie: B M x c 2 c Lichtgeschwindigkeit 1 ev = 1,602 10-19 J Mittlere Bindungsenergie je Nukleon

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

1. Vervollständigen Sie bitte das Diagramm. 2. Ergänzen Sie bitte.

1. Vervollständigen Sie bitte das Diagramm. 2. Ergänzen Sie bitte. Energie aus Atomen Im Dezember 1938 machte der Chemiker Otto Hahn in Berlin folgendes Experiment: Er bestrahlte Uran mit Neutronen. Hahn hatte sich die Frage gestellt, ob die Atomkerne des Urans in der

Mehr

1. Physikalische Grundlagen

1. Physikalische Grundlagen 1.2. Kernumwandlung und Radioaktivität - Entdeckung Antoine Henri Becquerel Entdeckte Radioaktivität 1896 Ehepaar Marie und Pierre Curie Nobelpreise 1903 und 1911 Liese Meitner, Otto Hahn 1. Kernspaltung

Mehr

1938/39 zufällige Entdeckung: Experiment: 1939 Korrekte Interpretation: 1942 erste kontrollierte Kettenreaktion: (Argonne, Chicago)

1938/39 zufällige Entdeckung: Experiment: 1939 Korrekte Interpretation: 1942 erste kontrollierte Kettenreaktion: (Argonne, Chicago) spontane induzierte Spaltung 1938/39 zufällige Entdeckung: O.Hahn Experiment: F. Straßmann nat n + U chemische Analyse Barium (A~140) 1939 Korrekte Interpretation: L.Meitner R.Frisch theoretische Behandlung:

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 10 Kernphysik Universität Leipzig, Fakultät für Physik und Geowissenschaften Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 29. Juni 2009 Nachdem in den vorangegangenen Kapiteln die Moleküle

Mehr

Begriffe zum Atombau

Begriffe zum Atombau Staatsinstitut für Schulqualität und Bildungsforschung Begriffe zum Atombau Alphastrahlung Atom Atomhülle Atomkern Betastrahlung biologische Strahlenwirkung Elektronen Element Hierbei wird von einem Atomkern

Mehr

Elektronen, Protonen und Neutronen haben folgende Eigenschaften, die in Tabelle 2.1 wiedergegeben sind:

Elektronen, Protonen und Neutronen haben folgende Eigenschaften, die in Tabelle 2.1 wiedergegeben sind: Aufbau der Atome.1 Elektronen, Protonen, Neutronen, Isotope Atome bestehen aus Elektronen, die die Atomhülle bilden, sowie den im Kern vereinigten Protonen und Neutronen. Die elektromagnetischen Wechselwirkungen

Mehr

Vorlesung Allgemeine Chemie (CH01)

Vorlesung Allgemeine Chemie (CH01) Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut

Mehr

Physik für Mediziner Radioaktivität

Physik für Mediziner  Radioaktivität Physik für Mediziner http://www.mh-hannover.de/physik.html Radioaktivität Peter-Alexander Kovermann Institut für Neurophysiologie Kovermann.peter@mh-hannover.de Der Aufbau von Atomen 0-5 - 0-4 m 0-0 -4

Mehr

Technische Nutzung der Kernspaltung. Kernkraftwerke

Technische Nutzung der Kernspaltung. Kernkraftwerke Technische Nutzung der Kernspaltung Kernkraftwerke Kettenreaktionen bilden die Grundlage der Energiegewinnung durch Kernspaltungsprozesse Voraussetzungen: spaltbares Material (U-235; Pu-239) Im natürlichen

Mehr

Atomphysik Klasse 9. Aufgabe: Fülle die freien Felder aus!

Atomphysik Klasse 9. Aufgabe: Fülle die freien Felder aus! 1. Was gibt die Massenzahl A eines Atoms an? Die Zahl der Neutronen im Kern. Die Zahl der Protonen im Kern. Die Summe aus Kernneutronen und Kernprotonen. Die Zahl der Elektronen. Die Summe von Elektronen

Mehr

Spezielle Relativitätstheorie. Experimente der relativistischen Dynamik

Spezielle Relativitätstheorie. Experimente der relativistischen Dynamik Spezielle Relativitätstheorie Experimente der relativistischen Dynamik Massenzunahme Walter Kaufmann (87-947) wies 90 die Zunahme der Elektronenmasse bei wachsender Geschwindigkeit nach (bis v 0,94 c).

Mehr

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität

Radioaktivität und Strahlenschutz. FOS: Kernumwandlungen und Radioaktivität R. Brinkmann http://brinkmann-du.de Seite 25..23 -, Beta- und Gammastrahlen Radioaktivität und Strahlenschutz FOS: Kernumwandlungen und Radioaktivität Bestimmte Nuklide haben die Eigenschaft, sich von

Mehr

Geochemie 1. 1. Entstehung und Häufigkeit der Nuklide/ Elemente

Geochemie 1. 1. Entstehung und Häufigkeit der Nuklide/ Elemente Geochemie 1 1. Entstehung und Häufigkeit der Nuklide/ Elemente Atome (Elementare Bausteine der Materie) Masse eines Atoms ist im Kern konzentriert (Neutonen + Protonen) Elektronenhülle dominiert das Eigenvolumen

Mehr

Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die

Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Aufbau des Atomkerns a) Gib an, aus wie vielen Protonen und Neutronen die Atomkerne von Cl bestehen. b) Erkläre, was man unter Isotopen versteht. Gib ein Beispiel an. 3, Cl c) Im Periodensystem wird die

Mehr

Thema heute: Aufbau der Materie: Kernumwandlungen, Spaltung von Atomkernen

Thema heute: Aufbau der Materie: Kernumwandlungen, Spaltung von Atomkernen Wiederholung der letzten Vorlesungsstunde: Experiment von Rutherford, Atombau, atomare Masseneinheit u, 118 bekannte Elemente, Isotope, Mischisotope, Massenspektroskopie, Massenverlust 4H 4 He, Einstein:

Mehr

Atome. Definition: das kleinste Teilchen eines chemischen Elementes, das mit chemischen Verfahren nicht mehr zerlegbar ist.

Atome. Definition: das kleinste Teilchen eines chemischen Elementes, das mit chemischen Verfahren nicht mehr zerlegbar ist. Atome Definition: das kleinste Teilchen eines chemischen Elementes, das mit chemischen Verfahren nicht mehr zerlegbar ist. Das Atom besitzt einen positiv geladene Atomkern und eine negative Elektronenhülle.

Mehr

Energieverlust von Teilchen in Materie

Energieverlust von Teilchen in Materie Energieverlust von Teilchen in Materie Doris Reiter Energieverlust von Teilchen in Materie p.1/34 Einleitung Teilchen sind charakterisiert durch Masse, Ladung, Impuls Baryonen: p, n,, Leptonen: Mesonen

Mehr

Kern- und Teilchenphysik

Kern- und Teilchenphysik Kern- und Teilchenphysik Johannes Blümer SS01 Vorlesung-Website KIT-Centrum lementarteilchen- und Astroteilchenphysik KCTA KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #47 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #47 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 007 VL #47 am 0.07.007 Vladimir Dyakonov Kernphysik 1 Zusammensetzung von Kernen Atomkerne bestehen

Mehr

Die Erhaltungssätze Das Valenzelektronenmodell... F) 186. Die Spektralserien der Alkalimetalle...

Die Erhaltungssätze Das Valenzelektronenmodell... F) 186. Die Spektralserien der Alkalimetalle... INHALTSVERZEICHNIS Vorwort zur dritten Auflage... XI Abschnitt XI1. DIE GRUNDLAGEN DER QUANTENMECHAXIK F) 153. Einführung... F) 154. Lineare Operatoren... F) 155. Eigenwerte und Eigenfunktionen linearer

Mehr

Dampfkraftanlagen. 2.1 Einleitung. 2.2 Kohle

Dampfkraftanlagen. 2.1 Einleitung. 2.2 Kohle Dampfkraftanlagen 2 2.1 Einleitung Der Umwandlungsprozess bei Wärmekraftanlagen geschieht folgendermaßen: Ein fossiler Brennstoff gibt bei der Verbrennung die in ihm enthaltene chemische Bindungsenergie

Mehr

Reaktorphysik. Reaktorsteuerung

Reaktorphysik. Reaktorsteuerung Reaktorphysik Prof. Dr. Sabine Prys Reaktorsteuerung Prof. Dr. S. Prys Bildquelle: http://www.dw-world.de/dw/article/0,,4256311,00.html Seite 1 Inhalte Kernspaltung Kernfusion Kernreaktionen Wirkungsquerschnitte

Mehr

SEITE 1. Stichpunkte. Erläuterungen

SEITE 1. Stichpunkte. Erläuterungen SEITE 1 Erläuterungen Diese Folie dient als Titelbild für die Präsentation und soll einen ersten Blick auf das Thema vermitteln. Diese Folie ist nicht Teil der eigentlichen Präsentation. Quellen: Bild

Mehr

Vorlesung Struktur der Materie, (in Vertretung: Michael Kobel)

Vorlesung Struktur der Materie, (in Vertretung: Michael Kobel) Vorlesung Struktur der Materie, 15.6.09 (in Vertretung: Michael Kobel) Überblick/WH: Prinzipien der Wechselwirkungen Entdeckung der Botenteilchen Erkenntnisse aus e + e - Vernichtung Zahl der Farbladungen

Mehr

DIE THERMISCHE GESCHICHTE DES UNIVERSUMS & FREEZE-OUT. 14. Dezember Kim Susan Petersen. Proseminar Theoretische Physik & Astroteilchenphysik

DIE THERMISCHE GESCHICHTE DES UNIVERSUMS & FREEZE-OUT. 14. Dezember Kim Susan Petersen. Proseminar Theoretische Physik & Astroteilchenphysik DIE THERMISCHE GESCHICHTE DES UNIVERSUMS & FREEZE-OUT 14. Dezember 2010 Kim Susan Petersen Proseminar Theoretische Physik & Astroteilchenphysik INHALT 1. Das Standardmodell 2. Die Form des Universums 3.

Mehr

11. Kernzerfälle und Kernspaltung

11. Kernzerfälle und Kernspaltung 11. Kernzerfälle und Kernspaltung 1. Zerfallsgesetz 2. α Zerfall 3. Kernspaltung 4. ß Zerfall 5. γ - Zerfall 1 11.1 Das Zerfallsgesetz 2 Zerfallsketten 3 4 11.2 α-zerfall Abspaltung eines 4 He Kerns 5

Mehr

Kernphysik I. Kernkräfte und Kernmodelle: Ladungsunabhängigkeit der Kernkräfte Isospin

Kernphysik I. Kernkräfte und Kernmodelle: Ladungsunabhängigkeit der Kernkräfte Isospin Kernphysik I Kernkräfte und Kernmodelle: Ladungsunabhängigkeit der Kernkräfte Isospin Kernphysik I Universität u Köln - Fachgruppe Physik Großes Physikalisches Kolloquium Dienstag, 0. Juni 008, 6:45 Uhr

Mehr

Reaktorsteuerung. Inhalte

Reaktorsteuerung. Inhalte Reaktorsteuerung Prof. Dr. S. Prys Bildquelle: http://www.dw-world.de/dw/article/0,,4256311,00.html Inhalte 1. Kernspaltung 2. Kernreaktionen 3. Reaktorneutronen 4. Neutronenmoderation und Reflektion 5.

Mehr

Übungen zur Struktur der Materie 3 WiSe 14/15

Übungen zur Struktur der Materie 3 WiSe 14/15 Übungen zur Struktur der Materie 3 WiSe 14/15 N. Offen, C. Lange, P. Perez-Rubio, W. Soeldner, A. Trottmann Blatt 8 Ausgabe: 24.11.2014 Abgabe: 1./2./3./4.12.2014 Aufgabe 32: Kernfusion Betrachten Sie

Mehr

3. Das Atom 3.1. Geschichte des Atombegriffs 3.2. Elementarteilchen: Proton, Neutron und Elektron 3.3. Atomaufbau 3.4. Nuklide, Isotope und

3. Das Atom 3.1. Geschichte des Atombegriffs 3.2. Elementarteilchen: Proton, Neutron und Elektron 3.3. Atomaufbau 3.4. Nuklide, Isotope und 3. Das Atom 3.1. Geschichte des Atombegriffs 3.2. Elementarteilchen: Proton, Neutron und Elektron 3.3. Atomaufbau 3.4. Nuklide, Isotope und Reinelemente 3.5. Häufigkeit der Elemente 3.6. Atomare Masseneinheit

Mehr

Physikalische. Grundlagen. L. Kölling, Fw Minden

Physikalische. Grundlagen. L. Kölling, Fw Minden Physikalische Grundlagen L. Kölling, Fw Minden Radioaktivität kann man weder sehen, hören, fühlen, riechen oder schmecken. Daher muss sie der FA (SB) zumindest verstehen, um im Einsatzfall die erforderlichen

Mehr