1938/39 zufällige Entdeckung: Experiment: 1939 Korrekte Interpretation: 1942 erste kontrollierte Kettenreaktion: (Argonne, Chicago)

Größe: px
Ab Seite anzeigen:

Download "1938/39 zufällige Entdeckung: Experiment: 1939 Korrekte Interpretation: 1942 erste kontrollierte Kettenreaktion: (Argonne, Chicago)"

Transkript

1 spontane induzierte Spaltung 1938/39 zufällige Entdeckung: O.Hahn Experiment: F. Straßmann nat n + U chemische Analyse Barium (A~140) 1939 Korrekte Interpretation: L.Meitner R.Frisch theoretische Behandlung: N.Bohr J.Wheeler 194 erste kontrollierte Kettenreaktion: E.Fermi (Argonne, Chicago) 1945 A-Bombe (6. & 9. August 1945) seither: mehr oder weniger friedliche Nutzung

2 Bild: der erste Reaktor The First Reactor

3 Nach dem Tröpfchenmodell ist Spaltung exotherm, wenn: A Z Q = M ( A, Z ) M (, ) > 0 der Einfachheit halber symmetrische Spaltung Einsetzen in die BW-Formel: Spaltung (exotherm): Z! > 17 ( A 100) A aber spontane Spaltung (sf) erst beobachtet für Z ~ A Begründung: 40 Spaltparameter (je größer umso instabiler) B/A A~60 der Spaltung geht eine starke Deformation gegen das attraktive Kernpotential voraus oder die Oberflächenenergie nimmt zu, bevor die abstoßende Coulombenergie die beiden Fragmente auseinander treibt. A

4 anschauliche Bedeutung E Spaltbarriere Wasserglassituation E C = ZZe 1 4πε 0 1 r z Oberflächen energie Coulombenergie r z Wenn Q E ( r ) C Spaltung möglich leichtester spontan spaltender Kern z 3 Th

5 quantitative Formulierung Oberflächenenergie ε E 0 ~ Coulombenergie E ~ 1 ε C 5 nach Einsetzen in die Massenformel ε 014, 3 Z ~ 09. Eb = A 49 ε [ MeV ] A d.h. auch für R R R Z A 49 = a = R ( 1+ ε ) V 1 V = V = π = π 3 3 V ab R negativ keine Spaltbarriere d.h. ungehinderte Spaltung: τ=10 - sec b a b = R 1+ ε nachrechnen Rotationsellipsoid!!

6 log t (..) sf 1 [ Y ] Vorsicht: V Q d T e e T e e E ~ = b Z A d

7 induzierte Spaltung oder:?? Wie überwinde ich die Spaltbarriere?? Z Eb = A 49 ε MeV A für Uran: [ ] Z ε = 0. 9 A Eb ~ 61. MeV in der Größenordnung der Bindungsenergie/Nukleon! U + n U MeV U + n U MeV oberhalb unterhalb Spaltbarriere ~ 6,1 MeV dh: langsame (thermische) Neutronen spalten 35 U, aber zur Spaltung von 38 U mindestens 1.3 MeV notwendig.

8 einige Begriffe vorab (in)elastisch: Nuclear power Spaltreaktor Schneller Brüter n-einfang (capture): ( ) thermische Neutronen: E 3 n ~ kt ~ 0.05 ev n-induzierte W-Querschnitte 1 ( nn, ) σ σ ( n, γ ) 3 n-induzierte Spaltung: σ ( nf, ) Alle n-querschnitte nehmen mit abnehmender Energie zu!! 1 1 σ ~ ~ E n v n

9 Kernenergie durch induzierte Spaltung Spaltprozess Jedes Neutron, das Spaltung induziert, produziert im Mittel weitere Neutronen Möglichkeit für eine Kettenreaktion (wenn groß genug) σ jedes der n erleidet i.a. ein unterschiedliches Schicksal. Ist der Reproduktionsfaktor für thermische Neutronen: Reaktion erlöscht ( Beisp U + n f ) ( nf, ) : 35 therm k = =1 k < <11 1 konst. E-Produktion k > 1

10 Nein!!! so BUMM... einfach ist das nicht

11 k-faktor der Spaltung k < <11 k = =11 k > >11 keine kontrollierte unkontrollierte Kettenreaktion k = =11 k > >11 zur Einstellung von (oder ) 1 3 Moderierung der Spaltneutronen wegen: σ für 35 U groß für n th σ ( nf, ) Anreicherung von 35 U ( n, γ ) σ γ groß für 38 U E E notwendig wegen: benötige Moderatoren mit A klein (Beispiel: H, D, C ) σ ( n, γ ) klein (Beispiel: D O, 1 C )

12 Neutronenerzeugung & Neutronenabsorption Energieverteilung von Spaltneutronen. E ~ 1 MeV n n E n MeV

13 Ergebnis: Mit schnellen Neutronen lässt sich am Natur-Uran keine Kettenreaktion aufrechterhalten. Forderung: Spaltneutronen müssen zunächst thermalisiert werden oder: hohe Anreicherung von 35 U aber: aufwändig und gefährlich --- kritische Masse!! Lösung: Moderatoren Moderatoren sind Substanzen mit großem elast. Streuquerschnitt σ ( nn, ), geringer Absorption ( σ ( n, γ ) klein) und möglichst kleinem A. Bei kleinem A schon nach wenigen Stößen moderiert n A Wärme n vgl. Billardkugel

14 geeignete Moderatoren!! σ HO : ( n, γ ) groß!! HO DO Graphit 16 O ( n, γ ) σ γ Bremslänge brauche 3% Anreicherung 35 U 5,3cm 11,cm 19,1cm > 1 m DO : billig, leicht verfügbar, konservative Technologie beim Wärmeaustausch aber!! Leichtwasser- Reaktor zwar in großen Mengen vorhanden aber nicht billig dafür!! keine 35 U-Anreicherung notwendig Schwerwasser- Reaktor

15 Spaltung Brennstoff Moderator (Graphit) 38 U ν Neutronenspaltung νє nach schneller Spaltung νєp haben Thermalisierung überlebt 35 U 35 Brennstoff Moderator νєpf in U gefangen σ k = νє pf f erzeugen Spaltung σ t

16

17 1 aber: Regelung des Reaktors Regelung beim Hochfahren in den kritischen Bereich durch neutronenabsorbierende Regelstäbe üblicherweise: Cd: σ n, γ = 450 b Cd-Regelung nicht schnell genug, denn: Beispiel ρ ρ k = 1, 01 n n -3 ( ) ρn k ρn ρ = n t t0 dρ ( 1) n k = ρn dt t t ( k 1) 0 t0 0 n = n e = n ρ ρ ρ t 0 = 10 sec (0,1 sec).7 (1 sec) ~ 10 0 t e τ 0 ρn 4 0 ρn Regelstäbe Alarm Brennelemente Moderator Abschirmung und Reflektor Regelungszeiten von 0,1 sec erforderlich viel zu gefährlich!!!

18 Regelung durch β-verzögerte Neutronen n E n β A X β Spaltprodukt A Y d.h. β-zerfall in Energie-Niveaus des Tochterkerns oberhalb der Neutronen-Separationsenergie Beispiel 141 I * 35 U + n 36 U Beispiel eines möglichen Zerfallsweges 95 Y * etwa 1-% der Neutronen sind verzögert Regelungszeit τ 10 min 140 I + n 140 Cs (prompt) β ( τ ~1sec)! 94 Y + n 140 Xe 139 Xe + n β β β... β... β 94 Zr (prompt) β... β... β

19 3 weitere selbstregelnde Mechanismen: k = k(t,p,v) der Multiplikationsfaktor k nimmt mit steigender Temperatur ab. 1 1 (.. sa σ (,) nf ~ ~ ) (.. (,) ~ ~ ) E T n n Technische Realisierung

20 A-Bombe (Selbstbausatz) 4 10 n/ sec/ cm in einigen 100m ~ n/cm

21 Anekdote 197 wurde in Gabun eine Uran-Lagerstätte mit nur 0.4% 35 U gefunden (sonst: 0.7% 35 U ) Erklärung 35 vor etwa x 10 9 Jahren ( ~3 t 1 war die natürliche 35 ( U )) U -Konzentration etwa 5% Bei entsprechender Anreicherung des Erzes mit und der Anwesenheit eines Moderators konnte ein natürlicher Reaktor brennen ( HO ) nat U geschätzte Brenndauer: ~ 150,000 Jahre

n U f 1 * + f 2 * + ν n

n U f 1 * + f 2 * + ν n Ergänzungen zu Kapitel 3.5: Kernspaltung Ablauf des Spaltprozesses: n + 235 U f 1 * + f 2 * + ν n Es entstehen i. Allg. hochangeregte Spaltprozesse f 1 *, f 2 * Diese liegen weit weg vom Tal der stabilen

Mehr

Kernreaktionen. d + 2 H 3 He + n, Q= 3.26MeV d + 3 H 4 He + n, Q= 17.6MeV Quellstärke /s mit keV Deuteronen Energieabhängigkeit

Kernreaktionen. d + 2 H 3 He + n, Q= 3.26MeV d + 3 H 4 He + n, Q= 17.6MeV Quellstärke /s mit keV Deuteronen Energieabhängigkeit Kernreaktionen d + 2 H 3 He + n, Q= 3.26MeV d + 3 H 4 He + n, Q= 17.6MeV Quellstärke 10 10 /s mit 100-300keV Deuteronen Energieabhängigkeit 4 E n = E d + 2 (2 E d E n ) 1/2 cos(θ) + 3Q E d = 300 kev Emission

Mehr

Wiederholung: Spaltung und Fusion

Wiederholung: Spaltung und Fusion Wiederholung: Spaltung und Fusion Tröpfchenmodell: Stabilste Kerne liegen im Bereich A~60 Große Energiemenge kann bei der Spaltung eines schweren Kernes in zwei mittelschwere Kerne und bei der Fusion von

Mehr

5. Kernzerfälle und Kernspaltung

5. Kernzerfälle und Kernspaltung 5. Kernzerfälle und Kernspaltung 1. Zerfallsgesetz 2. α Zerfall 3. Kernspaltung 4. ß Zerfall 5. γ Zerfall 1 5.1 Das Zerfallsgesetz 2 Mittlere Lebensdauer und Linienbreite 3 Mehrere Zerfallskanäle 4 Zerfallsketten

Mehr

Reactor Operating. Inhalte

Reactor Operating. Inhalte Reactor Operating Kernkraftwerke Gundremmingen Siedewasserreaktor Inhalte Kritikalität Neutronenflüsse Neutronenbilanzen Reaktivität Überschussreaktivität Verzögerte Neutronen Reaktorperiode Anfahren des

Mehr

11. Kernzerfälle und Kernspaltung

11. Kernzerfälle und Kernspaltung 11. Kernzerfälle und Kernspaltung 1. Zerfallsgesetz 2. α Zerfall 3. Kernspaltung 4. ß Zerfall 5. γ - Zerfall 1 11.1 Das Zerfallsgesetz 2 Zerfallsketten 3 4 11.2 α-zerfall Abspaltung eines 4 He Kerns 5

Mehr

7 Ausblick auf Kerntechnik und Elementarteilchenphysik

7 Ausblick auf Kerntechnik und Elementarteilchenphysik 7 Ausblick auf Kerntechnik und Elementarteilchenphysik 7.1 Grundlagen der Kernenergietechnik; Kernspaltung, Kernenergie; Entsorgung, Wiederaufbereitung Kernspaltung 1938 entdeckten Otto Hahn (1879-1968,

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 426 - Physik B3 9.3 Kernenergie Kernenergie ist eine interessante Möglichkeit, nutzbare Energie zu gewinnen. Das kann man sehen wenn man vergleicht, wie viel Energie in 1 kg unterschiedlicher

Mehr

Bindungsenergie pro Nukleon

Bindungsenergie pro Nukleon Q 2 = konst Bindungsenergie pro Nukleon a a 1 Volumen a2 a Oberfläche a3 a Coulomb a4 a Symm a5 a Paar Qualitativer Energieverlauf bei Variation des Abstandes 1/v 1/ E Zahl n der Stöße bis zur Thermalisierung

Mehr

Kernenergie. Handout zum Vortrag im Rahmen des Fortgeschrittenenseminars im SS 13. Sonja Spies. Betreuung: Prof. Dr. Frank Maas

Kernenergie. Handout zum Vortrag im Rahmen des Fortgeschrittenenseminars im SS 13. Sonja Spies. Betreuung: Prof. Dr. Frank Maas Kernenergie Handout zum Vortrag im Rahmen des Fortgeschrittenenseminars im SS 13 Sonja Spies Betreuung: Prof. Dr. Frank Maas 1 Inhaltsverzeichnis 1 Einleitung 2 2 Physikalische Grundlagen 2 2.1 Bindungsenergie.........................

Mehr

Kapitel 11. Kernreaktionen Induzierte Kernspaltung

Kapitel 11. Kernreaktionen Induzierte Kernspaltung Kapitel 11 Kernreaktionen Es gibt eine Fülle experimentellen Materials über Kernreaktionen und deren theoretische Beschreibung. In diesem Kapitel werden wir uns auf nur zwei Reaktionen beschränken, die

Mehr

Physik V. Kern- und Teilchenphysik. Dr. Daniel Bick. 15. Januar Daniel Bick Physik V WS 2015/ Januar / 25

Physik V. Kern- und Teilchenphysik. Dr. Daniel Bick. 15. Januar Daniel Bick Physik V WS 2015/ Januar / 25 Physik V Kern- und Teilchenphysik Dr. Daniel Bick 15. Januar 2016 Daniel Bick Physik V WS 2015/16 15. Januar 2016 1 / 25 Inhalt 1 Kernspaltung 2 Kernfusion 3 Fusion in der Sonne Solare Neutrinos Daniel

Mehr

Physik V. Kern- und Teilchenphysik. Dr. Daniel Bick. 12. Januar Daniel Bick Physik V WS 2015/ Januar / 25

Physik V. Kern- und Teilchenphysik. Dr. Daniel Bick. 12. Januar Daniel Bick Physik V WS 2015/ Januar / 25 Physik V Kern- und Teilchenphysik Dr. Daniel Bick 12. Januar 2016 Daniel Bick Physik V WS 2015/16 12. Januar 2016 1 / 25 Korrektur Verlauf des Stabilitätstals Z = A 2 1 1 + a CA 2/3 4a A Daniel Bick Physik

Mehr

Kernchemisches Praktikum I. Kernspaltung. Institut für Kernchemie Universität Mainz

Kernchemisches Praktikum I. Kernspaltung. Institut für Kernchemie Universität Mainz Kernchemisches Praktikum I Kernspaltung Institut für Kernchemie Universität Mainz Folie Nr. 1 Historisches 1932 J. Chadwick entdeckt das Neutron beim Beschuss von Be mit. 1934 E. Fermi et al. überführen

Mehr

Cluster-Struktur in Kernen. Cluster: Aus mehr als einem Nukleon zusammengesetzten und identifizierbarem Subsystem

Cluster-Struktur in Kernen. Cluster: Aus mehr als einem Nukleon zusammengesetzten und identifizierbarem Subsystem Cluster-Struktur in Kernen Cluster: Aus mehr als einem Nukleon zusammengesetzten und identifizierbarem Subsystem Die Struktur von 11 Li Beim Aufbruch von 11 Li wird nicht nur ein Neutron herausgeschlagen

Mehr

6. Energiegewinnung aus Kernreaktionen

6. Energiegewinnung aus Kernreaktionen 6. Energiegewinnung aus Kernreaktionen 6. Kernspaltung und Kernkraftwerke (KKW) Nützlich: M. Volkmer, Basiswissen Kernphysik (web) http://www.kernenergie.net/ Motivation Bei der Spaltung von kg Uran wird

Mehr

Beta- und Neutronenstrahlung

Beta- und Neutronenstrahlung Beta- und Neutronenstrahlung Strahlenschutzkurs - Februar 2009 Emissionen Eigenschaften Energien Abschirmung Dosisleistung Messungen Prof. Dr. S. Prys http://webuser.hs-furtwangen.de/~neutron/lehrveranstaltungen.html

Mehr

15 Kernphysik Physik für E-Techniker. 15 Kernphysik

15 Kernphysik Physik für E-Techniker. 15 Kernphysik 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.

Mehr

Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) Sommersemester 2017

Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) Sommersemester 2017 Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) Sommersemester 2017 Übungsblatt Nr. 6: Musterlösungen Aufgabe 1: Zerfallsreihen und radioaktives Gleichgewicht a) Die Anzahl der Nuklide in

Mehr

Reaktorphysik. Reaktorsteuerung

Reaktorphysik. Reaktorsteuerung Reaktorphysik Prof. Dr. Sabine Prys Reaktorsteuerung Prof. Dr. S. Prys Bildquelle: http://www.dw-world.de/dw/article/0,,4256311,00.html Seite 1 Inhalte Kernspaltung Kernfusion Kernreaktionen Wirkungsquerschnitte

Mehr

Oberthema: Atom- und Kernenergie Datum: Thema: Kernkraftwerke (nach Lehrbuch Dorn-Bader zusammengestellt) Seite: 2 von 6

Oberthema: Atom- und Kernenergie Datum: Thema: Kernkraftwerke (nach Lehrbuch Dorn-Bader zusammengestellt) Seite: 2 von 6 Thema: Kernkraftwerke (nach Lehrbuch Dorn-Bader zusammengestellt) Seite: 2 von 6 Grundlagen der Kernspaltung 1. Neutronen müssen langsam sein! Warum müssen kernspaltende Neutronen langsam sein? Viele Neutronen,

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne Inhalt 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion Der Atomkern

Mehr

Kern- und Teilchenphysik

Kern- und Teilchenphysik Kern- und Teilchenphysik Johannes Blümer SS01 Vorlesung-Website KIT-Centrum lementarteilchen- und Astroteilchenphysik KCTA KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

2.7 Kernspaltung 100 KAPITEL 2. KERN- UND TEILCHENPHYSIK

2.7 Kernspaltung 100 KAPITEL 2. KERN- UND TEILCHENPHYSIK 100 KAPITEL 2. KERN- UND TEILCHENPHYSIK 8 Bindungsenergie/A [MeV] 6 4 0 50 100 150 200 250 Massenzahl A Abbildung 2.16: Experimentelle Werte für die Bindungsenergie pro Nukleon für die Atomkerne mit verschiedenen

Mehr

C N Z. m c Z m c C A C A C Z 2. Seite 1 von 10 2 C A

C N Z. m c Z m c C A C A C Z 2. Seite 1 von 10 2 C A ) Um neue radioaktive Substanzen zu erzeugen, bestrahlten Otto Hahn und Fritz Straßmann 98 Uran mit Neutronen. Sie ummantelten die Neutronenquelle mit einem dicken Paraffinblock, auf den sie 5g Uran in

Mehr

Neutronenphysik. Prof. Dr. Sabine Prys. Physikalische Grundlagen Reaktorvorlesung by ps. Skripte etc.

Neutronenphysik. Prof. Dr. Sabine Prys. Physikalische Grundlagen Reaktorvorlesung by ps. Skripte etc. Neutronenphysik Prof. Dr. Sabine Prys Physikalische Grundlagen Reaktorvorlesung II @designed by ps Skripte etc. http://webuser.hs-furtwangen.de/~neutron/lehrveranstaltungen.html Literatur Übungsfragen

Mehr

Wiederholung BARYONEN. LEPTONEN Neutrinos HADRONEN MESONEN. Die Welt besteht aus

Wiederholung BARYONEN. LEPTONEN Neutrinos HADRONEN MESONEN. Die Welt besteht aus Wiederholung Die Welt besteht aus HADRONEN BARYONEN MESONEN LEPTONEN e, µ, τ Neutrinos Kernphysik Physik der stabilen Baryonen (NUKLEONEN) eine starke bzw. hadronische Wechselwirkung bindet Nukleonen Bindungsenergie:

Mehr

Kernenergie

Kernenergie Johannes Gutenberg - Universität Mainz Institut für Kernphysik Seminar: Kern- und Teilchenphysik (Fortgeschrittenen - Praktikum) Leitung: PD Dr. Patrick Achenbach Wintersemester 2011 / 2012 Kernenergie

Mehr

Dampfkraftanlagen. 2.1 Einleitung. 2.2 Kohle

Dampfkraftanlagen. 2.1 Einleitung. 2.2 Kohle Dampfkraftanlagen 2 2.1 Einleitung Der Umwandlungsprozess bei Wärmekraftanlagen geschieht folgendermaßen: Ein fossiler Brennstoff gibt bei der Verbrennung die in ihm enthaltene chemische Bindungsenergie

Mehr

Einführung in die Kern- und Teilchenphysik I Vorlesung Kernspaltung: Energieerzeugung Funktionsweise von Reaktoren

Einführung in die Kern- und Teilchenphysik I Vorlesung Kernspaltung: Energieerzeugung Funktionsweise von Reaktoren Einführung in die Kern- und Teilchenphysik I Vorlesung 12 6.12.2013 Kernspaltung: Energieerzeugung Funktionsweise von Reaktoren Anwendungen der Kernphysik Medizinische Anwendungen Zur Erinnerung: Masse

Mehr

= Synthese der leichten Elemente in den ersten 3 min nach Urknall (T = 10 MeV 0.1MeV)

= Synthese der leichten Elemente in den ersten 3 min nach Urknall (T = 10 MeV 0.1MeV) 3. Primordiale Nukleosynthese = Synthese der leichten Elemente in den ersten 3 min nach Urknall (T = 10 MeV 0.1MeV) Kern Bindungsenergie Häufigkeit (MeV) (% der der sichtbaren Masse) 1 H(= p) 0 71 a) 2

Mehr

B Kernenergie. 1 Physikalische Grundlagen. 1.1 Maßeinheiten der Atomphysik. 1.2 Massendefekt

B Kernenergie. 1 Physikalische Grundlagen. 1.1 Maßeinheiten der Atomphysik. 1.2 Massendefekt -VI.B1- B Kernenergie 1 Physikalische Grundlagen 1.1 Maßeinheiten der Atomphysik Da die üblichen Einheiten für Masse und Energie in der Atom und Kernphysik zu groß sind, benutzt man hier üblicherweise

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität ität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 1553K 15.5.3 Kettenreaktion 15. Kernphysik

Mehr

Energie aus Kernkraft Seminar Uni Potsdam, Institut für Physik und Astronomie

Energie aus Kernkraft Seminar Uni Potsdam, Institut für Physik und Astronomie Energie aus Kernkraft Seminar Uni Potsdam, Institut für Physik und Astronomie 21.04.2011, Regenstein, Gebert, Schmidt, Wüsthoff, Guber, Polster 1 physikalische Grundlagen der Kernenergietechnik 21.04.2011,

Mehr

Kerne und Teilchen. Moderne Physik III

Kerne und Teilchen. Moderne Physik III Kerne und Teilchen Moderne Physik III Vorlesung # 09 3. Instabile Kerne - Innerne Konversion - Kernspaltung 4. Nukleonen 4.1 Aufbau & Wechselwirkung q - Vierervektoren & Viererimpuls Q - elektrischer &

Mehr

4. Radiochemie und Kerntechnik

4. Radiochemie und Kerntechnik 4. Radiochemie und Kerntechnik Bindungsenergiekurve - Für alle Atomkerne mit Nukleonenzahlen zwischen 30 und 150 beträgt die mittlere Bindungsenergie je Nukleon ca. 8,5 MeV die halbempirische Bethe-Weizsäcker-Formel

Mehr

Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI)

Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI) Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI) Günter Quast, Roger Wolf, Pablo Goldenzweig 08. Juni 2017 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT University

Mehr

THEORIE DER KERNREAKTOREN

THEORIE DER KERNREAKTOREN THEORIE DER KERNREAKTOREN ZWEITER TEIL VON D. EMENDÖRFER UND K.H.HÖCKER Institut für Kernenergetik der Universität Stuttgart BIBLIOGRAPHISCHES INSTITUT MANNHEIM/WIEN/ZÜRICH HOCHSCHULTASCHENBÜCHER- VERLAG

Mehr

41. Kerne. 34. Lektion. Kernzerfälle

41. Kerne. 34. Lektion. Kernzerfälle 41. Kerne 34. Lektion Kernzerfälle Lernziel: Stabilität von Kernen ist an das Verhältnis von Protonen zu Neutronen geknüpft. Zu viele oder zu wenige Neutronen führen zum spontanen Zerfall. Begriffe Stabilität

Mehr

Musterlösung Übung 5

Musterlösung Übung 5 Musterlösung Übung 5 Aufgabe 1: Elektromagnetische Wellen und die Wellengleichung a) Da das Magnetfeld B senkrecht zum elektrischen Feld E und senkrecht zum Wellenvektor k steht ( k E B), zeigt das Magnetfeld

Mehr

Kernphysik. Elemententstehung. 2. Kernphysik. Cora Fechner. Universität Potsdam SS 2014

Kernphysik. Elemententstehung. 2. Kernphysik. Cora Fechner. Universität Potsdam SS 2014 Elemententstehung 2. Cora Fechner Universität Potsdam SS 2014 alische Grundlagen Kernladungszahl: Z = Anzahl der Protonen Massenzahl: A = Anzahl der Protonen + Anzahl der Neutronen Bindungsenergie: B

Mehr

Experimentalphysik 4 - SS11 Physik der Atome und Kerne

Experimentalphysik 4 - SS11 Physik der Atome und Kerne Experimentalphysik 4 - SS Physik der Atome und Kerne Prof. Dr. Tilman Pfau 5. Physikalisches Institut Übungsblatt 06 Besprechung: 8. Juni Aufgabe : Koeffizient a C des Coulomb-Terms 4 Punkte In dieser

Mehr

4.3 α-zerfall. Zerfälle lassen sich 4 verschiedenen Zerfallsketten zuordnen: T 1/ a a a a

4.3 α-zerfall. Zerfälle lassen sich 4 verschiedenen Zerfallsketten zuordnen: T 1/ a a a a 4.3 α-zerfall A A 4 4 Z XN Z YN + He Zerfälle lassen sich 4 verschiedenen Zerfallsketten zuordnen: A 4n 4n+ 4n+ 4n+3 Reihe Thorium Neptunium Uranium Aktinium Mutterkern 3 Th 37 Np 38 U 3 U T /.4 0 0 a.

Mehr

Physikalische Grundlagen für einen sicheren nuklearen Reaktor auf der Basis der Kernspaltung bei überkritischen Kühlmittelzuständen

Physikalische Grundlagen für einen sicheren nuklearen Reaktor auf der Basis der Kernspaltung bei überkritischen Kühlmittelzuständen Physikalische Grundlagen für einen sicheren nuklearen Reaktor auf der Basis der Kernspaltung bei überkritischen Kühlmittelzuständen Ziele und Umfang der Untersuchung Heutige Kernkraftwerke haben mit der

Mehr

Reaktorphysik. Reaktorsteuerung

Reaktorphysik. Reaktorsteuerung Reaktorphysik Prof. Dr. Sabine Prys Reaktorsteuerung Prof. Dr. S. Prys Bildquelle: http://www.dw-world.de/dw/article/0,,4256311,00.html Seite 1 Inhalte 1. Kernspaltung 2. Kernreaktionen 3. Neutronik 4.

Mehr

Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel

Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Kernphysik I Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Massendefekt und Bindungsenergie Kerne sind die einzigen gebundenen Systeme,

Mehr

NeutronenStreuung. Grundlagen. Aufbau. Eigenschaften & Vorteile Messgrößen. Historie Erzeugung Präparation Detektoren. Diffraktometer.

NeutronenStreuung. Grundlagen. Aufbau. Eigenschaften & Vorteile Messgrößen. Historie Erzeugung Präparation Detektoren. Diffraktometer. NeutronenStreuung Grundlagen Eigenschaften & Vorteile Messgrößen Historie Erzeugung Präparation Detektoren Inhalt Diffraktometer 1 / 24 Einführung detaillierte Eigenschaften auf atomarer Ebene n- & Röntgen-Streuung

Mehr

Thema heute: Aufbau der Materie: Kernumwandlungen, Spaltung von Atomkernen

Thema heute: Aufbau der Materie: Kernumwandlungen, Spaltung von Atomkernen Wiederholung der letzten Vorlesungsstunde: Experiment von Rutherford, Atombau, atomare Masseneinheit u, 118 bekannte Elemente, Isotope, Mischisotope, Massenspektroskopie, Massenverlust 4H 4 He, Einstein:

Mehr

41. Kerne. 33. Lektion Kerne

41. Kerne. 33. Lektion Kerne 41. Kerne 33. Lektion Kerne Lernziel: Kerne bestehen aus Protonen und Neutronen, die mit starken, ladungsunabhängigen und kurzreichweitigen Kräften zusammengehalten werden Begriffe Protonen, Neutronen

Mehr

Kern- und Teilchenphysik

Kern- und Teilchenphysik Kern- und Teilchenphysik Johannes Blümer SS2012 Vorlesung-Website KIT-Centrum Elementarteilchen- und Astroteilchenphysik KCETA KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Physik V. Kern- und Teilchenphysik. Dr. Daniel Bick. 12. Januar Daniel Bick Physik V WS 2015/ Januar / 25

Physik V. Kern- und Teilchenphysik. Dr. Daniel Bick. 12. Januar Daniel Bick Physik V WS 2015/ Januar / 25 Physik V Kern- und Teilchenphysik Dr. Daniel Bick 12. Januar 2016 Daniel Bick Physik V WS 2015/16 12. Januar 2016 1 / 25 Korrektur Verlauf des Stabilitätstals Z = A 2 1 1 + a CA 2/3 4a A Daniel Bick Physik

Mehr

Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel

Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Kernphysik I Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Massendefekt und Bindungsenergie Kerne sind die einzigen gebundenen Systeme,

Mehr

Arbeitsfragen zur Vorbereitung auf den Quali

Arbeitsfragen zur Vorbereitung auf den Quali Arbeitsfragen zur Vorbereitung auf den Quali Atombau 1 Was bedeutet das Wort Atom? 2 Welche Aussage mache Dalton über die Atome? 3 Was ist der größte Teil eines Atoms? 4 Was sind Moleküle? 5 Durch welchen

Mehr

Technische Nutzung der Kernspaltung. Kernkraftwerke

Technische Nutzung der Kernspaltung. Kernkraftwerke Technische Nutzung der Kernspaltung Kernkraftwerke Kettenreaktionen bilden die Grundlage der Energiegewinnung durch Kernspaltungsprozesse Voraussetzungen: spaltbares Material (U-235; Pu-239) Im natürlichen

Mehr

SEITE 1. Stichpunkte. Erläuterungen

SEITE 1. Stichpunkte. Erläuterungen SEITE 1 Erläuterungen Diese Folie dient als Titelbild für die Präsentation und soll einen ersten Blick auf das Thema vermitteln. Diese Folie ist nicht Teil der eigentlichen Präsentation. Quellen: Bild

Mehr

Kernspaltung. Posten 11

Kernspaltung. Posten 11 Posten 11 Kernspaltung Sozialform Dreier-Gruppen (auch Einzel- oder Partnerarbeit möglich) Bearbeitungszeit 30 Minuten Voraussetzung Posten 5 "E=mc 2 " Posten 6 "Sind Massen immer gleich massiv?" 11.1

Mehr

Kernchemie und Kernreaktionen

Kernchemie und Kernreaktionen Kernchemie und Kernreaktionen Die Kernchemie befaßt sich mit der Herstellung, Analyse und chemische Abtrennung von Radionukliden. Weiterhin werden ihre Methoden in der Umweltanalytik verwendet. Radioaktive

Mehr

1.2 Wechselwirkung Strahlung - Materie

1.2 Wechselwirkung Strahlung - Materie 1.2 Wechselwirkung Strahlung - Materie A)Wechselwirkung von elektromagnetischer Strahlung mit Materie B)Wechselwirkung von geladenen Teilchen mit Materie C)Wechselwirkung von ungeladenen Teilchen mit Materie

Mehr

Übersicht Halo Kerne

Übersicht Halo Kerne Proton-Dripline Übersicht Halo Kerne Was kann man an der Neutronen-Dripline erwarten? Ψ () r e r κr κ = 2 2 µe 2 h Je kleiner die Bindungsenergie, je ausgedehnter die Wellenfunktion A = 10 µ = 1, 1m N

Mehr

Radioaktivität. Die Nuklidkarte. Der Alpha-Zerfall I. Zerfallsarten. Alphazerfall (α) Beta-minus-Umwandlung (β-) Beta-plus-Umwandlung (β+)

Radioaktivität. Die Nuklidkarte. Der Alpha-Zerfall I. Zerfallsarten. Alphazerfall (α) Beta-minus-Umwandlung (β-) Beta-plus-Umwandlung (β+) Radioaktivität erfallsarten Alphazerfall (α) Beta-minus-Umwandlung (β-) Beta-plus-Umwandlung (β) Elektroneneinfang (EC) Gammaemission (γ) Henri Becquerel 1852-1908 Innere Konversion (IC) Protonenzerfall

Mehr

Experimentelle Grundlagen γ + N N + π

Experimentelle Grundlagen γ + N N + π Experimentelle Grundlagen γ + N N + π Thomas Schwindt 28. November 2007 1 Relativistische Kinematik Grundlagen Lorentz-Transformation Erzeugung und Zerfall von Teilchen 2 Das Experiment Kinematik Aufbau

Mehr

Reaktorsteuerung. Inhalte

Reaktorsteuerung. Inhalte Reaktorsteuerung Prof. Dr. S. Prys Bildquelle: http://www.dw-world.de/dw/article/0,,4256311,00.html Inhalte 1. Kernspaltung 2. Kernreaktionen 3. Reaktorneutronen 4. Neutronenmoderation und Reflektion 5.

Mehr

Atomenergie durch Kernspaltung

Atomenergie durch Kernspaltung Atomenergie durch Sommerakademie Salem 2008 Die Zukunft der Energie 17. August - 30. August 2008 Atomenergie durch Inhalt 1 Kernphysik Grundlagen Bindungsenergie Bethe-Weizsäcker-Formel Radioaktivität

Mehr

Vorlesung 11: Roter Faden: 1. Neutrino Hintergrundstrahlung 2. Kernsynthese. Photonen (410/cm 3 ) (CMB) Neutrinos (350/cm 3 ) (nicht beobachtet)

Vorlesung 11: Roter Faden: 1. Neutrino Hintergrundstrahlung 2. Kernsynthese. Photonen (410/cm 3 ) (CMB) Neutrinos (350/cm 3 ) (nicht beobachtet) Vorlesung 11: Roter Faden: 1. Neutrino Hintergrundstrahlung 2. Kernsynthese Universum besteht aus: Hintergrundstrahlung: Photonen (410/cm 3 ) (CMB) Neutrinos (350/cm 3 ) (nicht beobachtet) Wasserstoff

Mehr

= strahlungsaktiv; Teilchen oder Energie abstrahlend. Eine dem Licht verwandte energiereiche Strahlung, die bei vielen Kernprozessen auftritt.

= strahlungsaktiv; Teilchen oder Energie abstrahlend. Eine dem Licht verwandte energiereiche Strahlung, die bei vielen Kernprozessen auftritt. Radioaktivität 1 Die Bausteine des Kernes (n 0 und p + ) halten mittels der sehr starken aber nur über eine sehr kurze Distanz wirkenden Kernkräfte zusammen. Sie verhindern ein Auseinanderbrechen der Kerne

Mehr

Protokoll zum Versuch Reaktor (RE) im Fortgeschrittenenpraktikum

Protokoll zum Versuch Reaktor (RE) im Fortgeschrittenenpraktikum 21 November, 2008 Protokoll zum Versuch Reaktor (RE) im Fortgeschrittenenpraktikum Klaus Steiniger, Alexander Wagner, Gruppe 850 klaus.steiniger@physik.tu-dresden.de, alexander.wagner2@mailbox.tu-dresden.de

Mehr

1. Vervollständigen Sie bitte das Diagramm. 2. Ergänzen Sie bitte.

1. Vervollständigen Sie bitte das Diagramm. 2. Ergänzen Sie bitte. Energie aus Atomen Im Dezember 1938 machte der Chemiker Otto Hahn in Berlin folgendes Experiment: Er bestrahlte Uran mit Neutronen. Hahn hatte sich die Frage gestellt, ob die Atomkerne des Urans in der

Mehr

a) Notieren Sie die grundlegenden Modellvorstellungen zum Tröpfchenmodell.

a) Notieren Sie die grundlegenden Modellvorstellungen zum Tröpfchenmodell. ufgabe a) Notieren Sie die grundlegenden Modellvorstellungen zum Tröpfchenmodell. b) Interpretieren Sie die einzelnen Terme der semiempirischen Massenformel von v. Weizsäcker: W m c m c N ges n p 5 c)

Mehr

Radioaktiver Zerfall des Atomkernes: α-zerfall

Radioaktiver Zerfall des Atomkernes: α-zerfall Radioaktiver Zerfall des Atomkernes: α-zerfall Schwere Atomkerne (hohes Z, hohes N) sind instabil gegen spontanen Zerfall. Die mögliche Emission einzelner Protonen oder einzelner Neutronen ist nicht häufig.

Mehr

Institut für Plasmaforschung, Universität Stuttgart. Klausur in Nukleare Elektrische Energiesysteme ( ) mit Lösungen

Institut für Plasmaforschung, Universität Stuttgart. Klausur in Nukleare Elektrische Energiesysteme ( ) mit Lösungen 1 Institut für Plasmaforschung, Universität Stuttgart Prof. Dr. Uwe Schumacher Klausur in Nukleare Elektrische Energiesysteme (03.03.2006) mit Lösungen Aufgabe 1 a) Welche elektrische Leistung P el liefern

Mehr

Elektromagnetische Felder Klausur 17. Februar 2004

Elektromagnetische Felder Klausur 17. Februar 2004 1. a I = 2 3 3 ν2 t B R U R = I R y I c F = P ν = 4 9 ν3 t 2 B 2 1R d I wird um den Faktor 3 2 e F = größer bei gleicher Spannung, entsprechend F 2. a T = E E = 2 E2 R = E E = 1 = E 2 + E 2 = (2E 2 + E

Mehr

Fachhochschule Hannover Radioökologie und Strahlenschutz 06.12.07 Fachbereich Maschinenbau WS0708 Zeit: 90 min Prof. Dr. U. J. Schrewe Hilfsmittel: diverse nlagen ------------------------------------------------------------------------------------------------------------------------

Mehr

Kerne und Teilchen. Physik VI

Kerne und Teilchen. Physik VI Kerne und Teilchen Physik VI Vorlesung # 11 20.5.2010 Guido Drexlin, Institut für Experimentelle Kernphysik Instabile Kerne - Interne Konversion - Kernspaltung Elementarteilchen-Phänomenologie - Einführung

Mehr

Physik für Mediziner Radioaktivität

Physik für Mediziner  Radioaktivität Physik für Mediziner http://www.mh-hannover.de/physik.html Radioaktivität Peter-Alexander Kovermann Institut für Neurophysiologie Kovermann.peter@mh-hannover.de Der Aufbau von Atomen 0-5 - 0-4 m 0-0 -4

Mehr

Übungen zur Struktur der Materie 3 WiSe 14/15

Übungen zur Struktur der Materie 3 WiSe 14/15 Übungen zur Struktur der Materie 3 WiSe 14/15 N. Offen, C. Lange, P. Perez-Rubio, W. Soeldner, A. Trottmann Blatt 8 Ausgabe: 24.11.2014 Abgabe: 1./2./3./4.12.2014 Aufgabe 32: Kernfusion Betrachten Sie

Mehr

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick)

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick) Masse etwa 1 u = 1.6605e-27 kg = 931.5 MeV/c^2 Neutron (Entdeckung 1932 James Chadwick) Kraft Reichweite (cm) Stärke bei 10 13 cm im Vergleich zu starker Kraft Gravitation unendlich 10 38 elektrische Kraft

Mehr

Kernmodell der Quantenphysik

Kernmodell der Quantenphysik Kernmodell der Quantenphysik M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis 1 Atomkerne 2 Potentialtopfmodell In diesem Abschnitt 1 Atomkerne 1.1 Aufbau 1.2 Starke Wechselwirkungen 2 Potentialtopfmodell

Mehr

c) Elemente oberhalb Fe

c) Elemente oberhalb Fe c) Elemente oberhalb Fe Neutroneneinfang: (Z,A) + n (Z, A+1) + γ β-zerfall: (Z, A+1) (Z+1, A+1) + e + ν e s(low)-process: Rate ω n

Mehr

Bahnbrechende Experimente der Kern- und Teilchenphysik bis

Bahnbrechende Experimente der Kern- und Teilchenphysik bis Bahnbrechende Experimente der Kern- und Teilchenphysik bis 1975 13.12.2006 1 Einleitung Kernresonanzfluoreszenz Emissions- & Absorptionslinie Kernübergang 2 Mößbauer-Versuch Experimenteller Aufbau Messung

Mehr

5 Atmosphären. 5.1 Skalenhöhen. definiert als Länge, über die eine Größe x (z. B. Dichte, Druck,... ) auf 1/e abfällt lokale Definition: H x.

5 Atmosphären. 5.1 Skalenhöhen. definiert als Länge, über die eine Größe x (z. B. Dichte, Druck,... ) auf 1/e abfällt lokale Definition: H x. 5 Atmosphären 5.1 Skalenhöhen Definition: definiert als Länge, über die eine Größe x (z. B. Dichte, Druck,... ) auf 1/e abfällt lokale Definition: H x x x = x (z... z. B. Höhe [H dx p ] = Länge) dx x =

Mehr

Kernmodell der Quantenphysik

Kernmodell der Quantenphysik M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis In diesem Abschnitt 1.1 Aufbau 1.2 Starke Wechselwirkungen Aufbau Tröpfchenmodell Atomkerns Wesentliche Eigenschaften von n können im Tröpfchenmodell

Mehr

Wechselwirkung Strahlung-Materie Kernreaktionen

Wechselwirkung Strahlung-Materie Kernreaktionen Wintersemester 2011/2012 Radioaktivität und Radiochemie Wechselwirkung Strahlung-Materie Kernreaktionen 10.11.2011 Udo Gerstmann Bundesamt für Strahlenschutz ugerstmann@bfs.de & gerstmann@gmx.de 089-31603-2430

Mehr

Restwechselwirkung zwischen Protonen und Neutronen treibt Deformation Art und Stärke der Restwechselwirkung hängt von der Konfiguration ab

Restwechselwirkung zwischen Protonen und Neutronen treibt Deformation Art und Stärke der Restwechselwirkung hängt von der Konfiguration ab Formkoexistenz Ein paar Gedanken zur Einführung Restwechselwirkung zwischen Protonen und Neutronen treibt Deformation Art und Stärke der Restwechselwirkung hängt von der Konfiguration ab verschiedene Konfigurationen

Mehr

6. Hahn, Meitner, Strassmann, die Spaltung des Urankerns und E = mc 2

6. Hahn, Meitner, Strassmann, die Spaltung des Urankerns und E = mc 2 6. Hahn, Meitner, Strassmann, die Spaltung des Urankerns und E = mc 2 Lise Meitner 1878-1968 und Otto Hahn 1879 1968 Fritz Strassmann (1902 1980, links) und Otto Hahn 52 Der erste, noch eher indirekte

Mehr

1. Relativistische Kinematik

1. Relativistische Kinematik Notizen zur Kern-eilchenphsik II (SS 2004: 1. Relativistische Kinematik Prof. Dr. R. Santo Dr. K. Regers http://www.uni-muenster.de/phsik/kp/lehre/k2-ss04/ Kern- eilchenphsik II - SS 2004 1 Lorentztransformation

Mehr

N.BORGHINI Version vom 11. Februar 2015, 14:53 Kernphysik

N.BORGHINI Version vom 11. Februar 2015, 14:53 Kernphysik Kinematik des γ-zerfalls. Mößbauer-Effekt Sei E die nregungsenergie des Mutterkerns, entsprechend einer Gesamtenergie in dessen Ruhesystem m Kern c 2 +E, mit m Kern der Masse des Tochternuklids. Unter

Mehr

Kernenergie A = N + Z. A Massenzahl N Neutronenzahl Z Protonenzahl

Kernenergie A = N + Z. A Massenzahl N Neutronenzahl Z Protonenzahl Kernenergie A = N + Z A Massenzahl N Neutronenzahl Z Protonenzahl Massendefekt: M Z m p + N m n M A Bindungsenergie: B M x c 2 c Lichtgeschwindigkeit 1 ev = 1,602 10-19 J Mittlere Bindungsenergie je Nukleon

Mehr

Spezielle Relativitätstheorie. Experimente der relativistischen Dynamik

Spezielle Relativitätstheorie. Experimente der relativistischen Dynamik Spezielle Relativitätstheorie Experimente der relativistischen Dynamik Massenzunahme Walter Kaufmann (87-947) wies 90 die Zunahme der Elektronenmasse bei wachsender Geschwindigkeit nach (bis v 0,94 c).

Mehr

9. Kernphysik 9.1. Zusammensetzung der Atomkerne

9. Kernphysik 9.1. Zusammensetzung der Atomkerne Prof. Dieter Suter Physik B2 SS 01 9. Kernphysik 9.1. Zusammensetzung der Atomkerne 9.1.1. Nukelonen Die Atomkerne bestehen aus Protonen und Neutronen. Die Zahl der Nukleonen wird durch die Massenzahl

Mehr

Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität

Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität Radioaktive Strahlung Entstehung Nutzen Gefahren du weisst, Lernziele zu Radioaktivität 1 dass Elementarteilchen nur bedingt «elementar» sind. welche unterschiedlichen Arten von radioaktiven Strahlungen

Mehr

Wechselwirkung von Neutronen

Wechselwirkung von Neutronen Wechselwirkung von Neutronen Inhalt des 8.Kapitels Freie Neutronen Kernreaktionen und Kernspaltung Neutronenenergien Reaktionsarten von Neutronen Neutronenwechselwirkungen im Gewebe Abschirmung von Neutronen

Mehr

Kernmodelle. Tröpfchenmodell ( > Massen/Bindungsenergien, Neutronenüberschuss schwerer Kerne)

Kernmodelle. Tröpfchenmodell ( > Massen/Bindungsenergien, Neutronenüberschuss schwerer Kerne) Kernmodelle Plural! Kein Modell beschreibt alle Kerneigenschaften Nukleonen im Kern wechselwirken im Wesentlichen nur mit nächsten Nachbarnukleonen, daher Kerneigenschaften im Prinzip aus Nukleon Nukleon

Mehr

Radioaktive Zerfallsarten

Radioaktive Zerfallsarten C1 Radioaktive Zerfallsarten Damit ein Nuklid radioaktiv zerfallen kann, muss die entsprechende Reaktion "exotherm" sein. Die Summe der Ruhemassen aller entstehenden Teilchen muss kleiner sein als die

Mehr

von der Entdeckung zur Nutzung der Kernenergie

von der Entdeckung zur Nutzung der Kernenergie XV. Heidelberger Graduiertenkurse Physik (10-14 Oktober 2005) Energie und Umwelt im 21. Jahrhundert Mittwoch 12.10 Kernenergie (Teil I) von der Entdeckung zur Nutzung der Kernenergie Energie aus der Kernspaltung

Mehr

Nukleare Astrophysik

Nukleare Astrophysik Nukleare Astrophysik Atomkerne Astrophysik Beobachtung von Isotopen-Verteilungen Absorptionsspektren γ-astronomie Extrasolare Radionuklide Solare Isotopenhäufigkeiten Sonnenspektrum Meteoriten Nukleosynthese

Mehr

1. Prinzipien der Kernenergienutzung. 3. Ein technischer Vorschlag zur Transmutation. 4. Die Grundlagenforschung bei der GSI

1. Prinzipien der Kernenergienutzung. 3. Ein technischer Vorschlag zur Transmutation. 4. Die Grundlagenforschung bei der GSI Zur Lösung des Problems radioaktiver Abfälle mit kernphysikalischen Methoden Karl-Heinz Schmidt, GSI 1. Prinzipien der Kernenergienutzung 2. Das Abfallproblem 3. Ein technischer Vorschlag zur Transmutation

Mehr