Flächenkartogramme LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Größe: px
Ab Seite anzeigen:

Download "Flächenkartogramme LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK"

Transkript

1 Vorlesung Algorithmische Kartografie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg

2 Räumliche statistische Daten Wie visualisiert man Statistiken zu räumlichen Daten? Beispiel: Bevölkerung in den USA 2

3 Räumliche statistische Daten Wie visualisiert man Statistiken zu räumlichen Daten? Beispiel: Bevölkerung in den USA als Tabelle? 2

4 Räumliche statistische Daten Wie visualisiert man Statistiken zu räumlichen Daten? Beispiel: Bevölkerung in den USA als Tortendiagramm? als Tabelle? 2

5 Ra umliche statistische Daten Wie visualisiert man Statistiken zu ra umlichen Daten? Beispiel: Bevo lkerung in den USA als Balkendiagramm? als Tortendiagramm? als Tabelle? 2 Dr. Martin No llenburg Vorlesung Algorithmische Kartografie Fla chenkartogramme

6 Ra umliche statistische Daten Wie visualisiert man Statistiken zu ra umlichen Daten? Beispiel: Bevo lkerung in den USA als Balkendiagramm? als Tabelle? 2 als Tortendiagramm? Problem: Standardmethoden zeigen keine ra umlichen Muster! Dr. Martin No llenburg Vorlesung Algorithmische Kartografie Fla chenkartogramme

7 Kartenbasierte statistische Visualisierung Choroplethenkarte: nutze Farbschema 3

8 Kartenbasierte statistische Visualisierung non-contiguous area cartogram: Fläche proportional zur Bevölkerung 3

9 Kartenbasierte statistische Visualisierung contiguous area cartogram: Di usionsprozess (Gastner, Newman 2004) 3

10 Kartenbasierte statistische Visualisierung Dorling cartograms: Kreisscheiben proportionaler Größe 3

11 Kartenbasierte statistische Visualisierung 3 rectangular cartograms: jede Region als Rechteck (Raisz 1934)

12 Def.: Ein Flächenkartogramm (dt. Kartenanamorphote) ist eine Kartendarstellung, in der jede Flächeneinheit proportional zu einer externen Größe und nicht mehr zur tatsächlichen Fläche ist (z.b. Bevölkerungszahl). 4

13 Fla chenkartogramme Def.: Ein Fla chenkartogramm (dt. Kartenanamorphote) ist eine Kartendarstellung, in der jede Fla cheneinheit proportional zu einer externen Gro ße und nicht mehr zur tatsa chlichen Fla che ist (z.b. Bevo lkerungszahl).! Form, Lage und Nachbarschaften der Regionen werden verzerrt 4 Dr. Martin No llenburg Vorlesung Algorithmische Kartografie Fla chenkartogramme

14 Fla chenkartogramme Def.: Ein Fla chenkartogramm (dt. Kartenanamorphote) ist eine Kartendarstellung, in der jede Fla cheneinheit proportional zu einer externen Gro ße und nicht mehr zur tatsa chlichen Fla che ist (z.b. Bevo lkerungszahl).! Form, Lage und Nachbarschaften der Regionen werden verzerrt c Benjamin Hennig 4 Dr. Martin No llenburg Vorlesung Algorithmische Kartografie Fla chenkartogramme

15 Fla chenkartogramme Def.: Ein Fla chenkartogramm (dt. Kartenanamorphote) ist eine Kartendarstellung, in der jede Fla cheneinheit proportional zu einer externen Gro ße und nicht mehr zur tatsa chlichen Fla che ist (z.b. Bevo lkerungszahl).! Form, Lage und Nachbarschaften der Regionen werden verzerrt c Benjamin Hennig 4 Dr. Martin No llenburg Vorlesung Algorithmische Kartografie Fla chenkartogramme

16 Fla chenkartogramme Def.: Ein Fla chenkartogramm (dt. Kartenanamorphote) ist eine Kartendarstellung, in der jede Fla cheneinheit proportional zu einer externen Gro ße und nicht mehr zur tatsa chlichen Fla che ist (z.b. Bevo lkerungszahl).! Form, Lage und Nachbarschaften der Regionen werden verzerrt c Benjamin Hennig 4 c New York Times Dr. Martin No llenburg Vorlesung Algorithmische Kartografie Fla chenkartogramme

17 Fla chenkartogramme Def.: Ein Fla chenkartogramm (dt. Kartenanamorphote) ist eine Kartendarstellung, in der jede Fla cheneinheit proportional zu einer externen Gro ße und nicht mehr zur tatsa chlichen Fla che ist (z.b. Bevo lkerungszahl).! Form, Lage und Nachbarschaften der Regionen werden verzerrt c Benjamin Hennig 4 c New York Times Dr. Martin No llenburg Vorlesung Algorithmische Kartografie Fla chenkartogramme

18 Fla chenkartogramme Def.: Ein Fla chenkartogramm (dt. Kartenanamorphote) ist eine Kartendarstellung, in der jede Fla cheneinheit proportional zu einer externen Gro ße und nicht mehr zur tatsa chlichen Fla che ist (z.b. Bevo lkerungszahl).! Form, Lage und Nachbarschaften der Regionen werden verzerrt c Benjamin Hennig 4 c New York Times Dr. Martin No llenburg Vorlesung Algorithmische Kartografie c Bettina Speckmann Fla chenkartogramme

19 Fla chenkartogramme Def.: Ein Fla chenkartogramm (dt. Kartenanamorphote) ist eine Kartendarstellung, in der jede Fla cheneinheit proportional zu einer externen Gro ße und nicht mehr zur tatsa chlichen Fla che ist (z.b. Bevo lkerungszahl).! Form, Lage und Nachbarschaften der Regionen werden verzerrt c Benjamin Hennig 4 c New York Times Dr. Martin No llenburg Vorlesung Algorithmische Kartografie c Bettina Speckmann Fla chenkartogramme

20 Fla chenkartogramme Def.: Ein Fla chenkartogramm (dt. Kartenanamorphote) ist eine Kartendarstellung, in der jede Fla cheneinheit proportional zu einer externen Gro ße und nicht mehr zur tatsa chlichen Fla che ist (z.b. Bevo lkerungszahl).! Form, Lage und Nachbarschaften der Regionen werden verzerrt c Benjamin Hennig 4 c New York Times Dr. Martin No llenburg Vorlesung Algorithmische Kartografie c Bettina Speckmann Fla chenkartogramme

21 Fla chenkartogramme Def.: Ein Fla chenkartogramm (dt. Kartenanamorphote) ist eine Kartendarstellung, in der jede Fla cheneinheit proportional zu einer externen Gro ße und nicht mehr zur tatsa chlichen Fla che ist (z.b. Bevo lkerungszahl).! Form, Lage und Nachbarschaften der Regionen werden verzerrt c Benjamin Hennig c New York Times c Bettina Speckmann Welche Kriterien bestimmen die Qualita t eines Kartogramms? 4 Dr. Martin No llenburg Vorlesung Algorithmische Kartografie Fla chenkartogramme

22 Fla chenkartogramme Def.: Ein Fla chenkartogramm (dt. Kartenanamorphote) ist eine Kartendarstellung, in der jede Fla cheneinheit proportional zu einer externen Gro ße und nicht mehr zur tatsa chlichen Fla che ist (z.b. Bevo lkerungszahl).! Form, Lage und Nachbarschaften der Regionen werden verzerrt c Benjamin Hennig c New York Times Qualita tskriterien: Wiedererkennbarkeit der Form Vergleichbarkeit Lage der Regionen 4 Dr. Martin No llenburg Vorlesung Algorithmische Kartografie c Bettina Speckmann korrekte Adjazenzen kleiner Fla chenfehler geringe Komplexita t Ablesen der Fla che Fla chenkartogramme

23 Kartenprojektion durch Di usion [Gastner, Newman 04] Bevölkerungsdichte in Standardkarte sehr unterschiedlich ideales Kartogramm hat überall die gleiche Dichte modelliere Dichteausgleich als physikalischen Di usionsprozess! ergibt Transformation T : R 2! R 2 5

24 Kartenprojektion durch Di usion [Gastner, Newman 04] Bevölkerungsdichte in Standardkarte sehr unterschiedlich ideales Kartogramm hat überall die gleiche Dichte modelliere Dichteausgleich als physikalischen Di usionsprozess! ergibt Transformation T : R 2! R 2 5

25 Kartenprojektion durch Di usion [Gastner, Newman 04] Bevölkerungsdichte in Standardkarte sehr unterschiedlich ideales Kartogramm hat überall die gleiche Dichte modelliere Dichteausgleich als physikalischen Di usionsprozess! ergibt Transformation T : R 2! R 2 5

26 Kartenprojektion durch Di usion [Gastner, Newman 04] Bevölkerungsdichte in Standardkarte sehr unterschiedlich ideales Kartogramm hat überall die gleiche Dichte modelliere Dichteausgleich als physikalischen Di usionsprozess! ergibt Transformation T : R 2! R 2 Di usionsgleichung ist partielle Di erentialgleichung Implementierung nutzt Fouriertransformation und numerische Lösungsverfahren asymptotisch konstante Dichte in ganzer Karte 5

27 Kartenprojektion durch Di usion [Gastner, Newman 04] Bevölkerungsdichte in Standardkarte sehr unterschiedlich ideales Kartogramm hat überall die gleiche Dichte modelliere Dichteausgleich als physikalischen Di usionsprozess! ergibt Transformation T : R 2! R 2 Di usionsgleichung ist partielle Di erentialgleichung Implementierung nutzt Fouriertransformation und numerische Lösungsverfahren asymptotisch konstante Dichte in ganzer Karte GDP cartogram c Newman 5

28 Gitterbasierte Di usionskartogramme [Hennig 11] Erweiterung durch fein aufgelöstes Gitter ( 365K Zellen) Datenwert für jede Gitterzelle ermöglicht detailliertere Kartogramme (Abbildung von Ballungsräumen etc) 6

29 Gitterbasierte Di usionskartogramme [Hennig 11] Erweiterung durch fein aufgelöstes Gitter ( 365K Zellen) Datenwert für jede Gitterzelle ermöglicht detailliertere Kartogramme (Abbildung von Ballungsräumen etc) Demo: ScapeToad 6

30 Zusammenfassung Di usionskartogramme Diskussion: Wiedererkennbarkeit der Form Vergleichbarkeit Lage der Regionen korrekte Adjazenzen kleiner Flächenfehler geringe Komplexität Ablesen der Fläche 7

31 Zusammenfassung Di usionskartogramme Diskussion: Wiedererkennbarkeit der Form Vergleichbarkeit Lage der Regionen korrekte Adjazenzen kleiner Flächenfehler geringe Komplexität Ablesen der Fläche 7

32 Kreiskartogramme [Dorling 95] einfache, abstrakte Form: jede Region als Kreisscheibe Fläche fest skaliert bzgl. gegebener Größe initiale Platzierung im Schwerpunkt der Region iteratives Verschieben zum Auflösen der Überlappungen 8

33 Kreiskartogramme [Dorling 95] einfache, abstrakte Form: jede Region als Kreisscheibe Fläche fest skaliert bzgl. gegebener Größe initiale Platzierung im Schwerpunkt der Region iteratives Verschieben zum Auflösen der Überlappungen kräftebasierter Algorithmus (ähnl. Spring-Embedder): while Kräfte >"do foreach disk D do foreach disk D 0 \ D 6= ; do Abstoßung von D 0 D 0 geographischer Nachbar foreach Nachbar D 0 von D mit Abstand > 0 do Anziehung zu D 0 D D 0 D 8

34 Kreiskartogramme [Dorling 95] einfache, abstrakte Form: jede Region als Kreisscheibe Fläche fest skaliert bzgl. gegebener Größe initiale Platzierung im Schwerpunkt der Region iteratives Verschieben zum Auflösen der Überlappungen kräftebasierter Algorithmus (ähnl. Spring-Embedder): while Kräfte >"do foreach disk D do foreach disk D 0 \ D 6= ; do Abstoßung von D 0 D 0 geographischer Nachbar foreach Nachbar D 0 von D mit Abstand > 0 do Anziehung zu D 0 D Demo! D 0 D 8

35 Verbesserung Kreiskartogramme [Inoue 11] weiteres Kriterium: minimiere Abweichung der relativen Lage benachbarter Regionen Formulierung als nicht-lineares Optimierungsproblem: geogr. Nachbarn min X (i,j)2e " 2 dij 1 (1 ) r i r j s.t. d ij r i r j q 8i 6= j d ij = (x i x j ) 2 (y i y j ) 2 ij (0) ij Eingabewinkel 2 # r j ij = arctan y j x j x i, 0 apple apple 1 Lösung mit Solver NUOPT y i r i ij d ij 9

36 Vergleich Dorling Inoue Inoue Dorling 10

37 Zusammenfassung Kreiskartogramme Diskussion: Wiedererkennbarkeit der Form Vergleichbarkeit Lage der Regionen korrekte Adjazenzen kleiner Flächenfehler geringe Komplexität Ablesen der Fläche 11

38 Zusammenfassung Kreiskartogramme Diskussion: Wiedererkennbarkeit der Form Vergleichbarkeit Lage der Regionen korrekte Adjazenzen kleiner Flächenfehler geringe Komplexität Ablesen der Fläche 11

39 Rechteckskartogramme jede Region als Rechteck repräsentiert gegebene Zielflächen trade-o korrekte Flächen/korrekte Adjazenzen 12

40 Problemstellung Geg: politische Karte M (Rechtecksunterteilung), positives Gewicht w i für jede Region R i

41 Problemstellung Geg: bzw: politische Karte M (Rechtecksunterteilung), positives Gewicht w i für jede Region R i knotengewichteter intern triangulierter planar eingeb. Graph G dual zu M, Knoten v i entspricht Region R i, Kanten zw. adjazenten Regionen, Knotengewichte w i bzw

42 Problemstellung Geg: bzw: Ges: politische Karte M (Rechtecksunterteilung), positives Gewicht w i für jede Region R i knotengewichteter intern triangulierter planar eingeb. Graph G dual zu M, Knoten v i entspricht Region R i, Kanten zw. adjazenten Regionen, Knotengewichte w i verzerrte Karte M 0 äquivalent zu M mit R i = w i bzw

43 Problemstellung Geg: bzw: Ges: bzw: politische Karte M (Rechtecksunterteilung), positives Gewicht w i für jede Region R i knotengewichteter intern triangulierter planar eingeb. Graph G dual zu M, Knoten v i entspricht Region R i, Kanten zw. adjazenten Regionen, Knotengewichte w i verzerrte Karte M 0 äquivalent zu M mit R i = w i flächenproportionale Kontaktrepräsentation von G, jeder Knoten v i als geometrisches Objekt s i mit Fläche w i,so dass s i und s j sich berühren gdw. v i v j 2 E bzw

44 Qualitätskriterien gute Lösung falsche relative Lage falsche Adjazenzen schlechte aspect ratio kleiner Fehler korrekte Adjazenzen gute aspect ratio korrekte relative Positionen

45 Qualitätskriterien gute Lösung Adjazenzen vs. Flächenfehler falsche relative Lage falsche Adjazenzen schlechte aspect ratio kleiner Fehler korrekte Adjazenzen gute aspect ratio korrekte relative Positionen

46 Überblick des Verfahrens [van Kreveld, Speckmann 07] NW SH HH HB NI MV BE BB ST Eingabekarte NW HB NI SH HH ST MV BB BE SL RP HE BW TH BY SN Dualgraph SL RP HE BW TH BY SN N N Wa SH MV Rechtecksdual Wa SH MV BB W NW RP NI HE BW BB ST SN TH BY O Kartogramm W NW RP NI HE BW ST TH BY SN O S S 15

47 Rechtecksdual Graph heißt intern trianguliert, wenn jede(innere)facette ein Dreieck ist ein Kreis C in G heißt separierend, wenn sowohl innerhalb als auch außerhalb von C weitere Knoten liegen 16

48 Rechtecksdual Graph heißt intern trianguliert, wenn jede(innere)facette ein Dreieck ist ein Kreis C in G heißt separierend, wenn sowohl innerhalb als auch außerhalb von C weitere Knoten liegen Satz 1: Ein planar eingeb. Graph G hat ein Rechtecksdual R mit vier äußeren Rechtecken gdw. G intern trianguliert, äußere Facette ein Viereck, G enthält keine separierenden Dreiecke. 16

49 Rechtecksdual Graph heißt intern trianguliert, wenn jede(innere)facette ein Dreieck ist ein Kreis C in G heißt separierend, wenn sowohl innerhalb als auch außerhalb von C weitere Knoten liegen Satz 1: Ein planar eingeb. Graph G hat ein Rechtecksdual R mit vier äußeren Rechtecken gdw. G intern trianguliert, äußere Facette ein Viereck, G enthält keine separierenden Dreiecke. Graph-Modifikationen: 16

50 Beispiel Deutschland HB SH HH MV SL NW RP NI HE BW TH BY ST BE BB SN 17

51 Beispiel Deutschland NW HB NI HE SH HH TH ST MV BE BB SN NW NI HE SH TH ST MV BB SN entferne Grad-1 und -2 Knoten RP RP SL BW BY BW BY 17

52 Beispiel Deutschland NW HB NI HE SH HH TH ST MV BE BB SN NW NI HE SH TH ST MV BB SN entferne Grad-1 und -2 Knoten RP RP SL BW BY BW BY Wa SH MV füge flexiblen Meeresknoten als Pu er hinzu RP NW NI HE TH ST BB SN BY BW 17

53 Beispiel Deutschland NW HB NI HE SH HH TH ST MV BE BB SN NW NI HE SH TH ST MV BB SN entferne Grad-1 und -2 Knoten RP RP SL BW BY BW BY N Wa SH MV Wa SH MV füge flexiblen Meeresknoten als Pu er hinzu RP NW NI HE BW TH BY ST BB SN W RP NW NI HE BW TH BY ST BB SN O erstelle äußeres Viereck ) Satz 1 gilt S 17

54 Reguläre Kantenbeschriftung Die Nachbarn jedes inneren Rechtecks lassen sich in vier nichtleere Gruppen einteilen (N,S,W,O) und bilden in der zyklischen Ordnung vier Blöcke. N N N W O S S 18

55 Reguläre Kantenbeschriftung Die Nachbarn jedes inneren Rechtecks lassen sich in vier nichtleere Gruppen einteilen (N,S,W,O) und bilden in der zyklischen Ordnung vier Blöcke. N N N W O S S Eine Beschriftung der Kanten eines Graphen G mit {N,S,W,O} heißt reguläre Kantenbeschriftung, falls obige Bedingung an jedem inneren Knoten erfüllt ist. 18

56 Reguläre Kantenbeschriftung Die Nachbarn jedes inneren Rechtecks lassen sich in vier nichtleere Gruppen einteilen (N,S,W,O) und bilden in der zyklischen Ordnung vier Blöcke. N N N W O S S Eine Beschriftung der Kanten eines Graphen G mit {N,S,W,O} heißt reguläre Kantenbeschriftung, falls obige Bedingung an jedem inneren Knoten erfüllt ist. ist nicht eindeutig! 18

57 Reguläre Kantenbeschriftung Die Nachbarn jedes inneren Rechtecks lassen sich in vier nichtleere Gruppen einteilen (N,S,W,O) und bilden in der zyklischen Ordnung vier Blöcke. N N N W O S S Eine Beschriftung der Kanten eines Graphen G mit {N,S,W,O} heißt reguläre Kantenbeschriftung, falls obige Bedingung an jedem inneren Knoten erfüllt ist. richte Kanten von W nach O und von S nach N färbe W O Kanten rot und S N Kanten grün 18

58 Konstruktion Rechtecksdual [He, Kant 97] N Wa SH MV NI BB W NW ST O HE TH SN RP BW BY S 19

59 Konstruktion Rechtecksdual [He, Kant 97] N Wa SH MV NI BB N W NW ST O Wa SH MV HE TH SN RP W NW NI ST BB O BW S BY TH SN RP HE Wa N SH MV BW BY NI BB W NW ST O S TH SN HE RP BY BW S 19

60 Konstruktion Rechtecksdual [He, Kant 97] N SH Wa NI MV W* O* BB N W NW ST O Wa SH MV HE TH SN RP W NW NI ST BB O BW S BY TH SN RP HE Wa N SH MV N* BW BY NI BB W NW ST O S TH SN HE RP BY S* BW S 19

61 Konstruktion Rechtecksdual [He, Kant 97] N Wa N SH MV SH Wa 2 MV W* 5 O* NI 8 0 BB 1 ST 7 O 6 TH SN 2 4 W NW HE RP W NW NI ST BB O BW S 3 BY TH SN RP HE BW BY Wa NI 7 N SH 8 6 MV 9 BB N* S W NW 3 4 ST TH 5 SN O RP HE BW 2 1 BY 0 S* S 19

62 Konstruktion Rechtecksdual [He, Kant 97] N W RP NW Wa NI HE BW S N SH TH BY ST MV BB SN O W SH Wa 2 MV W* 5 O* NI 8 0 BB 1 ST 7 O 6 SN 2 4 W NW RP Wa NI NW 3 HE RP BW 7 HE BW S N SH ST TH BY TH BY 9 8 N* 6 MV BB 5 SN S* 0 O W N Wa SH MV NI BB O ST NW SN HE TH RP BW BY S S 19

63 Problem: Flächenzuweisung abstraktes Rechtecksdual benötigt noch korrekte Flächen betrachte hierarchische Rechteckszerlegung: Wa SH MV NI ST BB NW HE TH SN RP BW BY gruppiere Rechtecke, die zusammen größere Rechtecke bilden 20

64 Problem: Flächenzuweisung abstraktes Rechtecksdual benötigt noch korrekte Flächen betrachte hierarchische Rechteckszerlegung: Wa SH MV NI ST BB NW HE TH SN RP BW BY 20 gruppiere Rechtecke, die zusammen größere Rechtecke bilden zerschneidbare Rechtecke, die in zwei Teile zerfallen! leichter Fall (s. Übung) komplexere Rechtecke! Algorithmus für L-zerlegbare Layouts

65 L-zerlegbare Layouts Ein irreduzibles Rechteckslayout R heißt L-zerlegbar, falls es eine Folge (R 1,R 2,...,R n ) der Rechtecke von R gibt, so dass R 1 und R n in gegenüberliegenden Ecken von R liegen und jedes Polygon [ n j=i R j L-förmig ist L-Zerlegungssequenz 21

66 L-zerlegbare Layouts Ein irreduzibles Rechteckslayout R heißt L-zerlegbar, falls es eine Folge (R 1,R 2,...,R n ) der Rechtecke von R gibt, so dass R 1 und R n in gegenüberliegenden Ecken von R liegen und jedes Polygon [ n j=i R j L-förmig ist L-Zerlegungssequenz 5 nicht L-förmig zerlegbar 21

67 Existenz einer Lösung Satz 2: Ein L-zerlegbares Layout hat entweder genau eine oder keine Lösung als Kartogramm ohne Flächenfehler und mit korrekten Adjazenzen. 22

68 Existenz einer Lösung Satz 2: Ein L-zerlegbares Layout hat entweder genau eine oder keine Lösung als Kartogramm ohne Flächenfehler und mit korrekten Adjazenzen. Beweisskizze: y 1 R 1 L 1 () ( ) 22

69 22 Existenz einer Lösung Satz 2: Ein L-zerlegbares Layout hat entweder genau eine oder keine Lösung als Kartogramm ohne Flächenfehler und mit korrekten Adjazenzen. Beweisskizze: y 1 ( ) () Fallunterscheidung R 1 L 1

70 Heuristik für Rechteckskartogramme Nicht jedes Rechtecksdual ist L-zerlegbar, nicht jede Flächenzuweisung für L-zerlegbare Layouts hat eine Lösung. Wa NW RP SH NI HE BW MV BB ST SN TH BY SegmentMoving while lokale Verbesserung möglich do s bel. maximales Segment bewege s in bessere Richtung ggf. berücksichtige Adjazenzen ggf. berücksichtige aspect ratio liefert immer ein Layout findet lokale Optima Wasser benötigt keine Zielfläche keinerlei Garantie oder Konvergenz bewiesen 23

71 Heuristik für Rechteckskartogramme Nicht jedes Rechtecksdual ist L-zerlegbar, nicht jede Flächenzuweisung für L-zerlegbare Layouts hat eine Lösung. Wa NW RP SH MV NI BB ST SN HE TH BW BY Demo! SegmentMoving while lokale Verbesserung möglich do s bel. maximales Segment bewege s in bessere Richtung ggf. berücksichtige Adjazenzen ggf. berücksichtige aspect ratio liefert immer ein Layout findet lokale Optima Wasser benötigt keine Zielfläche keinerlei Garantie oder Konvergenz bewiesen 23

72 Flächenuniverselle Layouts Einseitige Rechteckslayouts sind flächenuniversell, d.h.sie lassen sich für jede beliebige Flächenzuweisung realisieren. [Eppstein et al. 12] Ein Layout heißt einseitig, falls jedes maximale Segment auf einer Seite nur an ein einziges Rechteck angrenzt nicht einseitig einseitig 24

73 Zusammenfassung Rechteckskartogramme Diskussion: Wiedererkennbarkeit der Form Vergleichbarkeit Lage der Regionen korrekte Adjazenzen kleiner Flächenfehler geringe Komplexität Ablesen der Fläche NW RP NI HE SH BW MV BB ST SN TH BY NI NW RP SH HE BW MV BB ST TH SN BY MV SH NI BB ST SN NW HE TH RP BW BY Bevölkerung Studierende pro Einwohner Arbeitslosenquote 25

Flächenkartogramme. Benjamin Niedermann Vorlesung Algorithmische Kartografie /

Flächenkartogramme. Benjamin Niedermann Vorlesung Algorithmische Kartografie / Vorlesung Algorithmische Kartografie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann Martin Nöllenburg 07.05.2015/12.05.2015 1 Ra umliche statistische

Mehr

Vorlesung Algorithmische Kartografie. Übungsblatt 9. Benjamin Niedermann

Vorlesung Algorithmische Kartografie. Übungsblatt 9. Benjamin Niedermann Übung Algorithmische Kartografie Übungsblatt 9 LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann 04.07.2013 Problemstellung Geg: politische Karte

Mehr

Flächenkartogramme LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Flächenkartogramme LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Kartografie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 02.07.2013 1 Fla chenkartogramme Def.: Ein Fla chenkartogramm

Mehr

Proportional Symbol Maps

Proportional Symbol Maps Vorlesung Algorithmische Kartografie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann Martin Nöllenburg 25.06.2015 1 Statistische Visualisierung

Mehr

Gruppenpräsentationen und Zusammenfassung

Gruppenpräsentationen und Zusammenfassung Vorlesung Algorithmische Kartografie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 16.07.2013 1 Algorithmische Kartografie in der Praxis Projekt

Mehr

Zusammenfassung. Benjamin Niedermann Vorlesung Algorithmische Kartografie

Zusammenfassung. Benjamin Niedermann Vorlesung Algorithmische Kartografie Vorlesung Algorithmische Kartografie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann Martin Nöllenburg 02.07.2015 1 Wiederholung Themen der

Mehr

Schematisierung von Karten

Schematisierung von Karten Vorlesung Algorithmische Kartografie Schematisierung von (Straßen-)Karten LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 30.04.2013 Schematische

Mehr

Quadtrees und Meshing

Quadtrees und Meshing Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 21.06.2011 Motivation: Meshing von Platinenlayouts Zur Simulation

Mehr

Quadtrees und Meshing

Quadtrees und Meshing Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.06.2012 Motivation: Meshing von Platinenlayouts Zur Simulation der Hitzeentwicklung

Mehr

Quadtrees und Meshing

Quadtrees und Meshing Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.06.2012 Motivation: Meshing von Platinenlayouts Zur Simulation der Hitzeentwicklung

Mehr

Flächenaggregation LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Flächenaggregation LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Kartografie Flächenaggregation LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 09.07.2013 1 Flächenaggregation Flächennutzung

Mehr

Vereinfachung und Schematisierung von Polygonen

Vereinfachung und Schematisierung von Polygonen Vorlesung Algorithmische Kartografie Vereinfachung und Schematisierung von Polygonen INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann Martin Nöllenburg 28.04.2015 1 Übersicht

Mehr

Quadtrees und Meshing

Quadtrees und Meshing Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 24.06.2014 Motivation: Meshing von Platinenlayouts Zur Simulation der Hitzeentwicklung

Mehr

Beschriftung in Dynamischen Karten

Beschriftung in Dynamischen Karten Vorlesung Algorithmische Kartografie Teil 2 LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 11.06.2013 Die Ära der dynamischen Karten Die meisten

Mehr

Vereinfachung und Schematisierung von Polygonen

Vereinfachung und Schematisierung von Polygonen Vorlesung Algorithmische Kartografie Vereinfachung und Schematisierung von Polygonen INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann Martin Nöllenburg 28.04.2015 1 Übersicht

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Dr. Joachim Spoerhase und Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Algorithmische Graphentheorie Sommersemester 2017 10. Vorlesung Planaritätstest und Färben planarer Graphen Graphen färben

Mehr

Seminar Algorithmische Geometrie

Seminar Algorithmische Geometrie Seminar Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Bastian Katz Marcus Krug Martin Nöllenburg Ignaz Rutter KIT Universität des Landes

Mehr

Flächenaggregation. Benjamin Niedermann Vorlesung Algorithmische Kartografie /

Flächenaggregation. Benjamin Niedermann Vorlesung Algorithmische Kartografie / Vorlesung Algorithmische Kartografie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann Martin Nöllenburg 30.04.205/05.05.205 Flächennutzung Maßstab

Mehr

Sichtbarkeitsgraph. Andreas Gemsa Übung Algorithmische Geometrie

Sichtbarkeitsgraph. Andreas Gemsa Übung Algorithmische Geometrie Übung Algorithmische Geometrie Sichtbarkeitsgraph LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 19.07.2012 Ablauf Nachtrag Sichtbarkeitsgraph WSPD

Mehr

Vorlesung Algorithmische Kartografie

Vorlesung Algorithmische Kartografie Übung Algorithmische Kartografie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann 18.07.2013 Wiederholung Themen der Vorlesung: Linienvereinfachung

Mehr

Erster Probelauf der bundeseinheitlichen Betreuungsbehördenstatistik 2015

Erster Probelauf der bundeseinheitlichen Betreuungsbehördenstatistik 2015 Erster Probelauf der bundeseinheitlichen Betreuungsbehördenstatistik 2015 zusammengestellt von der Betreuungsstelle Hamburg Beteiligung am Probelauf nach Bundesländern (Von bundesweit 420 Betreuungsbehörden

Mehr

Erster Probelauf der bundeseinheitlichen Betreuungsbehördenstatistik 2015

Erster Probelauf der bundeseinheitlichen Betreuungsbehördenstatistik 2015 Erster Probelauf der bundeseinheitlichen Betreuungsbehördenstatistik 2015 zusammengestellt von der Betreuungsstelle Hamburg Beteiligung am Probelauf nach Bundesländern (Von bundesweit 420 Betreuungsbehörden

Mehr

Vorlesung Algorithmische Geometrie Konvexe Hülle in R 3

Vorlesung Algorithmische Geometrie Konvexe Hülle in R 3 Vorlesung Algorithmische Geometrie Konvexe Hülle in R 3 INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 15.07.2014 1 Wdh: Konvexe Hülle in R 2 (VL1) Def: Eine Menge S R 2

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 22.04.2014 Überlagern von Kartenebenen Beispiel: Gegeben zwei verschiedene Kartenebenen,

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Dr. Joachim Spoerhase und Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Algorithmische Graphentheorie Sommersemester 2014 10. Vorlesung Planaritätstest Planaritätstest Satz. [Hopcroft & Tarjan,

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 24.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei verschiedene Kartenebenen,

Mehr

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.07.2012 Objekttypen in Bereichsabfragen y0 y0 y x x0 Bisher

Mehr

I Deutsche und ausländische Schulabsolventen mit Hochschul- und Fachhochschulreife von 1998 bis 2020 I.1 Hochschulreife I.1.

I Deutsche und ausländische Schulabsolventen mit Hochschul- und Fachhochschulreife von 1998 bis 2020 I.1 Hochschulreife I.1. I Deutsche und ausländische Schulabsolventen mit Hochschul- und Fachhochschulreife von 1998 bis 2020 I.1 Hochschulreife I.1.1 Anzahl 1) BW BY BE BB HB HH HE MV 2) 3) NI NW RP SL 4) SN ST 2) SH TH BG 1998

Mehr

Übungsblatt 7 - Voronoi Diagramme

Übungsblatt 7 - Voronoi Diagramme Karlsruher Institut für Technologie Algorithmische Geometrie Fakultät für Informatik Sommersemester 2012 ITI Wagner Martin Nöllenburg/Andreas Gemsa Übungsblatt 7 - Voronoi Diagramme 1 Voronoi-Zellen Sei

Mehr

Delaunay-Triangulierungen

Delaunay-Triangulierungen Vorlesung Algorithmische Geometrie Delaunay-Triangulierungen INSTITUT FU R THEORETISCHE INFORMATIK FAKULTA T FU R INFORMATIK Martin No llenburg 10.06.2014 Grafik c Rodrigo I. Silveira 1 Dr. Martin No llenburg

Mehr

Sonderpädagogische Förderung in allgemeinen Schulen (ohne Förderschulen) 2013/2014

Sonderpädagogische Förderung in allgemeinen Schulen (ohne Förderschulen) 2013/2014 Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland IVC/Statistik Berlin, den..0 Sonderpädagogische Förderung in allgemeinen Schulen (ohne Förderschulen)

Mehr

Sonderpädagogische Förderung in allgemeinen Schulen (ohne Förderschulen) 2011/2012

Sonderpädagogische Förderung in allgemeinen Schulen (ohne Förderschulen) 2011/2012 Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland IVC/Statistik Berlin, den 15.10.2012 Sonderpädagogische Förderung in allgemeinen Schulen (ohne Förderschulen)

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 24.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei verschiedene Kartenebenen,

Mehr

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.07.2012 Objekttypen in Bereichsabfragen y0 y x x0 Bisher

Mehr

Algorithmen für Planare Graphen

Algorithmen für Planare Graphen Algorithmen für Planare Graphen 12. Juni 2018, Übung 4 Lars Gottesbüren, Michael Hamann INSTITUT FÜR THEORETISCHE INFORMATIK KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Prüfungstermine

Mehr

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 29.05.2011 Das Postamt-Problem b(p, q) = {x R 2 : xp = xq } p q h(p, q) h(q, p) = {x :

Mehr

Geradenarrangements und Dualität von Punkten und Geraden

Geradenarrangements und Dualität von Punkten und Geraden Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare

Mehr

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.06.2014 1 Das Postamt-Problem b(p, q) = {x 2 R 2 : xp = xq } p q h(p, q) h(q, p) = {x

Mehr

Einführung & Linienvereinfachung

Einführung & Linienvereinfachung Vorlesung Algorithmische Kartografie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 16.04.2013 AlgoKarto-Team Dozent Martin No llenburg noellenburg@kit.edu

Mehr

Geradenarrangements und Dualität von Punkten und Geraden

Geradenarrangements und Dualität von Punkten und Geraden Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare

Mehr

Geradenarrangements und Dualität von Punkten und Geraden

Geradenarrangements und Dualität von Punkten und Geraden Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.06.2014 1 Dualitätsabbildung Bisher haben wir Dualität für planare

Mehr

Algorithmen zur Visualisierung von Graphen Lagenlayouts Teil 2

Algorithmen zur Visualisierung von Graphen Lagenlayouts Teil 2 Algorithmen zur Visualisierung von Graphen Teil 2 INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Tamara Mchedlidze Martin Nöllenburg Ignaz Rutter 18.12.2012 Geg.: gerichteter Graph D = (V,

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen)

Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) WS 2015/16 Diskrete Strukturen Kapitel 4: Graphentheorie (Grundlagen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

Dualität + Quad-trees

Dualität + Quad-trees Übung Algorithmische Geometrie Dualität + Quad-trees LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 30.06.2011 Übersicht Übungsblatt 10 - Dualität

Mehr

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 20.05.2014 Objekttypen in Bereichsabfragen y0 y0 y x x0 Bisher betrachteter Fall Eingabe:

Mehr

Quad-trees. Benjamin Niedermann Übung Algorithmische Geometrie

Quad-trees. Benjamin Niedermann Übung Algorithmische Geometrie Übung Algorithmische Geometrie Quad-trees LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann 02.07.2014 Übersicht Übungsblatt 11 - Quadtrees Motivation:

Mehr

Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3

Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3 Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3 LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 26.06.2012 Prüfung! Termine: 20. Juli 27.

Mehr

Sichtbarkeitsgraphen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Sichtbarkeitsgraphen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.07.2011 Bewegungslanung für Roboter Ideen?? Problem: Gegeben

Mehr

Punktbeschriftung in Dynamischen Karten

Punktbeschriftung in Dynamischen Karten Vorlesung Algorithmische Kartografie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann Martin Nöllenburg 28.05.2015 1 Übungen Nachtrag 1) Überlegen Sie sich, wie man den

Mehr

Polygontriangulierung

Polygontriangulierung Vorlesung Algorithmische Geometrie Polygone triangulieren LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 26.04.2011 Das Kunstgalerie-Problem

Mehr

Beschriftung in Dynamischen Karten

Beschriftung in Dynamischen Karten Vorlesung Algorithmische Kartografie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 04.06.2013 Was ist eine Landkarte? r e d o Dr. Martin No

Mehr

Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle. zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"):

Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle. zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung Algorithmische Geometrie): Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"): 1 Erzeugung des Voronoi-Diagramms (siehe Vorlesung "Algorithmische

Mehr

Einführung & Konvexe Hülle

Einführung & Konvexe Hülle Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.04.2011 AlgoGeom-Team Dozent Martin Nöllenburg noellenburg@kit.edu

Mehr

Algorithmen zur Visualisierung von Graphen Lagenlayouts

Algorithmen zur Visualisierung von Graphen Lagenlayouts Algorithmen zur Visualisierung von Graphen Lagenlayouts Marcus Krug Institut für Theoretische Informatik 25.06.2009 1/ 41 E-Mail-Graph der Fakultät für Informatik 2/ 41 E-Mail-Graph der Fakultät für Informatik

Mehr

Algorithmen zur Visualisierung von Graphen

Algorithmen zur Visualisierung von Graphen Algorithmen zur Visualisierung von Graphen Einführung 1. Vorlesung Sommersemester 2014 (basierend auf Folien von Martin Nöllenburg und Robert Görke, KIT) Organisatorisches Dozent Philipp Kindermann Büro

Mehr

Anwendungen der WSPD & Sichtbarkeitsgraphen

Anwendungen der WSPD & Sichtbarkeitsgraphen Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 08.07.2014 1 Wdh.: Well-Separated Pair Decomposition Def.: Ein Paar disjunkter Punktmengen

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Die Forschungsuniversität Meyerhenke, in der Institut für Theoretische

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 07..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

VERBAND BERLINER VERWALTUNGSJURISTEN e. V.

VERBAND BERLINER VERWALTUNGSJURISTEN e. V. Besoldungsvergleich 2015 Stand: 21. Mai 2015 BUND Besoldung der Bundesbeamten ab 1. März 2015.+2,2% A 13 ledig, Stufe 1 3.971,66 - - 47.659,92 3 insgesamt 10 Dienstjahre, Stufe 4 4.849,46 360,52-62.519,76

Mehr

Algorithmen zur Visualisierung von Graphen

Algorithmen zur Visualisierung von Graphen Gitterlayouts fu r planare Graphen I NSTITUT F U R T HEORETISCHE I NFORMATIK L EHRSTUHL A LGORITHMIK I M ARCUS K RUG KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum in der

Mehr

Flussmethoden: orthogonales Graphenzeichnen

Flussmethoden: orthogonales Graphenzeichnen Algorithmen zur Visualisierung von Graphen INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Tamara Mchedlidze Martin Nöllenburg 04.2.203 Orthogonale Gitterzeichnungen 2 Orthogonale Gitterzeichnungen

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 7 und 8: Euler- und Hamilton-Graphen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 17. April 2018 1/96 WIEDERHOLUNG Eulersche

Mehr

Kartogramme - Wege zu einem tieferen Verständnis Räumlicher Zusammenhänge

Kartogramme - Wege zu einem tieferen Verständnis Räumlicher Zusammenhänge Kartogramme - Wege zu einem tieferen Verständnis Räumlicher Zusammenhänge Markus Burgdorf Bundesinstitut für Bau-, Stadt- und Raumforschung (BBSR) im Bundesamt für Bauwesen und Raumordnung (BBR) Referat

Mehr

Polygontriangulierung

Polygontriangulierung Übung Algorithmische Geometrie Polygontriangulierung LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 05.05.2011 Ablauf Besprechung ÜB3 Korrektheitsbeweis

Mehr

Einführung & Konvexe Hülle

Einführung & Konvexe Hülle Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.04.2012 AlgoGeom-Team Dozent Martin Nöllenburg noellenburg@kit.edu

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 16 Programm: Einführung

Mehr

Punktbeschriftung in Landkarten

Punktbeschriftung in Landkarten Vorlesung Algorithmische Kartografie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 07.05.2013 Klassische Kartenbeschriftung Poor, sloppy, amateurisch

Mehr

Anhang (Seite 4 bis 20): Abbildungen zur Entwicklung der monatlichen Ausgaben der Jobcenter ge für Leistungen nach dem SGB II in den Ländern und

Anhang (Seite 4 bis 20): Abbildungen zur Entwicklung der monatlichen Ausgaben der Jobcenter ge für Leistungen nach dem SGB II in den Ländern und Anhang (Seite 4 bis 20): Abbildungen zur Entwicklung der monatlichen Ausgaben der Jobcenter ge für Leistungen nach dem SGB II in den Ländern und insgesamt (auch im Anhang immer nur die von den Agenturen

Mehr

Visualisierung von Graphen

Visualisierung von Graphen 1 Visualisierung von Graphen Geradlinige Zeichnungen planarer Graphen 6. Vorlesung Sommersemester 2013 (basierend auf Folien von Marcus Krug und Tamara Mchedlidze, KIT) 2 Planare Graphen: Charakterisierung,

Mehr

Polygontriangulierung

Polygontriangulierung Übung Algorithmische Geometrie Polygontriangulierung LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann 07.05.204 Ablauf Vergabe der Projekte Übungsblatt

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

1.5.10b Waldfläche [ha] nach Eigentumsart und Naturnähe der Baumartenzusammensetzung der Hauptbestockung

1.5.10b Waldfläche [ha] nach Eigentumsart und Naturnähe der Baumartenzusammensetzung der Hauptbestockung 1.5.10b Waldfläche [ha] nach Eigentumsart und Naturnähe der Baumartenzusammensetzung Deutschland, bestockter Holzboden, begehbarer Wald, ohne Lücken in, Bäume, bestandesübergreifend, Raster: 16km²: NI,

Mehr

Anordnungstechniken für konvektionsdominante Probleme im Ê 3. Dimensionsunabhängige Verfahren. Algorithmen für planare Graphen. Numerische Beispiele

Anordnungstechniken für konvektionsdominante Probleme im Ê 3. Dimensionsunabhängige Verfahren. Algorithmen für planare Graphen. Numerische Beispiele Anordnungstechniken für konvektionsdominante Probleme im Ê 3 Inhalt: Einführung Dimensionsunabhängige Verfahren Algorithmen für planare Graphen Anordnungen im Ê 3 Numerische Beispiele 2 Einführung betrachtet

Mehr

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 24.05.2011 Motivation Gegeben eine Position p = (p x, p y )

Mehr

Visualisierung von Graphen

Visualisierung von Graphen 1 Visualisierung von Graphen Hierarchische Zeichnungen 6. Vorlesung Sommersemester 2015 (basierend auf Folien von Marcus Krug, KIT) 2 Beispiel E-Mail-Graph zwischen Einrichtungen der Fak. für Informatik,

Mehr

Kanonische Ordnungen und die Mondshein-Sequenz

Kanonische Ordnungen und die Mondshein-Sequenz Kanonische Ordnungen und die Mondshein-Sequenz a.k.a. (2,)-Order 2 8 0 9 5 7 6 2 Überblick Geradlinige Zeichnungen Kanonische Ordnungen + Shift-Algorithmus Erweiterungen durch Ohrendekompositionen Mondshein-Sequenz

Mehr

Bereichsabfragen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Bereichsabfragen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.05.2011 Geometrie in Datenbanken In einer Personaldatenbank

Mehr

Betriebliche Optimierung

Betriebliche Optimierung Betriebliche Optimierung Joachim Schauer Institut für Statistik und OR Uni Graz Joachim Schauer ( Institut für Statistik und OR Uni Graz Betriebliche ) Optimierung 1 / 22 1 Das Travelling Salesperson Problem

Mehr

Betriebswirtschaftliche Optimierung

Betriebswirtschaftliche Optimierung Institut für Statistik und OR Uni Graz 1 Das Travelling Salesperson Problem 2 Das Travelling Salesperson Problem Zentrales Problem der Routenplanung Unzählige wissenschaftliche Artikel theoretischer sowie

Mehr

6. Übung zur Linearen Optimierung SS08

6. Übung zur Linearen Optimierung SS08 6 Übung zur Linearen Optimierung SS08 1 Sei G = (V, E) ein schlichter ungerichteter Graph mit n Ecken und m Kanten Für eine Ecke v V heißt die Zahl der Kanten (u, v) E Grad der Ecke (a) Ist die Anzahl

Mehr

Allgemeine. Grundgehalt monatlich. Stellenzulage/ Sonderzahlung Jahresbrutto inkl.

Allgemeine. Grundgehalt monatlich. Stellenzulage/ Sonderzahlung Jahresbrutto inkl. www.berliner-verwaltungsjuristen.de Besoldungsvergleich 2017 Stand: 30. Juni 2017 BUND Besoldung der Bundesbeamten ab 1. Februar 2017.+2,35% A 13 ledig, Stufe 1 4.154,43 - - 49.853,16 3 10 Dienstjahre,

Mehr

Routing A lgorithmen Algorithmen Begriffe, Definitionen Wegewahl Verkehrslenkung

Routing A lgorithmen Algorithmen Begriffe, Definitionen Wegewahl Verkehrslenkung Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr

Übung Algorithmische Kartografie Übungsblatt 2 & 3

Übung Algorithmische Kartografie Übungsblatt 2 & 3 Übung Algorithmische Kartografie Übungsblatt 2 & 3 LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann 23.05.2013 Übungsblatt 2 Schematisierung

Mehr

Polygontriangulierung

Polygontriangulierung Vorlesung Algorithmische Geometrie Polygone triangulieren INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.05.2012 Das Kunstgalerie-Problem Aufgabe: Installiere ein Kamerasystem

Mehr

HA-Lösung TA-Lösung Diskrete Strukturen Hausaufgabenblatt 8. Abgabe bis zum um 12:00

HA-Lösung TA-Lösung Diskrete Strukturen Hausaufgabenblatt 8. Abgabe bis zum um 12:00 Technische Universität München Winter 2018/19 Prof. J. Esparza / Dr. M. Luttenberger, C. Welzel 2019/01/29 HA- TA- Diskrete Strukturen Hausaufgabenblatt 8 Abgabe bis zum 12.12.2018 um 12:00 Beachten Sie:

Mehr

Sonderpädagogische Förderung in Förderschulen (Sonderschulen) 2015/2016

Sonderpädagogische Förderung in Förderschulen (Sonderschulen) 2015/2016 Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland IVC/Statistik Berlin, den..0 Sonderpädagogische Förderung in Förderschulen (Sonderschulen) 0/0 Seite

Mehr

Übungsaufgaben Graphentheorie, Wintersemester 2011/12

Übungsaufgaben Graphentheorie, Wintersemester 2011/12 Übungsaufgaben Graphentheorie, Wintersemester 2011/12 Frank Göring 25. Januar 2012 Zusammenfassung Übungsaufgaben zur Graphentheorievorlesung. 1 Bis 19.10.2011 1. Wir hatten einen Graphen G als zusammenhängend

Mehr

Vorlesung Geometrische Algorithmen Generierung von Nicht-uniformen Netzen Sven Schuierer

Vorlesung Geometrische Algorithmen Generierung von Nicht-uniformen Netzen Sven Schuierer Vorlesung Geometrische Algorithmen Generierung von Nicht-uniformen Netzen Sven Schuierer Uberblick 1. Anwendung 2. Anforderungen an Netze 3. Quadrantenbaume Quadrantenbaume fur Punktemengen Bestimmung

Mehr

BIAJ-Materialien Kinder und Jugendliche: Armutsgefährdungs- und SGB-II-Quoten Ländervergleich 2006 bis 2016 BIAJ 2006 bis 2016 Tabelle 1 Tabelle 2

BIAJ-Materialien Kinder und Jugendliche: Armutsgefährdungs- und SGB-II-Quoten Ländervergleich 2006 bis 2016 BIAJ 2006 bis 2016 Tabelle 1 Tabelle 2 BIAJ-Materialien Kinder und Jugendliche: Armutsgefährdungs- und SGB-II-Quoten Ländervergleich 2006 bis 2016 (BIAJ) Wie hat sich die sogenannte Armutsgefährdungsquote 1 bei den Kindern und Jugendlichen

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 10.06.2016 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP

Mehr

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 22.05.2012 Nachtrag: Dynamische Bereichsabfragen Letzte Woche: kd-trees und Range-Trees

Mehr

Algorithmen zur Visualisierung von Graphen

Algorithmen zur Visualisierung von Graphen Algorithmen zur Visualisierung von Graphen Flussmethoden Knickminimierung in orthogonalen Layouts Vorlesung im Sommersemester 2009 Martin Nöllenburg.05.2009 Lehrstuhl für Algorithmik nstitut für Theoretische

Mehr

Zusammensetzung der Kosten der Krankenhäuser 2002 und 2013 (absolute Kosten in TEuro)

Zusammensetzung der Kosten der Krankenhäuser 2002 und 2013 (absolute Kosten in TEuro) Zusammensetzung der Kosten der Krankenhäuser 2002 und 2013 (absolute Kosten in TEuro) 195.302; 0,3% 38.138; 0,1% 2002 2013 503.936; 1% 141.873 ; 0,2% 20.415.267; 33,9% 39.541.980; 65,7% 33.760.283 ; 38,3%

Mehr

Routing Algorithmen. Begriffe, Definitionen

Routing Algorithmen. Begriffe, Definitionen Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über

Mehr