Polygontriangulierung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Polygontriangulierung"

Transkript

1 Vorlesung Algorithmische Geometrie Polygone triangulieren INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg

2 Das Kunstgalerie-Problem Aufgabe: Installiere ein Kamerasystem zur Überwachung einer Kunstgalerie, so dass jede Stelle der Galerie gesehen wird. 7 X P Annahme: Beobachtung: Definition: Ziel: Galerie ist ein einfaches Polygon P mit n Ecken (keine Schnitte, keine Löcher) jede Kamera sieht sternförmiges Gebiet Punkt p 2 P ist sichtbar on c 2 P wenn cp 2 P Nutze möglichst wenige Kameras! NP-schwer!! Anzahl hängt on der Komplexität n und der Form on P ab

3 Vereinfachung des Problems Beobachtung: Idee: Dreiecke sind leicht zu überwachen zerlege P in Dreiecke und überwache die Dreiecke Satz 1: Jedes einfache Polygon mit n Ecken besitzt eine Triangulierung; jede Triangulierung besteht aus n 2 Dreiecken. Beweis liefert rekursien O(n 2 )-Algorithmus!

4 Vereinfachung des Problems Beobachtung: Dreiecke sind leicht zu überwachen Idee: zerlege P in Dreiecke und überwache die Dreiecke Satz 1: Jedes einfache Polygon mit n Ecken besitzt eine Triangulierung; jede Triangulierung besteht aus n 2 Dreiecken. P lässt sich mit n 2 Kameras in den Dreiecken überwachen P lässt sich mit n/2 Kameras auf den Diagonalen überwachen P lässt sich mit noch weniger Kameras auf den Ecken überwachen

5 Das Art-Gallery-Theorem [Chátal 75] Satz 2:Für ein einfaches Polygon P mit n Ecken sind manchmal bn/3c Kameras nötig, aber immer ausreichend um P zu überwachen. Beweis: Finde einfaches Polygon für beliebiges n, das n/3 Kameras braucht! Teil 2 an der Tafel. 7 X Fazit: Hat man eine Triangulierung, lassen sich bn/3c Kameras in O(n) Zeit platzieren.

6 Triangulierung: Überblick Dreistufiges Verfahren: Schritt 1: Zerlege P in y-monotone Teilpolygone Definition: Ein Polygon P ist y-monoton, falls der Schnitt ` \ P für jede horizontale Gerade ` zusammenhängend ist. ` X 7 Schritt 2: Trianguliere y-monotone Teilpolygone Schritt 3: benutze DFS um Triangulierung zu färben

7 Zerlegen in y-monotone Teile Idee: Unterscheide fünf erschiedene Knotenarten Wendeknoten: ertikale Laufrichtung wechselt Startknoten falls <180 Splitknoten falls >180 Endknoten falls <180 Mergeknoten falls >180 reguläre Knoten

8 Charakterisierung Lemma 1: Ein Polygon ist y-monoton, wenn es keine Splitoder Mergeknoten besitzt. Beweis: an der Tafel ) Wir müssen alle Split- und Mergeknoten durch Einfügen on Diagonalen entfernen Vorsicht: Diagonalen dürfen weder Kanten on P noch andere Diagonalen schneiden

9 In Richtung Sweep-Line-Algorithmus 1) Diagonalen für Splitknoten betrachte für jeden Knoten linke Nachbarkante left() bzgl. horizontaler sweep line ` left() erbinde Splitknoten zu niedrigstem Knoten w oberhalb mit left(w) =left() w speichere für jede Kante e den untersten Knoten w mit left(w) =e als helper(e) tri t ` auf Splitknoten : erbinde mit helper(left()) ` e helper(e)

10 In Richtung Sweep-Line-Algorithmus 2) Diagonalen für Mergeknoten erreicht man Mergeknoten wird helper(left()) = ` 0 erreicht man Splitknoten 0 mit left( 0 )=left() wird Diagonale (, 0 ) eingefügt ersetzt man helper(left()) durch 0 wird Diagonale (, 0 ) eingefügt ` 0 erreicht man das Ende 0 on left() wird Diagonale (, 0 ) eingefügt 0 `

11 Algorithmus MakeMonotone(P) MakeMonotone(Polygon P ) D doppelt-erkettete Kantenliste für (V (P ),E(P)) Q priority queue für V (P ) lexikographisch sortiert T ; (binärer Suchbaum für Sweep-Line Status) while Q6= ; do Q.nextVertex() Q.deleteVertex() handlevertex() return D handlestartvertex(ertex ) T füge linke Kante e ein helper(e) e = helper(e) e handleendvertex(ertex ) e linke Kante if ismergevertex(helper(e)) then D füge (helper(e),) ein lösche e aus T helper(e)

12 Algorithmus MakeMonotone(P) MakeMonotone(Polygon P ) D doppelt-erkettete Kantenliste für (V (P ),E(P)) Q priority queue für V (P ) lexikographisch sortiert T ; (binärer Suchbaum für Sweep-Line Status) while Q6= ; do Q.nextVertex() Q.deleteVertex() handlevertex() return D handlesplitvertex(ertex ) e Kante links on in T D füge (helper(e),) ein helper(e) T füge rechte Kante e 0 on ein helper(e 0 ) e e 0 helper(e)

13 Algorithmus MakeMonotone(P) MakeMonotone(Polygon P ) D doppelt-erkettete Kantenliste für (V (P ),E(P)) Q priority queue für V (P ) lexikographisch sortiert T ; (binärer Suchbaum für Sweep-Line Status) while Q6= ; do Q.nextVertex() Q.deleteVertex() handlemergevertex(ertex ) handlevertex() e rechte Kante return D if ismergevertex(helper(e)) then D füge (helper(e),) ein helper(e 0 ) lösche e aus T e helper(e) e 0 Kante links on in T if ismergevertex(helper(e 0 )) then D füge (helper(e 0 ),) ein e 0 helper(e 0 )

14 Algorithmus MakeMonotone(P) MakeMonotone(Polygon P ) D doppelt-erkettete Kantenliste für (V (P ),E(P)) Q priority queue für V (P ) lexikographisch sortiert T ; (binärer Suchbaum für Sweep-Line Status) while Q6= ; do handleregularvertex(ertex ) Q.nextVertex() Q.deleteVertex() if P liegt lokal rechts on then handlevertex() e, e 0 obere, untere Kante if ismergevertex(helper(e)) then return D D füge (helper(e),)ein e e 0 helper(e) helper(e) e lösche e aus T T füge e 0 ein; helper(e 0 ) else e Kante links on in T if ismergevertex(helper(e)) then D füge (helper(e),)ein helper(e)

15 Analyse Lemma 2: Algorithmus MakeMonotone fügt eine Menge on kreuzungsfreien Diagonalen in P ein, die P in y-monotone Teilpolygone zerlegen. Satz 3: Ein einfaches Polygon mit n Knoten kann in O(n log n) Zeit und O(n) Platz in y-monotone Teilpolygone zerlegt werden. priority queue Q erzeugen: O(n) Zeit Sweep-Line Status T initialisieren: O(1) Zeit Eentbehandlung pro Eent: O(log n) Zeit Q.deleteMax: O(log n) Zeit Element aus T suchen, löschen, einfügen: O(log n) Zeit apple 2 Diagonalen in D einfügen: O(1) Zeit Platz: o ensichtlich O(n)

16 Triangulierung: Überblick Dreistufiges Verfahren: Schritt 1: Zerlege P in y-monotone Teilpolygone Definition: Ein Polygon P ist y-monoton, falls der Schnitt ` \ P für jede horizontale Gerade ` zusammenhängend ist. ` X X 7 Schritt 2: Trianguliere y-monotone Teilpolygone ToDo! Schritt 3: benutze DFS um Triangulierung zu färben X

17 Triangulieren on y-monotone Polygonen Erinnerung: linker und rechter Grenzpfad sind absteigend Ansatz: Winkel in P > 180 konka greedy, auf beiden Seiten on oben nach unten Inariante? Der besuchte, aber noch nicht triangulierte Teil on P ist trichterförmig. Kette konkaer Knoten konex genauer hinschauen: nur 1 Kette! einfacher Fall

18 Algorithmus TriangulateMonotonePolygon TriangulateMonotonePolygon(Polygon P als doppelt-erk. Kantenliste) erschmelze linken und rechten Pfad! absteigende Folge u 1,...,u n Stack S ;; S.push(u 1 ); S.push(u 2 ) for j 3 to n 1 do if u j und S.top() auf erschiedenen Pfaden then while not S.empty() do S.pop() if not S.empty() then zeichne (u j,) S.push(u j 1 ); S.push(u j ) u j else S.pop() while not S.empty() and u j sieht S.top() do S.pop() zeichne Diagonale (u j,) S.push(); S.push(u j ) erbinde u n zu allen Knoten in S (außer erstem und letztem) u j u j 1

19 Zusammenfassung Satz 4: Ein y-monotones Polygon mit n Knoten lässt sich in O(n) Zeit triangulieren. Satz 3: Ein einfaches Polygon mit n Knoten kann in (alt) O(n log n) Zeit und O(n) Platz in y-monotone Teilpolygone zerlegt werden. + Satz 5: Ein einfaches Polygon mit n Knoten kann in O(n log n) Zeit und O(n) Platz trianguliert werden.

20 Triangulierung: Überblick Dreistufiges Verfahren: Schritt 1: Zerlege P in y-monotone Teilpolygone X Definition: Ein Polygon P ist y-monoton, falls der Schnitt ` \ P für jede horizontale Gerade ` zusammenhängend ist. ` X 7 Schritt 2: Trianguliere y-monotone Teilpolygone Schritt 3: benutze DFS um Triangulierung zu färben X X

21 Diskussion Lässt sich der Triangulierungs-Algorithmus auch auf Polygone mit Löchern erweitern? Triangulierung: ja Aber reichen weiterhin bn/3c Kameras aus? Nein, eine Verallgemeinerung des Art-Gallery-Theorems besagt, dass manchmal b(n + h)/3c Kameras nötig, aber immer ausreichend sind, wobei h die Anzahl der Löcher ist. [Ho mann et al., 91] Geht es für allgemeine einfache Polygone noch schneller? Ja. Nachdem das Problem lange o en war, und Ende der 1980er Jahre nach und nach schnellere (z.t. randomisierte) Algorithmen orgestelt wurden, beschrieb Chazelle [1990] einen (komplizierten) deterministischen Linearzeit-Algorithmus.

Polygontriangulierung

Polygontriangulierung Vorlesung Algorithmische Geometrie Polygone triangulieren LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 26.04.2011 Das Kunstgalerie-Problem

Mehr

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.06.2014 1 Das Postamt-Problem b(p, q) = {x 2 R 2 : xp = xq } p q h(p, q) h(q, p) = {x

Mehr

2.4. Triangulierung von Polygonen

2.4. Triangulierung von Polygonen Als drittes Problem haben wir in Kapitel 1 die Triangulierung von Polygonen identifiziert, die etwa bei der Überwachung eines Museums durch Kameras auftritt. F70 F71 Definition und Theorie: Definition

Mehr

Algorithmische Geometrie 5. Triangulierung von Polygonen

Algorithmische Geometrie 5. Triangulierung von Polygonen Algorithmische Geometrie 5. Triangulierung von Polygonen JProf. Dr. Heike Leitte Computergraphik und Visualisierung Inhaltsverzeichnis 1. Einführung 2. Konvexe Hülle 3. Schnitte von Liniensegmenten 4.

Mehr

Polygon Triangulation. robot.scr. "Art Gallery Problem" Sichtbarkeitspolygon. Algorithmische Geometrie - SS 99 - Th. Ottmann

Polygon Triangulation. robot.scr. Art Gallery Problem Sichtbarkeitspolygon. Algorithmische Geometrie - SS 99 - Th. Ottmann Polygon Triangulation "Art Gallery Problem" Sichtbarkeitspolygon robot.scr Triangulation simpler Polygone P w v u Satz: Triangulation existiert und besitzt n-2 Dreiecke Bew.: Induktion über n> 3. Suche

Mehr

Triangulierung von einfachen Polygonen

Triangulierung von einfachen Polygonen Triangulierung von einfachen Polygonen - Seminarvortrag von Tobias Kyrion - Inhalt: 1.1 Die Problemstellung Quellenangabe 1.1 Die Problemstellung Definition Polygon: endlich viele paarweise verschiedene

Mehr

Voronoi-Diagramme und Delaunay-Triangulierungen

Voronoi-Diagramme und Delaunay-Triangulierungen Vorlesung Algorithmische Geometrie Voronoi-Diagramme & Delaunay-Triangulierungen LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 07.06.2011 Erinnerung:

Mehr

Quadtrees und Meshing

Quadtrees und Meshing Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.06.2012 Motivation: Meshing von Platinenlayouts Zur Simulation der Hitzeentwicklung

Mehr

Quadtrees und Meshing

Quadtrees und Meshing Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 21.06.2011 Motivation: Meshing von Platinenlayouts Zur Simulation

Mehr

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 22.05.2012 Nachtrag: Dynamische Bereichsabfragen Letzte Woche: kd-trees und Range-Trees

Mehr

Quadtrees und Meshing

Quadtrees und Meshing Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 24.06.2014 Motivation: Meshing von Platinenlayouts Zur Simulation der Hitzeentwicklung

Mehr

Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3

Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3 Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3 LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 26.06.2012 Prüfung! Termine: 20. Juli 27.

Mehr

Breitensuche BFS (Breadth First Search)

Breitensuche BFS (Breadth First Search) Breitensuche BFS (Breadth First Search) Algorithmus BREITENSUCHE EINGABE: G = (V, E) als Adjazenzliste, Startknoten s V 1 Für alle v V 1 If (v = s) then d[v] 0 else d[v] ; 2 pred[v] nil; 2 Q new Queue;

Mehr

Lineares Programmieren

Lineares Programmieren Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.05.2011 Nachtrag Art Gallery Problem Lässt sich der Triangulierungs-Algorithmus

Mehr

Bereichsabfragen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Bereichsabfragen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.05.2011 Geometrie in Datenbanken In einer Personaldatenbank

Mehr

Triangulierung von Polygonen und das Museumsproblem

Triangulierung von Polygonen und das Museumsproblem Triangulierung von Polygonen und das Museumsproblem (Literatur: deberg et al., Kapitel 3) 1 Motivation: Das Museumsproblem ein Museum soll durch Kameras überwacht werden wie viele Kameras werden benötigt?

Mehr

Geradenarrangements und Dualität von Punkten und Geraden

Geradenarrangements und Dualität von Punkten und Geraden Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare

Mehr

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.07.2012 Objekttypen in Bereichsabfragen y0 y0 y x x0 Bisher

Mehr

Geradenarrangements und Dualität von Punkten und Geraden

Geradenarrangements und Dualität von Punkten und Geraden Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare

Mehr

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Bereichsabfragen II. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.07.2012 Objekttypen in Bereichsabfragen y0 y x x0 Bisher

Mehr

Algorithmische Geometrie 3. Schnitte von Liniensegmenten

Algorithmische Geometrie 3. Schnitte von Liniensegmenten Algorithmische Geometrie 3. Schnitte von Liniensegmenten JProf. Dr. Heike Leitte Computergraphik und Visualisierung Inhaltsverzeichnis 1. Einführung 2. Konvexe Hülle 3. Schnitte von Liniensegmenten 4.

Mehr

6. Triangulation von Polygonen

6. Triangulation von Polygonen 1 6. Triangulation von Polygonen 2 Problemstellung 3 Problemstellung 4 Problemstellung 5 Problemstellung 6 Jedes Polygon lässt sich triangulieren. Wir führen einen Induktionsbeweis nach der Anzahl der

Mehr

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone Was bisher geschah Motivation, Beispiele geometrische Objekte im R 2 : Punkt, Gerade, Halbebene, Strecke, Polygon, ebene Zerlegung in Regionen (planare Graphen) maschinelle Repräsentation geometrischer

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 13 (18.6.2014) Binäre Suchbäume IV (Rot Schwarz Bäume) Algorithmen und Komplexität Rot Schwarz Bäume Ziel: Binäre Suchbäume, welche immer

Mehr

Algorithmische Geometrie: Schnittpunkte von Strecken

Algorithmische Geometrie: Schnittpunkte von Strecken Algorithmische Geometrie: Schnittpunkte von Strecken Nico Düvelmeyer WS 2009/2010, 3.11.2009 3 Phasen im Algorithmenentwurf 1. Konzentration auf das Hauptproblem 2. Verallgemeinerung auf entartete Eingaben

Mehr

Triangulierung von einfachen Polygonen

Triangulierung von einfachen Polygonen Triangulierung von einfachen Polygonen Tobias Kyrion Inhaltsverzeichnis 1.1 Die Problemstellung....................... 1 2.1 Ein naiver Algorithmus...................... 2 3.1 Zerlegung in monotone Teilpolygone..............

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 10 (27.5.2016) Binäre Suchbäume II Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale Roboter 1

Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale Roboter 1 Vorlesung Geometrische Algorithmen Sichtbarkeitsgraphen und kurzeste Wege Sven Schuierer Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei

Mehr

Das Heiratsproblem. Definition Matching

Das Heiratsproblem. Definition Matching Das Heiratsproblem Szenario: Gegeben: n Frauen und m > n Männer. Bekanntschaftsbeziehungen zwischen allen Männern und Frauen. Fragestellung: Wann gibt es für jede der Frauen einen Heiratspartner? Modellierung

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen 6. Juni 2017 Guido Brückner INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Punkt-in-Polygon-Suche Übersicht

Punkt-in-Polygon-Suche Übersicht Folie 1 von 43 Punkt-in-Polygon-Suche Übersicht! Praxisbeispiel/Problemstellung! Zählen von Schnittpunkten " Schnitt einer Halbgerade mit der Masche " Aufwandsbetrachtung! Streifenkarte " Vorgehen und

Mehr

Sichtbarkeitsgraphen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Sichtbarkeitsgraphen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.07.2011 Bewegungslanung für Roboter Ideen?? Problem: Gegeben

Mehr

Übung zur Vorlesung Algorithmische Geometrie

Übung zur Vorlesung Algorithmische Geometrie Übung zur Vorlesung Algorithmische Geometrie Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 8. Mai 2012 B. Rieck (CoVis)

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 11 (4.6.2014) Binäre Suchbäume II Algorithmen und Komplexität Binäre Suchbäume Binäre Suchbäume müssen nicht immer so schön symmetrisch sein

Mehr

Kap. 4.7 Skiplisten. 14./15. VO DAP2 SS /16. Juni 2009

Kap. 4.7 Skiplisten. 14./15. VO DAP2 SS /16. Juni 2009 Kap. 4.7 Skiplisten Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 14./15. VO DAP2 SS 2008 9./16. Juni 2009 1 2. Übungstest Termin: Di 16. Juni 2009 im AudiMax,

Mehr

Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510

Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510 Konvexe Hülle Definition konvexe Menge: Für je zwei beliebige Punkte, die zur Menge gehören, liegt auch stets deren Verbindungsstrecke ganz in der Menge. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links),

Mehr

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr

Mehr

Beschriftung in Dynamischen Karten

Beschriftung in Dynamischen Karten Vorlesung Algorithmische Kartografie Teil 2 LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 11.06.2013 Die Ära der dynamischen Karten Die meisten

Mehr

Geometrische Algorithmen Punkt-in-Polygon-Suche. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Punkt-in-Polygon-Suche

Geometrische Algorithmen Punkt-in-Polygon-Suche. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Punkt-in-Polygon-Suche Folie 1 von 51 Geometrische Algorithmen Punkt-in-Polygon-Suche Folie 2 von 51 Punkt-in-Polygon-Suche Übersicht Praxisbeispiel/Problemstellung Zählen von Schnittpunkten Schnitt einer Halbgerade mit der

Mehr

Beschriftung in Dynamischen Karten

Beschriftung in Dynamischen Karten Vorlesung Algorithmische Kartografie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 04.06.2013 Was ist eine Landkarte? r e d o Dr. Martin No

Mehr

Dualität + Quad-trees

Dualität + Quad-trees Übung Algorithmische Geometrie Dualität + Quad-trees LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 30.06.2011 Übersicht Übungsblatt 10 - Dualität

Mehr

Delaunay-Triangulierungen

Delaunay-Triangulierungen Vorlesung Algorithmische Geometrie Delaunay-Triangulierungen INSTITUT FU R THEORETISCHE INFORMATIK FAKULTA T FU R INFORMATIK Martin No llenburg 10.06.2014 Grafik c Rodrigo I. Silveira 1 Dr. Martin No llenburg

Mehr

Zweizusammenhang und starker Zusammenhang

Zweizusammenhang und starker Zusammenhang .. Zeizusammenhang und starker Zusammenhang Carsten Gutenger Vorlesung Algorithmen und Datenstrukturen WS /. Januar Zeizusammenhang Betrachte ein Netzerk (Graph) Z.B. Computernetzerk, Flug- oder Schienennetzerk

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 25. Vorlesung Dynamisches Programmieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Klausurvorbereitung Tipp: Schreiben Sie sich alle Fragen

Mehr

Algorithmische Geometrie: Lineare Optimierung (I)

Algorithmische Geometrie: Lineare Optimierung (I) Algorithmische Geometrie: Lineare Optimierung (I) Nico Düvelmeyer WS 2009/2010, 17.11.2009 Überblick 1 Geometrie von Gießformen 2 Durchschnitte von Halbebenen 3 Inkrementeller Algorithmus Überblick 1 Geometrie

Mehr

7. Triangulation von einfachen Polygonen

7. Triangulation von einfachen Polygonen 1 7. Triangulation von einfachen Polygonen 2 Ziel Bessere Laufzeit als O(n log n) durch schnelleres Berechnen der Trapezzerlegung des Polygons. 3 Idee Finde Methode, den Anfangspunkt einer Strecke in der

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /

Mehr

a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein:

a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein: 1 Aufgabe 8.1 (P) (2, 3)-Baum a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein: Zeichnen Sie, was in jedem Schritt passiert. b) Löschen Sie die Zahlen 65, 70 und 100 aus folgendem

Mehr

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme Theoretische Informatik Exkurs Rainer Schrader Exkurs: Komplexität von n Institut für Informatik 13. Mai 2009 1 / 34 2 / 34 Gliederung Entscheidungs- und Approximationen und Gütegarantien zwei Greedy-Strategien

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe

Mehr

Kürzeste Wege in einfachen Polygonen. Sofiya Scheuermann 28. Januar 2008

Kürzeste Wege in einfachen Polygonen. Sofiya Scheuermann 28. Januar 2008 Kürzeste Wege in einfachen Polygonen Sofiya Scheuermann 28. Januar 2008 1 Inhaltsverzeichnis 1 Motivation 3 2 Grundlagen 3 3 Algorithmus 3 3.1 Zerlegung............................... 4 3.2 Zusammensetzung..........................

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

2.7.1 Inside-Test Konvexe Hülle Nachbarschaften Schnittprobleme

2.7.1 Inside-Test Konvexe Hülle Nachbarschaften Schnittprobleme 2.7 Geometrische Algorithmen 2.7.1 Inside-Test 2.7.2 Konvexe Hülle 2.7.3 Nachbarschaften 2.7.4 Schnittprobleme 1 2.7 Geometrische Algorithmen 2.7.1 Inside-Test 2.7.2 Konvexe Hülle 2.7.3 Nachbarschaften

Mehr

Punktbeschriftung in Dynamischen Karten

Punktbeschriftung in Dynamischen Karten Vorlesung Algorithmische Kartografie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann Martin Nöllenburg 28.05.2015 1 Übungen Nachtrag 1) Überlegen Sie sich, wie man den

Mehr

Quad-trees. Benjamin Niedermann Übung Algorithmische Geometrie

Quad-trees. Benjamin Niedermann Übung Algorithmische Geometrie Übung Algorithmische Geometrie Quad-trees LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann 02.07.2014 Übersicht Übungsblatt 11 - Quadtrees Motivation:

Mehr

3. Binäre Suchbäume. 3.1 Natürliche binäre Suchbäume. EADS 3.1 Natürliche binäre Suchbäume 78/598 ľernst W. Mayr

3. Binäre Suchbäume. 3.1 Natürliche binäre Suchbäume. EADS 3.1 Natürliche binäre Suchbäume 78/598 ľernst W. Mayr 3. Binäre Suchbäume 3.1 Natürliche binäre Suchbäume Definition 18 Ein natürlicher binärer Suchbaum über einem durch total geordneten Universum U ist ein als interner Suchbaum organisierter Binärbaum (also:

Mehr

Sichtbarkeitsgraph. Andreas Gemsa Übung Algorithmische Geometrie

Sichtbarkeitsgraph. Andreas Gemsa Übung Algorithmische Geometrie Übung Algorithmische Geometrie Sichtbarkeitsgraph LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 19.07.2012 Ablauf Nachtrag Sichtbarkeitsgraph WSPD

Mehr

Voronoi Diagrams. Christian Wellenbrock. December 1, 2009

Voronoi Diagrams. Christian Wellenbrock. December 1, 2009 December 1, 2009 Das Voronoi Diagramm Problemstellung Gegeben: Menge der Zentren P = {p 1,..., p n } R 2 Das Voronoi Diagramm Problemstellung Gegeben: Menge der Zentren P = {p 1,..., p n } R 2 Gesucht:

Mehr

8. Sortieren II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften

8. Sortieren II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften Heapsort, Quicksort, Mergesort 8. Sortieren II 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 9 210 Heapsort [Max-]Heap 6 Inspiration von Selectsort: Schnelles Einfügen Binärer Baum mit

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Musterlösung

Mehr

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1 Allgemeines. Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition.. (a) Ein Graph G =(V, E) heißt kreisfrei, wenn er keinen Kreis besitzt. Beispiel: Ein kreisfreier Graph: FG KTuEA, TU Ilmenau

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum

Mehr

Aufgabensammlung zur algorithmischen Geometrie

Aufgabensammlung zur algorithmischen Geometrie 1 Aufgabensammlung zur algorithmischen Geometrie 2012WS Andreas Kriegl 1. Konvexe Hülle als Durchschnitt. Zeige, daß der Durchschnitt konvexer Mengen wieder konvex ist und somit die konvexe Hülle einer

Mehr

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 2. November 2011 Gradfolgen Zusammenhang Kürzeste Wege H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 Satz von Erdős und Gallai Eine Partition einer natürlichen Zahl ist genau dann die Gradfolge

Mehr

14. Rot-Schwarz-Bäume

14. Rot-Schwarz-Bäume Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).

Mehr

Algorithmen und Datenstrukturen Heapsort

Algorithmen und Datenstrukturen Heapsort Algorithmen und Datenstrukturen 2 5 Heapsort In diesem Kapitel wird Heapsort, ein weiterer Sortieralgorithmus, vorgestellt. Dieser besitzt wie MERGE-SORT eine Laufzeit von O(n log n), sortiert jedoch das

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda 1. Sortierte Listen 2. Stacks & Queues 3. Teile und Herrsche Nächste Woche: Vorrechnen (first-come-first-served)

Mehr

Übung Computergrafik 3

Übung Computergrafik 3 Übung Computergrafik 3 1.Übungsblatt: Geometrie Stephan Groß (Dank an Irini Schmidt und Jakob Bärz) Institut für Computervisualistik Universität Koblenz-Landau 6. Juli 2011 Aufgabe 1: Fragezeichen Gegeben:

Mehr

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt:

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt: 3. Minimale Spannbäume Sei G = (V, E) ein einfacher ungerichteter Graph, der o.b.d.a. zusammenhängend ist. Sei weiter w : E R eine Gewichtsfunktion auf den Kanten von G. Wir setzen E E: w(e ) = e E w(e),

Mehr

Approximationsalgorithmen für NP-harte Optimierungsprobleme

Approximationsalgorithmen für NP-harte Optimierungsprobleme Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 18 Was tun mit NP-harten Problemen? Viele praxisrelevante

Mehr

Wegeplanung: Wegekartenverfahren

Wegeplanung: Wegekartenverfahren Wegeplanung: Wegekartenverfahren Idee Sichtbarkeitsgraph Voronoi-Diagramm Probabilistische Wegekarten Rapidly-Exploring Random Tree Prof. Dr. O. Bittel, HTWG Konstanz Autonome Roboter - Wegekartenverfahren

Mehr

Technische Universität München. Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter

Technische Universität München. Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter Kapitel 7 Fortgeschrittene Datenstrukturen Motivation: Lineare Liste: Suchen eines Elements ist schnell O(log n) Einfügen eines Elements ist langsam

Mehr

11. Elementare Datenstrukturen

11. Elementare Datenstrukturen 11. Elementare Datenstrukturen Definition 11.1: Eine dynamische Menge ist gegeben durch eine oder mehrer Mengen von Objekten sowie Operationen auf diesen Mengen und den Objekten der Mengen. Dynamische

Mehr

Lösungen zu Kapitel 5

Lösungen zu Kapitel 5 Lösungen zu Kapitel 5 Lösung zu Aufgabe : (a) Es gibt derartige Graphen: (b) Offensichtlich besitzen 0 der Graphen einen solchen Teilgraphen. Lösung zu Aufgabe : Es sei G = (V, E) zusammenhängend und V

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

10. Übungsblatt zu Algorithmen I im SS 2010

10. Übungsblatt zu Algorithmen I im SS 2010 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders G.V. Batz, C. Schulz, J. Speck 0. Übungsblatt zu Algorithmen I im SS 00 http//algo.iti.kit.edu/algorithmeni.php

Mehr

6. Algorithmen der Computer-Geometrie

6. Algorithmen der Computer-Geometrie 6. Algorithmen der Computer-Geometrie 1. Einführung 2. Schnitt von zwei Strecken 3. Punkt-in-Polygon-Test 4. Schnitt orthogonaler Strecken 5. Punkteinschlussproblem Geo-Informationssysteme 146 6.1 Computer-Geometrie

Mehr

Punktlokalisation 1. Trapez-Zerlegungen. 2. Eine Suchstruktur. 3. Randomisierter, inkrementeller Algorithmus zur Konstruktion der Trapez-Zerlegung

Punktlokalisation 1. Trapez-Zerlegungen. 2. Eine Suchstruktur. 3. Randomisierter, inkrementeller Algorithmus zur Konstruktion der Trapez-Zerlegung Punktlokalisation 1. Trapez-Zerlegungen 2. Eine Suchstruktur 3. Randomisierter, inkrementeller Algorithmus zur Konstruktion der Trapez-Zerlegung 4. Analyse Punktlokalisation Einteilung in Streifen Anfragezeit:

Mehr

KARL-FRANZENS-UNIVERSITÄT GRAZ. Seminar aus Reiner Mathematik. Die Museumswächter. Krupic Mustafa Wintersemester 2013/14

KARL-FRANZENS-UNIVERSITÄT GRAZ. Seminar aus Reiner Mathematik. Die Museumswächter. Krupic Mustafa Wintersemester 2013/14 KARL-FRANZENS-UNIVERSITÄT GRAZ Seminar aus Reiner Mathematik Die Museumswächter Krupic Mustafa Wintersemester 2013/14 Inhaltsverzeichnis 2 Inhaltsverzeichnis 1 Einleitung 3 2 Museumswächter-Satz 6 2.1

Mehr

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet

Mehr

Systems of Distinct Representatives

Systems of Distinct Representatives Systems of Distinct Representatives Seminar: Extremal Combinatorics Peter Fritz Lehr- und Forschungsgebiet Theoretische Informatik RWTH Aachen Systems of Distinct Representatives p. 1/41 Gliederung Einführung

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 217 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Graphen, Suchbäume, AVL Bäume Heute: Graphen und Bäume Binäre Suchbäume AVL-Bäume Nächste

Mehr

Berechnung minimaler Spannbäume. Beispiel

Berechnung minimaler Spannbäume. Beispiel Minimale Spannbäume Definition Sei G pv, Eq ein ungerichteter Graph und sei w : E Ñ R eine Funktion, die jeder Kante ein Gewicht zuordnet. Ein Teilgraph T pv 1, E 1 q von G heißt Spannbaum von G genau

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES

Mehr

Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur vom Seite 1. Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15.

Kurs 1663 Datenstrukturen Musterlösungen zur Klausur vom Seite 1. Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15. Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur vom 15.08.98 Seite 1 Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15. August 1998 Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2016/17 13. Vorlesung Binäre Suchbäume Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Dynamische Menge verwaltet Elemente einer sich ändernden Menge

Mehr

Definition 15 Rot-Schwarz-Bäume sind externe Binärbäume (jeder Knoten hat 0 oder 2 Kinder) mit roten und schwarzen Kanten, so dass gilt:

Definition 15 Rot-Schwarz-Bäume sind externe Binärbäume (jeder Knoten hat 0 oder 2 Kinder) mit roten und schwarzen Kanten, so dass gilt: 2.2 Rot-Schwarz-Bäume Definition 15 Rot-Schwarz-Bäume sind externe Binäräume (jeder Knoten hat 0 oder 2 Kinder) mit roten und schwarzen Kanten, so dass gilt: 1 alle Blätter hängen an schwarzen Kanten (durchgezogene

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Vorlesung 2 KÜRZESTE WEGE

Vorlesung 2 KÜRZESTE WEGE Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!

Mehr

Literatur: Kapitel 2.1 des Skripts Rot-Schwarz-Bäume Kapitel 2.2 des Skripts Treaps Cormen. Kapitel 13, Red-Black-Trees

Literatur: Kapitel 2.1 des Skripts Rot-Schwarz-Bäume Kapitel 2.2 des Skripts Treaps Cormen. Kapitel 13, Red-Black-Trees Algorithmische Anwendungen WS 2006/2007 Praktikum 3: Aufgabe 1: Einfügen eines Knotens ist einen Rot-Schwarz-Baum Aufgabe 2: Erklärungen für die Beobachtungen auf Folie 2.1/67 Aufgabe 3: Zeige wie RB-DELETE-FIXUP

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Jörn Müller-Quade 07.06.2017 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April

Mehr

Computer-Graphik I Verallgemeinerte Baryzentrische Koordinaten

Computer-Graphik I Verallgemeinerte Baryzentrische Koordinaten lausthal omputer-raphik I Verallgemeinerte Baryzentrische Koordinaten. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Verallgemeinerungen der baryzentr. Koord. 1. Was macht man im 2D bei

Mehr