Algorithmische Methoden zur Netzwerkanalyse

Größe: px
Ab Seite anzeigen:

Download "Algorithmische Methoden zur Netzwerkanalyse"

Transkript

1 Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Die Forschungsuniversität Meyerhenke, in der Institut für Theoretische Informatik Helmholtz-Gemeinschaft

2 Vorlesung 9 Programm des Tages: Abschluss Besprechung ÜB2 2 Henning Meyerhenke, Institut für Theoretische Informatik

3 Inhalt Schnelle Approximation des Durchmessers in großen ungerichteten Graphen 3 Henning Meyerhenke, Institut für Theoretische Informatik

4 Das Phänomen der kleinen Welt In vielen (komplexen) Netzwerken ist der Abstand zwischen den Knoten sehr klein (O(log n) oder manchmal sogar (fast) konstant) Viele Experimente belegen das für unterschiedliche Netzwerke Kriterium für Kategorie komplex 4 Henning Meyerhenke, Institut für Theoretische Informatik

5 Das Phänomen der kleinen Welt In vielen (komplexen) Netzwerken ist der Abstand zwischen den Knoten sehr klein (O(log n) oder manchmal sogar (fast) konstant) Viele Experimente belegen das für unterschiedliche Netzwerke Kriterium für Kategorie komplex Mathematisch: Mittlere Distanz bzw. Durchmesser ist klein 4 Henning Meyerhenke, Institut für Theoretische Informatik

6 Das Phänomen der kleinen Welt In vielen (komplexen) Netzwerken ist der Abstand zwischen den Knoten sehr klein (O(log n) oder manchmal sogar (fast) konstant) Viele Experimente belegen das für unterschiedliche Netzwerke Kriterium für Kategorie komplex Mathematisch: Mittlere Distanz bzw. Durchmesser ist klein Definition Für einen Graphen G = (V, E) definieren wir: ecc G (v) = max {d G (v, w) : w V } (Exzentrizität von v) rad(g) = min {ecc G (v) : v V } (Radius von G) diam(g) = max {ecc G (v) : v V } (Durchmesser von G) 4 Henning Meyerhenke, Institut für Theoretische Informatik

7 Das Phänomen der kleinen Welt In vielen (komplexen) Netzwerken ist der Abstand zwischen den Knoten sehr klein (O(log n) oder manchmal sogar (fast) konstant) Viele Experimente belegen das für unterschiedliche Netzwerke Kriterium für Kategorie komplex Mathematisch: Mittlere Distanz bzw. Durchmesser ist klein Definition Für einen Graphen G = (V, E) definieren wir: ecc G (v) = max {d G (v, w) : w V } (Exzentrizität von v) rad(g) = min {ecc G (v) : v V } (Radius von G) diam(g) = max {ecc G (v) : v V } (Durchmesser von G) Beispiel: Siehe Tafel! 4 Henning Meyerhenke, Institut für Theoretische Informatik

8 Berechnung des Durchmessers Frage: Welche Implikationen hat ein kleiner Durchmesser für NA-Algorithmen? 5 Henning Meyerhenke, Institut für Theoretische Informatik

9 Berechnung des Durchmessers Frage: Welche Implikationen hat ein kleiner Durchmesser für NA-Algorithmen? Frage: Wie berechnet man den Durchmesser (schnell)? 5 Henning Meyerhenke, Institut für Theoretische Informatik

10 Berechnung des Durchmessers Frage: Welche Implikationen hat ein kleiner Durchmesser für NA-Algorithmen? Frage: Wie berechnet man den Durchmesser (schnell)? Trivialer Ansatz 1: APSP, Maximum feststellen Aufwand kubisch bzw. O(MM(n) polylog(n)) 5 Henning Meyerhenke, Institut für Theoretische Informatik

11 Berechnung des Durchmessers Frage: Welche Implikationen hat ein kleiner Durchmesser für NA-Algorithmen? Frage: Wie berechnet man den Durchmesser (schnell)? Trivialer Ansatz 1: APSP, Maximum feststellen Aufwand kubisch bzw. O(MM(n) polylog(n)) Trivialer Ansatz 2 (in ungewichteten Graphen): BFS von jedem Knoten Aufwand: O(n (n + m)) 5 Henning Meyerhenke, Institut für Theoretische Informatik

12 Durchmesser approximieren in großen dünnen ungerichteten Graphen Ziel: Durchmesserabschätzung für dünn besetzte Graphen mit Millionen von Knoten Es gibt exakte Methoden, die schneller sind als die trivialen Ansätze Aber: Diese haben aber (fast) quadratischen Aufwand, zu viel für große Graphen 6 Henning Meyerhenke, Institut für Theoretische Informatik

13 Durchmesser approximieren in großen dünnen ungerichteten Graphen Ziel: Durchmesserabschätzung für dünn besetzte Graphen mit Millionen von Knoten Es gibt exakte Methoden, die schneller sind als die trivialen Ansätze Aber: Diese haben aber (fast) quadratischen Aufwand, zu viel für große Graphen Approximation mit weniger Aufwand, Näherung reicht in den meisten Fällen ohnehin! Literaturhinweise C. Magnien, M. Latapy, M. Habib: Fast Computation of Empirically Tight Bounds for the Diameter of Massive Graphs. Journal of Experimental Algorithmics, Volume 13, February P. Crescenzi, R. Grossi, M. Habib, L. Lanzi, A. Marino: On computing the diameter of real-world undirected graphs. Theor. Comput. Sci. 514: (2013). 6 Henning Meyerhenke, Institut für Theoretische Informatik

14 Durchmesser approximieren Einfache (untere und obere) Schranken Offensichtlich (aber nur in ungerichteten Graphen): ecc G (v) diam(g) 2 ecc G (v) v V (1) Die Güte der Schranken hängt natürlich stark vom Knoten v ab! 7 Henning Meyerhenke, Institut für Theoretische Informatik

15 Durchmesser approximieren Einfache (untere und obere) Schranken Offensichtlich (aber nur in ungerichteten Graphen): ecc G (v) diam(g) 2 ecc G (v) v V (1) Die Güte der Schranken hängt natürlich stark vom Knoten v ab! Motivation: Schranken iterieren 7 Henning Meyerhenke, Institut für Theoretische Informatik

16 Durchmesser approximieren Einfache (untere und obere) Schranken Offensichtlich (aber nur in ungerichteten Graphen): ecc G (v) diam(g) 2 ecc G (v) v V (1) Die Güte der Schranken hängt natürlich stark vom Knoten v ab! Motivation: Schranken iterieren Sei T u der BFS-Baum von G mit Wurzel u Dann: ecc(u) = Höhe von T u 7 Henning Meyerhenke, Institut für Theoretische Informatik

17 Durchmesser approximieren Einfache (untere und obere) Schranken Offensichtlich (aber nur in ungerichteten Graphen): ecc G (v) diam(g) 2 ecc G (v) v V (1) Die Güte der Schranken hängt natürlich stark vom Knoten v ab! Motivation: Schranken iterieren Sei T u der BFS-Baum von G mit Wurzel u Dann: ecc(u) = Höhe von T u Wichtig: Guter Startknoten u, weitere Ergebnisse 7 Henning Meyerhenke, Institut für Theoretische Informatik

18 Notation Definition N i (u): Menge der Knoten auf Ebene i von T u (= i-sprung-nachbarschaft von u) 8 Henning Meyerhenke, Institut für Theoretische Informatik

19 Notation Definition N i (u): Menge der Knoten auf Ebene i von T u (= i-sprung-nachbarschaft von u) F (u) := N ecc(u) (u): Knoten der untersten Ebene von T u 8 Henning Meyerhenke, Institut für Theoretische Informatik

20 Notation Definition N i (u): Menge der Knoten auf Ebene i von T u (= i-sprung-nachbarschaft von u) F (u) := N ecc(u) (u): Knoten der untersten Ebene von T u B i (u) := max z Ni (u) ecc(z): max. Exzentrizität der Knoten in N i(u) 8 Henning Meyerhenke, Institut für Theoretische Informatik

21 Beispiel Siehe Tafel! 9 Henning Meyerhenke, Institut für Theoretische Informatik

22 Weitere einfache Schranken (1) Beobachtung Für jedes x, y V mit x N i (u) oder y N i (u) gilt: dist(x, y) B i (u). 10 Henning Meyerhenke, Institut für Theoretische Informatik

23 Weitere einfache Schranken (1) Beobachtung Für jedes x, y V mit x N i (u) oder y N i (u) gilt: dist(x, y) B i (u). Frage: Warum? 10 Henning Meyerhenke, Institut für Theoretische Informatik

24 Weitere einfache Schranken (1) Beobachtung Für jedes x, y V mit x N i (u) oder y N i (u) gilt: dist(x, y) B i (u). Frage: Warum? Folgt direkt aus dist(x, y) min{ecc(x), ecc(y)} B i (u) 10 Henning Meyerhenke, Institut für Theoretische Informatik

25 Weitere einfache Schranken (2) Lemma Für alle 1 i, j ecc(u) und für alle x N i (u), y N j (u) gilt: dist(x, y) i + j 2 max{i, j}. 11 Henning Meyerhenke, Institut für Theoretische Informatik

26 Weitere einfache Schranken (2) Lemma Für alle 1 i, j ecc(u) und für alle x N i (u), y N j (u) gilt: dist(x, y) i + j 2 max{i, j}. Beweis. Definition der N i (u) Betrachte kürzesten Weg zwischen x und y Schlechtester Fall: i Schritte in T u von x bis zur Wurzel u j Schritte in T u von u zu y 11 Henning Meyerhenke, Institut für Theoretische Informatik

27 Haupttheorem zur Konvergenz Theorem Seien 1 i < ecc(u) und 1 k < i beliebig. Für jedes x N i k (u) mit ecc(x) > 2(i 1) existiert ein y x N j (u) mit j i derart, dass dist(x, y x ) = ecc(x). 12 Henning Meyerhenke, Institut für Theoretische Informatik

28 Haupttheorem zur Konvergenz Theorem Seien 1 i < ecc(u) und 1 k < i beliebig. Für jedes x N i k (u) mit ecc(x) > 2(i 1) existiert ein y x N j (u) mit j i derart, dass dist(x, y x ) = ecc(x). Beweis. Siehe Tafel! 12 Henning Meyerhenke, Institut für Theoretische Informatik

29 Abbruchkriterium Proposition Sei y N i.. ecc(u) := N i (u) N i+1 (u) N ecc(u) mit max. Exzentrizität in N i.. ecc(u) und sei ecc(y) > 2(i 1). Dann gilt für alle x N 1..i 1 := N 1 (u) N 2 (u) N i 1 (u): ecc(x) ecc(y). 13 Henning Meyerhenke, Institut für Theoretische Informatik

30 Abbruchkriterium Proposition Sei y N i.. ecc(u) := N i (u) N i+1 (u) N ecc(u) mit max. Exzentrizität in N i.. ecc(u) und sei ecc(y) > 2(i 1). Dann gilt für alle x N 1..i 1 := N 1 (u) N 2 (u) N i 1 (u): ecc(x) ecc(y). Beweis. x N 1..i 1 beliebig y x N i.. ecc(u) ein Knoten mit ecc(x) = dist(x, y) 13 Henning Meyerhenke, Institut für Theoretische Informatik

31 Abbruchkriterium Proposition Sei y N i.. ecc(u) := N i (u) N i+1 (u) N ecc(u) mit max. Exzentrizität in N i.. ecc(u) und sei ecc(y) > 2(i 1). Dann gilt für alle x N 1..i 1 := N 1 (u) N 2 (u) N i 1 (u): ecc(x) ecc(y). Beweis. x N 1..i 1 beliebig y x N i.. ecc(u) ein Knoten mit ecc(x) = dist(x, y) Def. Exzentrizität ecc(y x ) ecc(x) = dist(x, y x ) ecc(y) = B i.. ecc(u) (u) ecc(y) ecc(y ) y N i.. ecc(u) (u) 13 Henning Meyerhenke, Institut für Theoretische Informatik

32 Traversierung: Bottom up! BFS-Baum T u bottom up traversieren Auf jeder Ebene i Exzentrizitäten von N i (u) berechnen Falls die maximale Exzentrizität c größer als 2(i 1) ist: Abarbeitung der höheren Ebenen unnötig 14 Henning Meyerhenke, Institut für Theoretische Informatik

33 Traversierung: Bottom up! BFS-Baum T u bottom up traversieren Auf jeder Ebene i Exzentrizitäten von N i (u) berechnen Falls die maximale Exzentrizität c größer als 2(i 1) ist: Abarbeitung der höheren Ebenen unnötig Iteratives Schema: 1. Initialisiere i ecc(u) und M B i (u) 2. Falls M > 2(i 1): 2.1 JA: Gib M zurück. 2.2 NEIN: Setze i i 1, M max{m, B i (u)} und wiederhole Schritt Henning Meyerhenke, Institut für Theoretische Informatik

34 Traversierung: Bottom up! BFS-Baum T u bottom up traversieren Auf jeder Ebene i Exzentrizitäten von N i (u) berechnen Falls die maximale Exzentrizität c größer als 2(i 1) ist: Abarbeitung der höheren Ebenen unnötig Iteratives Schema: 1. Initialisiere i ecc(u) und M B i (u) 2. Falls M > 2(i 1): 2.1 JA: Gib M zurück. 2.2 NEIN: Setze i i 1, M max{m, B i (u)} und wiederhole Schritt 2. Beobachtung Für den Durchmesser D von G und M := B i (u) gilt: M D, da M eine Exzentrizität angibt Falls M 2(i 1), dann D 2(i 1) 14 Henning Meyerhenke, Institut für Theoretische Informatik

35 Algorithmus IFUB 1: function IFUB(G = (V, E), u V, unt. Schr. l für D, Fehler k N 0 ) 2: Ausgabe: Wert M mit D M k 3: Berechne T u und i ecc(u) ecc(u) ist Tiefe von T u 4: lb max{ecc(u), l) lower bound lb 5: ub 2 ecc(u) upper bound ub 6: while ub lb > k do 7: Berechne B i (u) BFS von Knoten aus N i (u) 8: if max{lb, B i (u)} > 2(i 1) then Abbr.krit. Proposition 9: return max{lb, B i (u)} 10: else 11: lb max{lb, B i (u)} 12: ub 2(i 1) 13: i i 1 Ebene raufgehen in T u 14: end if 15: end while 16: return lb 17: end function 15 Henning Meyerhenke, Institut für Theoretische Informatik

36 Korrektheit von IFUB Theorem Algorithmus IFUB arbeitet korrekt. Beweis. Folgt aus Vorüberlegungen. 16 Henning Meyerhenke, Institut für Theoretische Informatik

37 Laufzeit von IFUB Proposition Algorithmus IFUB führt höchstens D/2 Iterationen durch. Beweis. Übungsaufgabe. 17 Henning Meyerhenke, Institut für Theoretische Informatik

38 Laufzeit von IFUB Proposition Algorithmus IFUB führt höchstens D/2 Iterationen durch. Beweis. Übungsaufgabe. Corollary Algorithmus IFUB ruft BFS höchstens N D/2.. ecc(u) mal auf. 17 Henning Meyerhenke, Institut für Theoretische Informatik

39 Wahl des Startknotens Im Paper 3 Strategien: Random selection Highest degree selection 4-Sweep selection 18 Henning Meyerhenke, Institut für Theoretische Informatik

40 Experimentelle Ergebnisse Details in Crescenzi et al. Highest degree selection funktioniert sehr gut Realweltgraphen: Einige Dutzend BFS reichen oft aus Berechnung von B i (u): trivial parallel 19 Henning Meyerhenke, Institut für Theoretische Informatik

41 Fazit Durchmesser ist längster kürzester Weg über alle Knotenpaare gesehen Durchmesser wichtiges Maß in der Netzwerkanalyse (Phänomen der kleinen Welt) Exakte Berechnung hat mindestens quadratische Laufzeit (im worst case) 20 Henning Meyerhenke, Institut für Theoretische Informatik

42 Fazit Durchmesser ist längster kürzester Weg über alle Knotenpaare gesehen Durchmesser wichtiges Maß in der Netzwerkanalyse (Phänomen der kleinen Welt) Exakte Berechnung hat mindestens quadratische Laufzeit (im worst case) Approximieren des Durchmessers für große Graphen BFS ist wesentliche Komponente Einfach zu implementieren! Neuere Algorithmen teilweise noch schneller! 20 Henning Meyerhenke, Institut für Theoretische Informatik

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 7, 30.11.2011 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Vorlesung 4 BETWEENNESS CENTRALITY

Vorlesung 4 BETWEENNESS CENTRALITY Vorlesung 4 BETWEENNESS CENTRALITY 101 Aufgabe! Szenario: Sie arbeiten bei einem sozialen Online-Netzwerk. Aus der Netzwerk-Struktur Ihrer Benutzer sollen Sie wichtige Eigenschaften extrahieren. [http://www.fahrschule-vatterodt.de/

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesungen 5 und 6 Programm

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 1, 2015 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Algorithmische Methoden der Netzwerkanalyse

Algorithmische Methoden der Netzwerkanalyse Algorithmische Methoden der Netzwerkanalyse Marco Gaertler 9. Dezember, 2008 1/ 15 Abstandszentralitäten 2/ 15 Distanzsummen auf Bäumen Lemma Sei T = (V, E) ein ungerichteter Baum und T s = (V S, E s )

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 18, 2012 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20.

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20. Übersicht Datenstrukturen und Algorithmen Vorlesung 5: (K4) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.informatik.rwth-aachen.de/i2/dsal12/ 20.

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 6 Komplexität von Algorithmen 1 6.1 Beurteilung von Algorithmen I.d.R. existieren viele Algorithmen, um dieselbe Funktion zu realisieren. Welche Algorithmen sind die besseren? Betrachtung nicht-funktionaler

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Komplexität. G. Zachmann Clausthal University, Germany Leistungsverhalten von Algorithmen

Komplexität. G. Zachmann Clausthal University, Germany Leistungsverhalten von Algorithmen lausthal Informatik II Komplexität von Algorithmen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Leistungsverhalten von Algorithmen Speicherplatzkomplexität: Wird primärer & sekundärer

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Einführung in Heuristische Suche

Einführung in Heuristische Suche Einführung in Heuristische Suche Beispiele 2 Überblick Intelligente Suche Rundenbasierte Spiele 3 Grundlagen Es muss ein Rätsel / Puzzle / Problem gelöst werden Wie kann ein Computer diese Aufgabe lösen?

Mehr

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016)

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Kostenmodell Daniel Graf, Tobias Pröger 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Erklärung: Diese Mitschrift ist als Ergänzung zur Vorlesung gedacht. Wir erheben keinen Anspruch

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 5. Zwei spieltheoretische Aspekte Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2015/2016 1 / 36 Überblick

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 7. Random Walks Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 43 Überblick Überblick Ein randomisierter

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

5 Zwei spieltheoretische Aspekte

5 Zwei spieltheoretische Aspekte 5 Zwei spieltheoretische Aspekte In diesem Kapitel wollen wir uns mit dem algorithmischen Problem beschäftigen, sogenannte Und-Oder-Bäume (kurz UOB) auszuwerten. Sie sind ein Spezialfall von Spielbäumen,

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Kostenmaße. F3 03/04 p.188/395

Kostenmaße. F3 03/04 p.188/395 Kostenmaße Bei der TM nur ein Kostenmaß: Ein Schritt (Konfigurationsübergang) kostet eine Zeiteinheit; eine Bandzelle kostet eine Platzeinheit. Bei der RAM zwei Kostenmaße: uniformes Kostenmaß: (wie oben);

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

11.1 Grundlagen - Denitionen

11.1 Grundlagen - Denitionen 11 Binärbäume 11.1 Grundlagen - Denitionen Denition: Ein Baum ist eine Menge, die durch eine sog. Nachfolgerrelation strukturiert ist. In einem Baum gilt: (I) (II) 1 Knoten w ohne VATER(w), das ist die

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion:

Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion: Übungsblatt 1 Aufgabe 1.1 Beweisen oder widerlegen Sie, dass für die im Folgenden definierte Funktion f(n) die Beziehung f(n) = Θ(n 4 ) gilt. Beachten Sie, dass zu einem vollständigen Beweis gegebenenfalls

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO DAP2 SS 2009 2./4. Juni 2009 1 2. Übungstest

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung Kapitel : Minimal spannende Bäume Gliederung der Vorlesung. Fallstudie Bipartite Graphen 2. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Wege. Traveling

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Customization (Zuschneiden)

Customization (Zuschneiden) Customization (Zuschneiden) Anpassen der (Graph)Datenstruktur an die Anwendung. I Ziel: schnell, kompakt. I benutze Entwurfsprinzip: make the common case fast I Listen vermeiden Mögliches Problem: Software-Engineering-Alptraum

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 13 (18.6.2014) Binäre Suchbäume IV (Rot Schwarz Bäume) Algorithmen und Komplexität Rot Schwarz Bäume Ziel: Binäre Suchbäume, welche immer

Mehr

Übung zur Vorlesung Algorithmische Geometrie

Übung zur Vorlesung Algorithmische Geometrie Übung zur Vorlesung Algorithmische Geometrie Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 8. Mai 2012 B. Rieck (CoVis)

Mehr

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Kapitel 2 Markus Lohrey Universität Leipzig http://www.informatik.uni-leipzig.de/~lohrey/rand WS 2005/2006 Markus Lohrey (Universität Leipzig) Randomisierte Algorithmen WS 2005/2006

Mehr

Rechnerische Komplexität

Rechnerische Komplexität Proseminar Effiziente Algorithmen SS 2002 Rechnerische Komplexität Ulrike Krönert (34180) 0. Inhalt 1. Einführung 2. Algorithmen und Komplexität 2.1. Algorithmen 2.2. Laufzeitabschätzung 2.3. Polynomialzeit

Mehr

Dynamische Programmierung. Problemlösungsstrategie der Informatik

Dynamische Programmierung. Problemlösungsstrategie der Informatik als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung

Mehr

Zeichnen von Graphen. graph drawing

Zeichnen von Graphen. graph drawing Zeichnen von Graphen graph drawing WS 2006 / 2007 Gruppe: D_rot_Ala0607 Christian Becker 11042315 Eugen Plischke 11042351 Vadim Filippov 11042026 Gegeben sei ein Graph G = (V; E) Problemstellung V E =

Mehr

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g: TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

4.7 Der Algorithmus von Dinic für maximalen Fluss

4.7 Der Algorithmus von Dinic für maximalen Fluss 4.7 Der Algorithmus von Dinic für maximalen Fluss Wir kennen bereits den Algorithmus von Ford Fulkerson zur Suche nach einem maximalen Fluss in einem Graphen. Wir lernen nun einen Algorithmus für maximalen

Mehr

Binäre lineare Optimierung mit K*BMDs p.1/42

Binäre lineare Optimierung mit K*BMDs p.1/42 Binäre lineare Optimierung mit K*BMDs Ralf Wimmer wimmer@informatik.uni-freiburg.de Institut für Informatik Albert-Ludwigs-Universität Freiburg Binäre lineare Optimierung mit K*BMDs p.1/42 Grundlagen Binäre

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik

Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 14, 08.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Einführung in die Informatik 1

Einführung in die Informatik 1 Einführung in die Informatik 1 Algorithmen und algorithmische Sprachkonzepte Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag,

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

EndTermTest PROGALGO WS1516 A

EndTermTest PROGALGO WS1516 A EndTermTest PROGALGO WS1516 A 14.1.2016 Name:................. UID:.................. PC-Nr:................ Beachten Sie: Lesen Sie erst die Angaben aufmerksam, genau und vollständig. Die Verwendung von

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Informatik I Komplexität von Algorithmen

Informatik I Komplexität von Algorithmen Leistungsverhalten von Algorithmen Informatik I Komplexität von Algorithmen G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de Speicherplatzkomplexität: Wird primärer & sekundärer Speicherplatz

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei

Mehr

Prof. Dr. Margarita Esponda

Prof. Dr. Margarita Esponda Die O-Notation Analyse von Algorithmen Die O-Notation Prof. Dr. Margarita Esponda Freie Universität Berlin ALP II: Margarita Esponda, 5. Vorlesung, 26.4.2012 1 Die O-Notation Analyse von Algorithmen Korrektheit

Mehr

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Robert Elsässer u.v.a. Paderborn, 29. Mai 2008 Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Aufgabe 1 (6 Punkte): Zunächst sollte klar sein, daß ein vollständiger Binärer

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13)

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) Berlin, 21. Februar 2013 Name:... Matr.-Nr.:... Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) 1 2 3 4 5 6 7 8 9 Σ Bearbeitungszeit: 90 min. max. Punktezahl:

Mehr

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Steinerbäume Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Verfasser Flamur Kastrati Betreuer Prof. Dr. habil. Thomas

Mehr

Syntax von LOOP-Programmen

Syntax von LOOP-Programmen LOOP-Berechenbarkeit Syntax von LOOP-Programmen Definition LOOP-Programme bestehen aus: Variablen: x 0, x 1, x 2, x 3,... Konstanten: 0, 1, 2, 3,... Trennsymbolen:; und := Operationen: + und Befehlen:

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Makespan-Scheduling Kapitel 4: Approximationsalgorithmen (dritter Teil) (weitere Beispiele und Illustrationen an der Tafel) Hilfreiche Literatur: Vazarani: Approximation Algorithms, Springer Verlag, 2001.

Mehr

Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time

Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time Universität Konstanz Mathematisch-naturwissenschaftliche Sektion Fachbereich Mathematik und Statistik Wintersemester 2001/02 Mikkel Thorup: Undirected Single-Source Shortest Paths with Positive Integer

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik

Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik Dozent: Prof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK

Mehr

Overview. Testen von Planarität. Planare Graphen. Beliebige Knotenpositionen. Gerade Linien. Faces

Overview. Testen von Planarität. Planare Graphen. Beliebige Knotenpositionen. Gerade Linien. Faces Overview Testen von Planarität Markus Chimani LS XI Algorithm Engineering, TU Dortmund VO Automatisches Zeichnen von Graphen 15 Planarität Grundbegriffe Wie erkennt man Planarität Boyer-Myrvold Überblick

Mehr

Algorithmen und Datenstrukturen Kapitel 10

Algorithmen und Datenstrukturen Kapitel 10 Algorithmen und Datenstrukturen Kapitel 10 Flüsse Frank Heitmann heitmann@informatik.uni-hamburg.de 6. Januar 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/8 Flüsse Graphen Grundlagen Definition

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Vorlesung 3 MINIMALE SPANNBÄUME

Vorlesung 3 MINIMALE SPANNBÄUME Vorlesung 3 MINIMALE SPANNBÄUME 72 Aufgabe! Szenario: Sie arbeiten für eine Firma, die ein Neubaugebiet ans Netz (Wasser, Strom oder Kabel oder...) anschließt! Ziel: Alle Haushalte ans Netz bringen, dabei

Mehr

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir Effiziente Algorithmen Lösen NP-vollständiger Probleme 289 Branch-and-Bound Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir 1.

Mehr

Netzwerkfluß. Gegeben ist ein System von Wasserrohren: Die Kapazität jedes Rohres ist 3, 5 oder 8 l/s.

Netzwerkfluß. Gegeben ist ein System von Wasserrohren: Die Kapazität jedes Rohres ist 3, 5 oder 8 l/s. Netzwerkfluß (Folie, Seite 78 im Skript) Gegeben ist ein System von Wasserrohren: Quelle s t Senke Die Kapazität jedes Rohres ist, oder 8 l/s. Frage: Wieviel Wasser kann von der Quelle zur Senke fließen?

Mehr

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus

Mehr

abgeschlossen unter,,,, R,

abgeschlossen unter,,,, R, Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen

Mehr

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 5. Asymptotische Laufzeitkomplexität Definition Regeln Beispiele

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 5. Asymptotische Laufzeitkomplexität Definition Regeln Beispiele UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 5 Asymptotische Laufzeitkomplexität Definition Regeln Beispiele Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger

Mehr

Modelle und Statistiken

Modelle und Statistiken Kapitel 4 Modelle und Statistiken In letzter Zeit werden vermehrt Parameter (Gradfolgen, Kernzahlfolgen, etc.) empirischer Graphen (Internet, WWW, Proteine, etc.) berechnet und diskutiert. Insbesondere

Mehr

Viel Spaÿ! Aufgabe 0.1. Laufzeit unter Verdoppelung (-)

Viel Spaÿ! Aufgabe 0.1. Laufzeit unter Verdoppelung (-) Datenstrukturen (DS) Sommersemester 2015 Prof. Dr. Georg Schnitger Dipl-Inf. Bert Besser Hannes Seiwert, M.Sc. Institut für Informatik AG Theoretische Informatik Übung 0 Ausgabe: 14.04.2015 Abgabe: - Wenn

Mehr

Streaming Data: Das Modell

Streaming Data: Das Modell Streaming Data: Das Modell Berechnungen, bei fortlaufend einströmenden Daten (x t t 0), sind in Echtzeit zu erbringen. Beispiele sind: - Verkehrsmessungen im Internet, - Datenanalyse in der Abwehr einer

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

Spiele in der Informatik

Spiele in der Informatik Spiele in der Informatik Martin Lange Lehr- und Forschungseinheit Theoretische Informatik Informatik-Schnupperstudium an der LMU, 29.3.2010 Übersicht Teil 1 Schokoladenessen für Spieltheoretiker ein kleines

Mehr

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der

Mehr

Komplexität von Algorithmen

Komplexität von Algorithmen Komplexität von Algorithmen Prof. Dr. Christian Böhm WS 07/08 in Zusammenarbeit mit Gefei Zhang http://www.dbs.informatik.uni-muenchen.de/lehre/nfinfosw Ressourcenbedarf - Größenordnungen Prozesse verbrauchen

Mehr

Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20

Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20 Suche in Spielbäumen Suche in Spielbäumen KI SS2011: Suche in Spielbäumen 1/20 Spiele in der KI Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche Einschränkung von Spielen auf: 2 Spieler:

Mehr

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und

Mehr

Codierung, Codes (variabler Länge)

Codierung, Codes (variabler Länge) Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls

Mehr