Approximationsalgorithmen
|
|
|
- Helmut Abel
- vor 9 Jahren
- Abrufe
Transkript
1 Makespan-Scheduling Kapitel 4: Approximationsalgorithmen (dritter Teil) (weitere Beispiele und Illustrationen an der Tafel) Hilfreiche Literatur: Vazarani: Approximation Algorithms, Springer Verlag, Hochbaum: Approximation Algorithms for NP-Hard Problems, Thomson Publishing, Ausiello, Crescenzi, Gambosi, Kann, Marchetti-Spaccamela, Protasi: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties, Springer Verlag, Wir untersuchen ein fundamentales Problem aus der Schedulingtheorie. MAKESPAN SCHEDULING: Gegeben sei eine Menge von Jobs [n] = {1,..., n} mit Laufzeiten p 1,..., p n N und eine natürliche ahl m. Gesucht ist eine uteilung f : [n] [m] der n Jobs auf m identische Maschinen, so dass der Makespan, also max minimiert wird. p i j [m] i [n]:f(i)=j Diese uteilung wird als Schedule (Ablaufplan) bezeichnet. u einem Schedule gehört normalerweise auch eine Beschreibung, in welcher Reihenfolge die Jobs auf den einzelnen Maschinen abgearbeitet werden. Diese Reihenfolge spielt jedoch bei der Makespan-Minimierung offensichtlich keine Rolle. 2
2 Algorithmus Least-Loaded (LL): Für i = 1 bis n, weise Job i derjenigen Maschine zu, die bisher die geringste Last hat. Wie gut ist diese Heuristik? ein Beispiel: Sei n = m Jobs 1 bis m 2 haben Laufzeit 1. Job m hat Laufzeit m. Die LL-Heuristik erreicht den Makespan 2m. Der optimale Makespan ist m + 1. Damit ist der Approximationsfaktor bestenfalls 2. Der folgende Satz zeigt, dass dieses Beispiel tatsächlich den schlimmsten Fall beschreibt. Satz 1 LL garantiert eine 2-Approximation. Beweis: Es gelten die folgenden zwei trivialen unteren Schranke für ein optimales Schedule: opt max max(p 1 i), p i i [n] m. i [n] Wir gehen davon aus, jede Maschine arbeitet ihre Jobs nacheinander in der Reihenfolge ihrer uweisung ab. Sei i der Index desjenigen Jobs, der als letztes fertig wird. Sei j = f(i ), d.h. Maschine j wird als letztes fertig und bestimmt damit den Makespan. um eitpunkt als Job i Maschine j zugewiesen wurde, hatte diese Maschine die geringste Last. Die Last von Maschine j zu diesem eitpunkt war also höchsten 1 m i<i p i. Damit ist die Laufzeit von Maschine j höchstens ( ) 1 p i + p i 2opt. m i <i 3 4
3 Satz 2 LPT garantiert eine 4 3 -Approximation. Beweis: Algorithmus Longest-Processing-Time (LPT): 1. Sortiere die Jobs, so dass p 1 p 2 p n ; 2. Für i = 1 bis n, weise Job i derjenigen Maschine zu, die bisher die geringste Last hat. Graham hat 1969 gezeigt, dass LPT einen Approximationsfaktor von höchstens 4 3 hat. Auch diese Schranke ist scharf. um wecke des Widerspruchs nehmen an, es gibt eine Eingabeinstanz für die LPT einen Makespan von τ > 4 3opt auf m Maschinen erzeugt. Sei p 1, p 2,..., p n eine Eingabeinstanz minimaler Länge mit τ > 4 3 opt. Es gelte p 1 p 2 p n. Sei i der Index desjenigen Jobs, der als letztes fertig wird. Es gilt i = n, sonst waere ja p 1,..., p i, i < n, eine kürzere Eingabesequenz mit τ > 4 3opt, aber wir haben angenommen p 1, p 2,..., p n ist die kürzeste Eingabe mit dieser Eigenschaft. Job n wird auf der am wenigsten belasteten Maschine platziert. um eitpunkt der uweisung von Job n hat diese Maschine höchstens Last 1 n 1 m i=1 p i opt. Damit τ > 4 3 opt gilt, muss also gelten p n > 1 3 opt. Aus p n > 1 3 opt folgt, jeder Job ist größer als 1 3opt, weil p 1 p 2 p n. 5 6
4 Falls jeder Job größer als 1 3opt, so kann ein optimaler Schedule nicht mehr als zwei Jobs an eine Maschine zuweisen. Jeder Schedule mit höchstens zwei Jobs pro Maschine kann in den folgenden schematisch dargestellten Schedule überführt werden, ohne den Makespan zu erhöhen (vgl. Übung). n m+1 Das Makespan-Scheduling-Problem ist stark NP-vollständig. Es gibt also kein FPAS für dieses Problem. Trotzdem werden wir zeigen, dass das Problem in Polynomialzeit beliebig gut approximiert werden kann. Wir sagen, ein Optimierungsproblem Π hat ein PAS (polynomial approximation scheme), falls für jede Konstante ɛ > 0 eine (1 ± ɛ)-approximation in polynomieller eit berechnet werden kann. Der Unterschied zum FPAS ist, dass ɛ hierbei als konstant angesehen wird m 1 m Dieser Schedule entspricht jedoch genau dem LPT- Schedule. Also berechnet LPT einen optimalen Schedule. Dies ist ein Widerspruch zu unserer Annahme τ > 4 3 opt. Somit folgt τ 4 3opt, und der Approximationsfaktor ist höchstens 4 3. Wir werden zeigen, dass das Makespan-Scheduling-Problem ein PAS mit Laufzeit ungefähr n 1/ɛ2 hat. Für ein FPAS wäre eine derartige Laufzeitschranke nicht zulässig, weil sie nicht polynomiell in 1 ɛ ist. Für kleines ɛ ist die obige Laufzeitschranke offensichtlich nicht praktikabel. Wir wollen uns trotzdem einmal ansehen, wie ein derartiges Approximationsschema aussieht. Dieses PAS ist aber eher unter komplexitätstheoretischen als unter praktischen Gesichtspunkten interessant. 7 8
5 Ein PAS für MAKESPAN-SCHEDULING: 1. Ein Orakel verrät uns den Wert des optimalen Makespans, den wir nennen. 2. Wir kümmern uns zunächst um die großen Jobs, d.h. um die Jobs {i [n] p i > ɛ}. a) Wir skalieren und runden die Laufzeiten der großen Jobs d.h. wir setzen p pi i = ɛ 2. b) Wir berechnen einen Schedule für die aufgerundeten Laufzeiten mit Makespan höchstens = (1 + ɛ) ɛ Jetzt kümmern wir uns um die kleinen Jobs, d.h. um die Jobs {i [n] p i ɛ}. Wir verteilen diese Jobs mittels der LL-Heuristik auf das durch die großen Jobs entstandene Gebirge. 9 Bemerkung zu Schritt 2: Das Skalieren in Schritt 2a) läßt sich am Besten durch ein Beispiel illustrieren. Sei = 1000 und ɛ = Dann setzen wir p pi pi i = ɛ 2 =. 10 Aus p i = 222 wird also p i = 23. Beachte, das Aufrunden von 22,2 auf 23 verzehrt den Wert höchstens um den Faktor 1 + ɛ, weil wir nur die Laufzeiten von großen Jobs mit Laufzeit p p i ɛ bzw. skalierter Laufzeit i ɛ 2 1 ɛ aufgerunden. Ohne die Skalierung und das Runden gibt es ein Schedule mit Makespan. Nach der Skalierung (ohne das Runden) gibt es also ein Schedule mit Makespan /(ɛ 2 ). Wenn jeder Job einen Rundungsfehler von höchstens 1 + ɛ hat, erhöht sich dieser Wert maximal um den Faktor 1 + ɛ. Also gilt nach dem Runden einen Schedule mit Makespan höchstens = (1 + ɛ) ɛ 2 Das Abrunden können wir uns erlauben, weil der Makespan ja weiterhin ganzzahlig ist. Somit existiert der in Schritt 2b) beschriebene Schedule. Wie aber können wir diesen Schedule berechnen? Bevor wir diese Frage klären, kümmern wir uns zunächst um den Approximationsfaktor. 10.
6 Lemma 3 Der skizzierte Algorithmus berechnet eine (1 + ɛ)- Approximation für den minimalen Makespan. Beweis: unächst nehmen wir an es gibt nur große Jobs. Dann berechnet der Algorithmus einen Schedule mit Makespan höchstens (ɛ 2 ) = (1 + ɛ) ɛ 2 (ɛ 2 ) (1 + ɛ), also eine (1 + ɛ)-approximation. Die kleinen Jobs behandeln wir in einer Fallunterscheidung. Fall 1: Die LL-Heuristik erhöht den Makespan nicht. Dann erhalten wir eine (1 + ɛ)-approximation aufgrund obiger Überlegungen für die großen Jobs. Fall 2: Die LL-Heuristik erhöht den Makespan. In diesem Fall garantiert die Heuristik, dass der Lastunterschied zwischen der am stärksten und der am schwächsten belasteten Maschine nicht größer als der größte der kleinen Jobs ist. Damit ist der Lastunterschied zwischen unterschiedlichen Maschinen höchstens ɛ, und auch in diesem Fall ist eine (1 + ɛ)-approximation sichergestellt. Laufzeitanalyse von Schritt 2: ur Vereinfachung der Notation nehmen wir an, dass wir n große Jobs haben. In Schritt 2 müssen wir eine Variante des folgenden Problems lösen. BIN PACKING: Gegeben sei eine Menge von n Objekten mit Gewichten w 1,..., w n [k] = {1,..., k} und eine ahl b N. Wir möchten diese Objekte in eine möglichst kleine Anzahl von Kisten packen, wobei jede Kiste eine Gewichtsbeschränkung der Höhe b hat. Die Objekte des Bin-Packing-Problems repräsentieren dabei die großen Jobs des Schedulingproblems. Die Gewichte entsprechen den Laufzeiten, und die Gewichtsschranke b entspricht der oberen Schranke für den Makespan. Die optimale Lösung für das Bin-Packing-Problem spezifiziert eine Verteilung der Objekte auf höchstens m Kisten, aus der wir den gesuchten Schedule direkt ablesen können
7 Lemma 4 Das Bin-Packing-Problem kann in eit O((bn) k ) gelöst werden. Beweis: Wir verwenden dynamische Programmierung und lösen dabei die folgenden Teilprobleme Sei f(n 1, n 2,..., n k ) die minimale Anzahl von Kisten in die wir eine Menge von Objekten bestehend aus n i (i [k]) vielen Objekten mit Gewicht i packen können. Sei Q = {(q 1,..., q k ) f(q 1, q 2,..., q k ) = 1, d.h. Q beschreibt alle Gewichtskombinationen, die in eine Kiste passen. Es gilt Q b k, weil gilt q i b für jedes i [k]. Es gilt die folgende Rekursionsgleichung: f(n 1, n 2,..., n k ) = 1 + min q Q f(n 1 q 1, n 2 q 2,..., n k q k ). Wir berechnen die Lösung dieser Gleichung für alle k-tupel aus [n] k in einer Tabelle der Größe n k. Die optimale Lösung kann leicht aus dieser Tabelle rekonstruiert werden. Die Berechnung eines Tabelleneintrages kostet eit Q b k. Damit ist die Laufzeit O(b k n k ). Das Bin-Packing-Problem kann also in eit O((bn) k ) gelöst werden. Diese Laufzeitschranke ist nur dann polynomiell, falls b nicht zu groß und k konstant ist. Was sind die Werte von b und k bezogen auf unser Schedulingproblem? Die maximale Laufzeit eines Jobs vor der Skalierung ist durch beschränkt, weil es ja einen Schedule mit Makespan gibt. Nach der Skalierung und Rundung ist die maximale Laufzeit also höchstens /(ɛ 2 ) = 1 ɛ. 2 Also können wir annehmen 1 k = ɛ 2 = O(1). O.B.d.A. gilt ɛ < 1. Daraus folgt b = = (1 + ɛ) ɛ 2 2 ɛ 2 = O(1). Für konstantes ɛ können wir somit die Laufzeit von Schritt 2 durch O((bn) k ) = O(n 1/ɛ2 ) abschätzen
8 um Schluss müssen wir uns noch um das Orakel in Schritt 1 kümmern. Wir beobachten falls opt, so ist der Algorithmus erfolgreich, d.h. er findet einen Schedule mit Makespan höchstens (1 + ɛ); falls < opt, so ist der Algorithmus typischerweise nicht erfolgreich. Wir suchen einen Wert für opt, für den der Algorithmus erfolgreich ist. Diese Suche führen wir wir in Form einer Binärsuche durch. Der Wert S = i p i ist eine obere Schranke für den Makespan. Wir können also einen geeigneten Wert für durch eine Binärsuche auf den ahlen {1,..., S} mit O(log S) vielen Aufrufen unseres Algorithmus finden. Sei N die Länge der Eingabe in Bits. Dann gilt log S N. Die Laufzeit des Algorithmus ist somit O(Nn 1/ɛ2 ). Für konstantes ɛ > 0 ist die Laufzeit also polynomiell in der Eingabelänge. Wir erhalten den folgenden Satz. Satz 5 MAKESPAN-SCHEDULING hat ein PTAS. (Tipp: Setze dieses PTAS niemals in der Praxis ein.) 15
Grundlagen der Theoretischen Informatik, SoSe 2008
1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)
6.2 Scan-Konvertierung (Scan Conversion)
6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster
Bin Packing oder Wie bekomme ich die Klamotten in die Kisten?
Bin Packing oder Wie bekomme ich die Klamotten in die Kisten? Ich habe diesen Sommer mein Abi gemacht und möchte zum Herbst mit dem Studium beginnen Informatik natürlich! Da es in meinem kleinen Ort keine
Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)
Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
7 Rechnen mit Polynomen
7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in
Kompetitive Analysen von Online-Algorithmen
Kompetitive Analysen von Online-Algorithmen jonas echterhoff 16. Juli 004 1 Einführung 1.1 Terminologie Online-Algorithmen sind Algorithmen, die Probleme lösen sollen, bei denen Entscheidungen getroffen
Algorithmen II Vorlesung am 15.11.2012
Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales
Zeichen bei Zahlen entschlüsseln
Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren
Informationsblatt Induktionsbeweis
Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln
50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte
50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien
Stackelberg Scheduling Strategien
Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1
B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,
Die reellen Lösungen der kubischen Gleichung
Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................
Kap. 8: Speziell gewählte Kurven
Stefan Lucks 8: Spezielle Kurven 82 Verschl. mit Elliptischen Kurven Kap. 8: Speziell gewählte Kurven Zur Erinnerung: Für beliebige El. Kurven kann man den Algorithmus von Schoof benutzen, um die Anzahl
Beweisbar sichere Verschlüsselung
Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit [email protected] 6
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv
Effiziente Algorithmen (SS2015)
Effiziente Algorithmen (SS205) Kapitel 5 Approximation II Walter Unger Lehrstuhl für Informatik 2.06.205 07:59 5 Inhaltsverzeichnis < > Walter Unger 5.7.205 :3 SS205 Z Inhalt I Set Cover Einleitung Approximation
Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen
5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei
Erstellen von x-y-diagrammen in OpenOffice.calc
Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei
Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1
Zahlenwinkel: Forscherkarte 1 alleine Tipp 1 Lege die Ziffern von 1 bis 9 so in den Zahlenwinkel, dass jeder Arm des Zahlenwinkels zusammengezählt das gleiche Ergebnis ergibt! Finde möglichst viele verschiedene
W-Rechnung und Statistik für Ingenieure Übung 11
W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz ([email protected]) Mathematikgebäude Raum 715 Christoph Kustosz ([email protected]) W-Rechnung und Statistik
Übung Theoretische Grundlagen
Übung Theoretische Grundlagen Berechenbarkeit/Entscheidbarkeit Nico Döttling November 26, 2009 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT University of the State of Baden-Wuerttemberg and National Laboratory
Kosten-Leistungsrechnung Rechenweg Optimales Produktionsprogramm
Um was geht es? Gegeben sei ein Produktionsprogramm mit beispielsweise 5 Aufträgen, die nacheinander auf vier unterschiedlichen Maschinen durchgeführt werden sollen: Auftrag 1 Auftrag 2 Auftrag 3 Auftrag
Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3
Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen
Plotten von Linien ( nach Jack Bresenham, 1962 )
Plotten von Linien ( nach Jack Bresenham, 1962 ) Ac Eine auf dem Bildschirm darzustellende Linie sieht treppenförmig aus, weil der Computer Linien aus einzelnen (meist quadratischen) Bildpunkten, Pixels
Die Komplexitätsklassen P und NP
Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 3. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und
Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?
Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum
Statuten in leichter Sprache
Statuten in leichter Sprache Zweck vom Verein Artikel 1: Zivil-Gesetz-Buch Es gibt einen Verein der selbstbestimmung.ch heisst. Der Verein ist so aufgebaut, wie es im Zivil-Gesetz-Buch steht. Im Zivil-Gesetz-Buch
Korrigenda Handbuch der Bewertung
Korrigenda Handbuch der Bewertung Kapitel 3 Abschnitt 3.5 Seite(n) 104-109 Titel Der Terminvertrag: Ein Beispiel für den Einsatz von Future Values Änderungen In den Beispielen 21 und 22 ist der Halbjahressatz
S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J
Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung
Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)
Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff
1 topologisches Sortieren
Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung
Das Lastverteilungsproblem
Das Lastverteilungsproblem Approximationsalgorithmen Referent Franz Brauße Veranstaltung Proseminar Theoretische Informatik Universität Trier, FB IV Dozent Prof. Dr. Henning Fernau 23.02.2012 Übersicht
Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über
Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion
Kreativ visualisieren
Kreativ visualisieren Haben Sie schon einmal etwas von sogenannten»sich selbst erfüllenden Prophezeiungen«gehört? Damit ist gemeint, dass ein Ereignis mit hoher Wahrscheinlichkeit eintritt, wenn wir uns
Betragsgleichungen und die Methode der Fallunterscheidungen
mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: [email protected]
Korrelation (II) Korrelation und Kausalität
Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen
Fotogalerie mit PWGallery in Joomla (3.4.0) erstellen
Fotogalerie mit PWGallery in Joomla (3.4.0) erstellen Als ersten Schritt müssen wir alle Fotos die in die Galerie sollen hochladen. Wir gehen davon aus, dass das Plugin PWGallery bereits installiert und
Wichtiges Thema: Ihre private Rente und der viel zu wenig beachtete - Rentenfaktor
Wichtiges Thema: Ihre private Rente und der viel zu wenig beachtete - Rentenfaktor Ihre private Gesamtrente setzt sich zusammen aus der garantierten Rente und der Rente, die sich aus den über die Garantieverzinsung
Zwischenablage (Bilder, Texte,...)
Zwischenablage was ist das? Informationen über. die Bedeutung der Windows-Zwischenablage Kopieren und Einfügen mit der Zwischenablage Vermeiden von Fehlern beim Arbeiten mit der Zwischenablage Bei diesen
Approximationsalgorithmen
Ausarbeitung zum Thema Approximationsalgorithmen im Rahmen des Fachseminars 24. Juli 2009 Robert Bahmann [email protected] FH Wiesbaden Erstellt von: Robert Bahmann Zuletzt berarbeitet von: Robert
1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:
Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:
Berechnung der Erhöhung der Durchschnittsprämien
Wolfram Fischer Berechnung der Erhöhung der Durchschnittsprämien Oktober 2004 1 Zusammenfassung Zur Berechnung der Durchschnittsprämien wird das gesamte gemeldete Prämienvolumen Zusammenfassung durch die
Was meinen die Leute eigentlich mit: Grexit?
Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?
4.4 AnonymeMärkteunddasGleichgewichtder"vollständigen Konkurrenz"
4.4 AnonymeMärkteunddasGleichgewichtder"vollständigen Konkurrenz" Wir haben bisher nachvollziehen können, wie zwei Personen für sich den Anreiz zum TauschentdeckenundwiemitwachsenderBevölkerungdieMengederAllokationensinkt,
Kapitalerhöhung - Verbuchung
Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.
Das Briefträgerproblem
Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................
Lehrer: Einschreibemethoden
Lehrer: Einschreibemethoden Einschreibemethoden Für die Einschreibung in Ihren Kurs gibt es unterschiedliche Methoden. Sie können die Schüler über die Liste eingeschriebene Nutzer Ihrem Kurs zuweisen oder
Media Teil III. Begriffe, Definitionen, Übungen
Media Teil III. Begriffe, Definitionen, Übungen Kapitel 1 (Intermedia- Vergleich: Affinität) 1 Affinitätsbewertung als Mittel des Intermedia-Vergleichs Um die Streugenauigkeit eines Werbeträgers zu bestimmen,
Bestimmung einer ersten
Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,
Professionelle Seminare im Bereich MS-Office
Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion
Stand: 28.11.2012. Adressnummern ändern Modulbeschreibung
Seite 1 Inhalt Allgemein...3 Installation...3 manuelle Eingabe von alten und neuen Adressnummern...4 Vorbereiten von Adressnummern-Änderungen in Tabellen...5 Seite 2 Allgemein Das INKS-Modul ermöglicht
Geld Verdienen im Internet leicht gemacht
Geld Verdienen im Internet leicht gemacht Hallo, Sie haben sich dieses E-book wahrscheinlich herunter geladen, weil Sie gerne lernen würden wie sie im Internet Geld verdienen können, oder? Denn genau das
Lernerfolge sichern - Ein wichtiger Beitrag zu mehr Motivation
Lernerfolge sichern - Ein wichtiger Beitrag zu mehr Motivation Einführung Mit welchen Erwartungen gehen Jugendliche eigentlich in ihre Ausbildung? Wir haben zu dieser Frage einmal die Meinungen von Auszubildenden
Vorkurs Mathematik Übungen zu Polynomgleichungen
Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.
Mathematischer Vorbereitungskurs für Ökonomen
Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen
Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1
Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)
50 Fragen, um Dir das Rauchen abzugewöhnen 1/6
50 Fragen, um Dir das Rauchen abzugewöhnen 1/6 Name:....................................... Datum:............... Dieser Fragebogen kann und wird Dir dabei helfen, in Zukunft ohne Zigaretten auszukommen
Konzepte der Informatik
Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens
24. Algorithmus der Woche Bin Packing Wie bekomme ich die Klamotten in die Kisten?
24. Algorithmus der Woche Wie bekomme ich die Klamotten in die Kisten? Autor Prof. Dr. Friedhelm Meyer auf der Heide, Universität Paderborn Joachim Gehweiler, Universität Paderborn Ich habe diesen Sommer
Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.
Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo [email protected] xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung
Info zum Zusammenhang von Auflösung und Genauigkeit
Da es oft Nachfragen und Verständnisprobleme mit den oben genannten Begriffen gibt, möchten wir hier versuchen etwas Licht ins Dunkel zu bringen. Nehmen wir mal an, Sie haben ein Stück Wasserrohr mit der
Ein Buch entsteht. Ein langer Weg
Ein Buch entsteht ilo 2003 Ein langer Weg Wenn ein Schriftsteller oder eine Schriftstellerin eine Geschichte schreibt, dann ist das noch ein langer Weg bis daraus ein Buch wird. Der Autor Alles fängt damit
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf
Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen
MORE Profile. Pass- und Lizenzverwaltungssystem. Stand: 19.02.2014 MORE Projects GmbH
MORE Profile Pass- und Lizenzverwaltungssystem erstellt von: Thorsten Schumann erreichbar unter: [email protected] Stand: MORE Projects GmbH Einführung Die in More Profile integrierte
Animationen erstellen
Animationen erstellen Unter Animation wird hier das Erscheinen oder Bewegen von Objekten Texten und Bildern verstanden Dazu wird zunächst eine neue Folie erstellt : Einfügen/ Neue Folie... Das Layout Aufzählung
Fast jeder zweite Deutsche würde gerne abnehmen
Allensbacher Kurzbericht 10. April 2014 Fast jeder zweite Deutsche würde gerne abnehmen - 38 Prozent haben schon einmal eine Diät gemacht - Prozent der Bevölkerung würden gerne abnehmen, äußern diesen
Deutsches Rotes Kreuz. Kopfschmerztagebuch von:
Deutsches Rotes Kreuz Kopfschmerztagebuch Kopfschmerztagebuch von: Hallo, heute hast Du von uns dieses Kopfschmerztagebuch bekommen. Mit dem Ausfüllen des Tagebuches kannst Du mehr über Deine Kopfschmerzen
A Lösungen zu Einführungsaufgaben zu QueueTraffic
A Lösungen zu Einführungsaufgaben zu QueueTraffic 1. Selber Phasen einstellen a) Wo im Alltag: Baustelle, vor einem Zebrastreifen, Unfall... 2. Ankunftsrate und Verteilungen a) poissonverteilt: b) konstant:
Repetitionsaufgaben Wurzelgleichungen
Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen
Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege
Lange Nacht der Wissenschaft Ein Klassiker Die Mathematik der Kürzesten Wege 09.06.2007 [email protected] Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) http://www.zib.de/schlechte 2 Überblick
Eva Douma: Die Vorteile und Nachteile der Ökonomisierung in der Sozialen Arbeit
Eva Douma: Die Vorteile und Nachteile der Ökonomisierung in der Sozialen Arbeit Frau Dr. Eva Douma ist Organisations-Beraterin in Frankfurt am Main Das ist eine Zusammen-Fassung des Vortrages: Busines
Welches Problem denn? Das Heiratsproblem. Formale Beschreibung. Paarungen
Das Heiratsproblem Welches Problem denn? Eine Heirat: ein Problem. Mehrere Heiraten: mehrere Probleme. Viele Heiraten: viele Probleme? Martin Schönhacker (P.S.: Heiraten muss kein Problem sein!) 1 2 Formale
Dow Jones am 13.06.08 im 1-min Chat
Dow Jones am 13.06.08 im 1-min Chat Dieser Ausschnitt ist eine Formation: Wechselstäbe am unteren Bollinger Band mit Punkt d über dem 20-er GD nach 3 tieferen Hoch s. Wenn ich einen Ausbruch aus Wechselstäben
Arbeitspunkt einer Diode
Arbeitspunkt einer Diode Liegt eine Diode mit einem Widerstand R in Reihe an einer Spannung U 0, so müssen sich die beiden diese Spannung teilen. Vom Widerstand wissen wir, dass er bei einer Spannung von
Modellbildungssysteme: Pädagogische und didaktische Ziele
Modellbildungssysteme: Pädagogische und didaktische Ziele Was hat Modellbildung mit der Schule zu tun? Der Bildungsplan 1994 formuliert: "Die schnelle Zunahme des Wissens, die hohe Differenzierung und
Das Mathematik-Abitur im Saarland
Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der
Alle Schlüssel-Karten (blaue Rückseite) werden den Schlüssel-Farben nach sortiert und in vier getrennte Stapel mit der Bildseite nach oben gelegt.
Gentlemen", bitte zur Kasse! Ravensburger Spiele Nr. 01 264 0 Autoren: Wolfgang Kramer und Jürgen P. K. Grunau Grafik: Erhard Dietl Ein Gaunerspiel für 3-6 Gentlemen" ab 10 Jahren Inhalt: 35 Tresor-Karten
Anmerkungen zur Übergangsprüfung
DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung
Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist
Frage Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist k a F (x) =1 k>0,x k x Finden Sie den Erwartungswert und den Median der Dichte für a>1. (Bei
15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit
5.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit Einführendes Beispiel ( Erhöhung der Sicherheit bei Flugreisen ) Die statistische Wahrscheinlichkeit, dass während eines Fluges ein Sprengsatz an Bord
R ist freie Software und kann von der Website. www.r-project.org
R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird
Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen
1 3.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind
www.computeria-olten.ch Monatstreff für Menschen ab 50 Temporäre Dateien / Browserverlauf löschen / Cookies
www.computeria-olten.ch Monatstreff für Menschen ab 50 Merkblatt 42 Temporäre Dateien / Browserverlauf löschen / Cookies Im Internet-Explorer Extras / Browserverlauf löschen Jetzt entscheiden, was man
Datenbanken Kapitel 2
Datenbanken Kapitel 2 1 Eine existierende Datenbank öffnen Eine Datenbank, die mit Microsoft Access erschaffen wurde, kann mit dem gleichen Programm auch wieder geladen werden: Die einfachste Methode ist,
Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!
Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright
Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual!
Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual! 0kg 4000 Euro Luster 5,5 kg, 430.- Laptop 2,0 kg, 000.- Schatulle 3,2 kg, 800.- Uhr 3,5 kg, 70.- Schwert,5 kg, 850.- Bild 3,4 kg, 680.- Besteck
Urlaubsanspruch = Nominale Zahl der Urlaubstage X Pflichtarbeitstage pro Woche / 6 Werktage
Alle Arbeitnehmer in Deutschland haben Anspruch auf bezahlten Urlaub. Ein immer noch weit verbreiteter Irrtum bei Arbeitgebern und auch bei Arbeitnehmern ist, dass geringfügig Beschäftigte (Minijobber)
Einführung in Scheduling
Einführung in Scheduling Dr. Julien Bidot Sommersemester 28 Institut für Künstliche Intelligenz Inhalt I. Definition und Formulierung des Scheduling- Problems II. Projektplanung III. Produktionsplanung
Umfrage der Klasse 8c zum Thema "Smartphones"
Umfrage der Klasse 8c zum Thema "Smartphones" Gruppe Aylin, Antonia, Lisa, Vanessa Wir haben in den Wochen der Projektarbeit eine Umfrage gemacht, bei der wir insgesamt 25 Leute befragt haben. Zuvor hatten
Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik
Abitur 8 II. Insektenpopulation LA/AG In den Tropen legen die Weibchen einer in Deutschland unbekannten Insektenpopulation jedes Jahr kurz vor Beginn der Regenzeit jeweils 9 Eier und sterben bald darauf.
Systeme 1. Kapitel 6. Nebenläufigkeit und wechselseitiger Ausschluss
Systeme 1 Kapitel 6 Nebenläufigkeit und wechselseitiger Ausschluss Threads Die Adressräume verschiedener Prozesse sind getrennt und geschützt gegen den Zugriff anderer Prozesse. Threads sind leichtgewichtige
Wir machen neue Politik für Baden-Württemberg
Wir machen neue Politik für Baden-Württemberg Am 27. März 2011 haben die Menschen in Baden-Württemberg gewählt. Sie wollten eine andere Politik als vorher. Die Menschen haben die GRÜNEN und die SPD in
Der Gabelstapler: Wie? Was? Wer? Wo?
Schreibkompetenz 16: schlusszeichen (Fragezeichen) sprechen zeichen Um eine Frage zu kennzeichnen, wird ein Fragezeichen (?) gesetzt. Fragewörter (zum Beispiel wo, wer, was, wie) zeigen an, dass ein Fragezeichen
