Approximationsalgorithmen

Größe: px
Ab Seite anzeigen:

Download "Approximationsalgorithmen"

Transkript

1 Makespan-Scheduling Kapitel 4: Approximationsalgorithmen (dritter Teil) (weitere Beispiele und Illustrationen an der Tafel) Hilfreiche Literatur: Vazarani: Approximation Algorithms, Springer Verlag, Hochbaum: Approximation Algorithms for NP-Hard Problems, Thomson Publishing, Ausiello, Crescenzi, Gambosi, Kann, Marchetti-Spaccamela, Protasi: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties, Springer Verlag, Wir untersuchen ein fundamentales Problem aus der Schedulingtheorie. MAKESPAN SCHEDULING: Gegeben sei eine Menge von Jobs [n] = {1,..., n} mit Laufzeiten p 1,..., p n N und eine natürliche ahl m. Gesucht ist eine uteilung f : [n] [m] der n Jobs auf m identische Maschinen, so dass der Makespan, also max minimiert wird. p i j [m] i [n]:f(i)=j Diese uteilung wird als Schedule (Ablaufplan) bezeichnet. u einem Schedule gehört normalerweise auch eine Beschreibung, in welcher Reihenfolge die Jobs auf den einzelnen Maschinen abgearbeitet werden. Diese Reihenfolge spielt jedoch bei der Makespan-Minimierung offensichtlich keine Rolle. 2

2 Algorithmus Least-Loaded (LL): Für i = 1 bis n, weise Job i derjenigen Maschine zu, die bisher die geringste Last hat. Wie gut ist diese Heuristik? ein Beispiel: Sei n = m Jobs 1 bis m 2 haben Laufzeit 1. Job m hat Laufzeit m. Die LL-Heuristik erreicht den Makespan 2m. Der optimale Makespan ist m + 1. Damit ist der Approximationsfaktor bestenfalls 2. Der folgende Satz zeigt, dass dieses Beispiel tatsächlich den schlimmsten Fall beschreibt. Satz 1 LL garantiert eine 2-Approximation. Beweis: Es gelten die folgenden zwei trivialen unteren Schranke für ein optimales Schedule: opt max max(p 1 i), p i i [n] m. i [n] Wir gehen davon aus, jede Maschine arbeitet ihre Jobs nacheinander in der Reihenfolge ihrer uweisung ab. Sei i der Index desjenigen Jobs, der als letztes fertig wird. Sei j = f(i ), d.h. Maschine j wird als letztes fertig und bestimmt damit den Makespan. um eitpunkt als Job i Maschine j zugewiesen wurde, hatte diese Maschine die geringste Last. Die Last von Maschine j zu diesem eitpunkt war also höchsten 1 m i<i p i. Damit ist die Laufzeit von Maschine j höchstens ( ) 1 p i + p i 2opt. m i <i 3 4

3 Satz 2 LPT garantiert eine 4 3 -Approximation. Beweis: Algorithmus Longest-Processing-Time (LPT): 1. Sortiere die Jobs, so dass p 1 p 2 p n ; 2. Für i = 1 bis n, weise Job i derjenigen Maschine zu, die bisher die geringste Last hat. Graham hat 1969 gezeigt, dass LPT einen Approximationsfaktor von höchstens 4 3 hat. Auch diese Schranke ist scharf. um wecke des Widerspruchs nehmen an, es gibt eine Eingabeinstanz für die LPT einen Makespan von τ > 4 3opt auf m Maschinen erzeugt. Sei p 1, p 2,..., p n eine Eingabeinstanz minimaler Länge mit τ > 4 3 opt. Es gelte p 1 p 2 p n. Sei i der Index desjenigen Jobs, der als letztes fertig wird. Es gilt i = n, sonst waere ja p 1,..., p i, i < n, eine kürzere Eingabesequenz mit τ > 4 3opt, aber wir haben angenommen p 1, p 2,..., p n ist die kürzeste Eingabe mit dieser Eigenschaft. Job n wird auf der am wenigsten belasteten Maschine platziert. um eitpunkt der uweisung von Job n hat diese Maschine höchstens Last 1 n 1 m i=1 p i opt. Damit τ > 4 3 opt gilt, muss also gelten p n > 1 3 opt. Aus p n > 1 3 opt folgt, jeder Job ist größer als 1 3opt, weil p 1 p 2 p n. 5 6

4 Falls jeder Job größer als 1 3opt, so kann ein optimaler Schedule nicht mehr als zwei Jobs an eine Maschine zuweisen. Jeder Schedule mit höchstens zwei Jobs pro Maschine kann in den folgenden schematisch dargestellten Schedule überführt werden, ohne den Makespan zu erhöhen (vgl. Übung). n m+1 Das Makespan-Scheduling-Problem ist stark NP-vollständig. Es gibt also kein FPAS für dieses Problem. Trotzdem werden wir zeigen, dass das Problem in Polynomialzeit beliebig gut approximiert werden kann. Wir sagen, ein Optimierungsproblem Π hat ein PAS (polynomial approximation scheme), falls für jede Konstante ɛ > 0 eine (1 ± ɛ)-approximation in polynomieller eit berechnet werden kann. Der Unterschied zum FPAS ist, dass ɛ hierbei als konstant angesehen wird m 1 m Dieser Schedule entspricht jedoch genau dem LPT- Schedule. Also berechnet LPT einen optimalen Schedule. Dies ist ein Widerspruch zu unserer Annahme τ > 4 3 opt. Somit folgt τ 4 3opt, und der Approximationsfaktor ist höchstens 4 3. Wir werden zeigen, dass das Makespan-Scheduling-Problem ein PAS mit Laufzeit ungefähr n 1/ɛ2 hat. Für ein FPAS wäre eine derartige Laufzeitschranke nicht zulässig, weil sie nicht polynomiell in 1 ɛ ist. Für kleines ɛ ist die obige Laufzeitschranke offensichtlich nicht praktikabel. Wir wollen uns trotzdem einmal ansehen, wie ein derartiges Approximationsschema aussieht. Dieses PAS ist aber eher unter komplexitätstheoretischen als unter praktischen Gesichtspunkten interessant. 7 8

5 Ein PAS für MAKESPAN-SCHEDULING: 1. Ein Orakel verrät uns den Wert des optimalen Makespans, den wir nennen. 2. Wir kümmern uns zunächst um die großen Jobs, d.h. um die Jobs {i [n] p i > ɛ}. a) Wir skalieren und runden die Laufzeiten der großen Jobs d.h. wir setzen p pi i = ɛ 2. b) Wir berechnen einen Schedule für die aufgerundeten Laufzeiten mit Makespan höchstens = (1 + ɛ) ɛ Jetzt kümmern wir uns um die kleinen Jobs, d.h. um die Jobs {i [n] p i ɛ}. Wir verteilen diese Jobs mittels der LL-Heuristik auf das durch die großen Jobs entstandene Gebirge. 9 Bemerkung zu Schritt 2: Das Skalieren in Schritt 2a) läßt sich am Besten durch ein Beispiel illustrieren. Sei = 1000 und ɛ = Dann setzen wir p pi pi i = ɛ 2 =. 10 Aus p i = 222 wird also p i = 23. Beachte, das Aufrunden von 22,2 auf 23 verzehrt den Wert höchstens um den Faktor 1 + ɛ, weil wir nur die Laufzeiten von großen Jobs mit Laufzeit p p i ɛ bzw. skalierter Laufzeit i ɛ 2 1 ɛ aufgerunden. Ohne die Skalierung und das Runden gibt es ein Schedule mit Makespan. Nach der Skalierung (ohne das Runden) gibt es also ein Schedule mit Makespan /(ɛ 2 ). Wenn jeder Job einen Rundungsfehler von höchstens 1 + ɛ hat, erhöht sich dieser Wert maximal um den Faktor 1 + ɛ. Also gilt nach dem Runden einen Schedule mit Makespan höchstens = (1 + ɛ) ɛ 2 Das Abrunden können wir uns erlauben, weil der Makespan ja weiterhin ganzzahlig ist. Somit existiert der in Schritt 2b) beschriebene Schedule. Wie aber können wir diesen Schedule berechnen? Bevor wir diese Frage klären, kümmern wir uns zunächst um den Approximationsfaktor. 10.

6 Lemma 3 Der skizzierte Algorithmus berechnet eine (1 + ɛ)- Approximation für den minimalen Makespan. Beweis: unächst nehmen wir an es gibt nur große Jobs. Dann berechnet der Algorithmus einen Schedule mit Makespan höchstens (ɛ 2 ) = (1 + ɛ) ɛ 2 (ɛ 2 ) (1 + ɛ), also eine (1 + ɛ)-approximation. Die kleinen Jobs behandeln wir in einer Fallunterscheidung. Fall 1: Die LL-Heuristik erhöht den Makespan nicht. Dann erhalten wir eine (1 + ɛ)-approximation aufgrund obiger Überlegungen für die großen Jobs. Fall 2: Die LL-Heuristik erhöht den Makespan. In diesem Fall garantiert die Heuristik, dass der Lastunterschied zwischen der am stärksten und der am schwächsten belasteten Maschine nicht größer als der größte der kleinen Jobs ist. Damit ist der Lastunterschied zwischen unterschiedlichen Maschinen höchstens ɛ, und auch in diesem Fall ist eine (1 + ɛ)-approximation sichergestellt. Laufzeitanalyse von Schritt 2: ur Vereinfachung der Notation nehmen wir an, dass wir n große Jobs haben. In Schritt 2 müssen wir eine Variante des folgenden Problems lösen. BIN PACKING: Gegeben sei eine Menge von n Objekten mit Gewichten w 1,..., w n [k] = {1,..., k} und eine ahl b N. Wir möchten diese Objekte in eine möglichst kleine Anzahl von Kisten packen, wobei jede Kiste eine Gewichtsbeschränkung der Höhe b hat. Die Objekte des Bin-Packing-Problems repräsentieren dabei die großen Jobs des Schedulingproblems. Die Gewichte entsprechen den Laufzeiten, und die Gewichtsschranke b entspricht der oberen Schranke für den Makespan. Die optimale Lösung für das Bin-Packing-Problem spezifiziert eine Verteilung der Objekte auf höchstens m Kisten, aus der wir den gesuchten Schedule direkt ablesen können

7 Lemma 4 Das Bin-Packing-Problem kann in eit O((bn) k ) gelöst werden. Beweis: Wir verwenden dynamische Programmierung und lösen dabei die folgenden Teilprobleme Sei f(n 1, n 2,..., n k ) die minimale Anzahl von Kisten in die wir eine Menge von Objekten bestehend aus n i (i [k]) vielen Objekten mit Gewicht i packen können. Sei Q = {(q 1,..., q k ) f(q 1, q 2,..., q k ) = 1, d.h. Q beschreibt alle Gewichtskombinationen, die in eine Kiste passen. Es gilt Q b k, weil gilt q i b für jedes i [k]. Es gilt die folgende Rekursionsgleichung: f(n 1, n 2,..., n k ) = 1 + min q Q f(n 1 q 1, n 2 q 2,..., n k q k ). Wir berechnen die Lösung dieser Gleichung für alle k-tupel aus [n] k in einer Tabelle der Größe n k. Die optimale Lösung kann leicht aus dieser Tabelle rekonstruiert werden. Die Berechnung eines Tabelleneintrages kostet eit Q b k. Damit ist die Laufzeit O(b k n k ). Das Bin-Packing-Problem kann also in eit O((bn) k ) gelöst werden. Diese Laufzeitschranke ist nur dann polynomiell, falls b nicht zu groß und k konstant ist. Was sind die Werte von b und k bezogen auf unser Schedulingproblem? Die maximale Laufzeit eines Jobs vor der Skalierung ist durch beschränkt, weil es ja einen Schedule mit Makespan gibt. Nach der Skalierung und Rundung ist die maximale Laufzeit also höchstens /(ɛ 2 ) = 1 ɛ. 2 Also können wir annehmen 1 k = ɛ 2 = O(1). O.B.d.A. gilt ɛ < 1. Daraus folgt b = = (1 + ɛ) ɛ 2 2 ɛ 2 = O(1). Für konstantes ɛ können wir somit die Laufzeit von Schritt 2 durch O((bn) k ) = O(n 1/ɛ2 ) abschätzen

8 um Schluss müssen wir uns noch um das Orakel in Schritt 1 kümmern. Wir beobachten falls opt, so ist der Algorithmus erfolgreich, d.h. er findet einen Schedule mit Makespan höchstens (1 + ɛ); falls < opt, so ist der Algorithmus typischerweise nicht erfolgreich. Wir suchen einen Wert für opt, für den der Algorithmus erfolgreich ist. Diese Suche führen wir wir in Form einer Binärsuche durch. Der Wert S = i p i ist eine obere Schranke für den Makespan. Wir können also einen geeigneten Wert für durch eine Binärsuche auf den ahlen {1,..., S} mit O(log S) vielen Aufrufen unseres Algorithmus finden. Sei N die Länge der Eingabe in Bits. Dann gilt log S N. Die Laufzeit des Algorithmus ist somit O(Nn 1/ɛ2 ). Für konstantes ɛ > 0 ist die Laufzeit also polynomiell in der Eingabelänge. Wir erhalten den folgenden Satz. Satz 5 MAKESPAN-SCHEDULING hat ein PTAS. (Tipp: Setze dieses PTAS niemals in der Praxis ein.) 15

Heuristiken im Kontext von Scheduling

Heuristiken im Kontext von Scheduling Heuristiken im Kontext von Scheduling Expertenvortrag CoMa SS 09 CoMa SS 09 1/35 Übersicht Motivation Makespan Scheduling Lokale Suche Weitere Metaheuristiken Zusammenfassung Literatur CoMa SS 09 2/35

Mehr

Einführung in Approximationsalgorithmen

Einführung in Approximationsalgorithmen Einführung in Approximationsalgorithmen Skript zur Vorlesung Effiziente Algorithmen von Berthold Vöcking, RWTH Aachen 30. Juli 2008 Hilfreiche Literatur Vazirani: Approximation Algorithms, Springer Verlag,

Mehr

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani

Mehr

Approximationsschemata

Approximationsschemata Effiziente Algorithmen Aproximationsalgorithmen 312 Definition Approximationsschemata Sei A(ǫ) ein Approximationsalgorithmus mit einem Parameter ǫ. 1. A(ǫ) ist ein PTAS (polynomial time approximation scheme),

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Ausarbeitung zum Thema Approximationsalgorithmen im Rahmen des Fachseminars 24. Juli 2009 Robert Bahmann robert.bahmann@gmail.com FH Wiesbaden Erstellt von: Robert Bahmann Zuletzt berarbeitet von: Robert

Mehr

Bin Packing oder Wie bekomme ich die Klamotten in die Kisten?

Bin Packing oder Wie bekomme ich die Klamotten in die Kisten? Bin Packing oder Wie bekomme ich die Klamotten in die Kisten? Ich habe diesen Sommer mein Abi gemacht und möchte zum Herbst mit dem Studium beginnen Informatik natürlich! Da es in meinem kleinen Ort keine

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

(b) Worin besteht der Unterschied zwischen online und offline Scheduling?

(b) Worin besteht der Unterschied zwischen online und offline Scheduling? Universität Paderborn Fachgebiet Rechnernetze SoSe 2013 Konzepte und Methoden der Systemsoftware Präsenzübung 3 2013-05-06 bis 2013-05-10 Aufgabe 1: Scheduling - Grundbegriffe Bekanntlich gibt es für das

Mehr

Approximationsklassen für Optimierungsprobleme

Approximationsklassen für Optimierungsprobleme Approximationsklassen für Optimierungsprobleme Matthias Erbar 19. September 2007 Inhaltsverzeichnis 1 Einleitung 1 2 Approximationsalgorithmen mit garantierter Güte 2 2.1 Terminologie......................................

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Das Lastverteilungsproblem

Das Lastverteilungsproblem Das Lastverteilungsproblem Approximationsalgorithmen Referent Franz Brauße Veranstaltung Proseminar Theoretische Informatik Universität Trier, FB IV Dozent Prof. Dr. Henning Fernau 23.02.2012 Übersicht

Mehr

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J

S=[n] Menge von Veranstaltungen J S kompatibel mit maximaler Größe J Greedy-Strategie Definition Paradigma Greedy Der Greedy-Ansatz verwendet die Strategie 1 Top-down Auswahl: Bestimme in jedem Schritt eine lokal optimale Lösung, so dass man eine global optimale Lösung

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Stackelberg Scheduling Strategien

Stackelberg Scheduling Strategien Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:

Mehr

Approximations-Algorithmen

Approximations-Algorithmen Approximations-Algorithmen Institut für Computergraphik und Algorithmen Abteilung für Algorithmen und Datenstrukturen 186.102 Sommersemester 2004, 2h VU Motivation: Bereits viele einfache Optimierungsprobleme

Mehr

Approximation in Batch and Multiprocessor Scheduling

Approximation in Batch and Multiprocessor Scheduling Approximation in Batch and Multiprocessor Scheduling Tim Nonner IBM Research Albert-Ludwigs-Universität Freiburg 3. Dezember 2010 Scheduling Zeit als Ressource und Beschränkung Formaler Gegeben sind Jobs

Mehr

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20.

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20. Übersicht Datenstrukturen und Algorithmen Vorlesung 5: (K4) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.informatik.rwth-aachen.de/i2/dsal12/ 20.

Mehr

Approximationsalgorithmen am Beispiel des Traveling Salesman Problem

Approximationsalgorithmen am Beispiel des Traveling Salesman Problem Approximationsalgorithmen am Beispiel des Traveling Salesman Problem Seminararbeit im Rahmen des Seminars Algorithmentechnik vorgelegt von Leonie Sautter Leiter des Seminars: Juniorprof. Dr. Henning Meyerhenke

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Informatik II Greedy-Algorithmen

Informatik II Greedy-Algorithmen 7/7/06 lausthal Erinnerung: Dynamische Programmierung Informatik II reedy-algorithmen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Zusammenfassung der grundlegenden Idee: Optimale Sub-Struktur:

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Die dynamische Programmierung 1 / 51

Die dynamische Programmierung 1 / 51 Die dynamische Programmierung 1 / 51 Dynamische Programmierung - Das Ausgangsproblem P 0 wird in Teilprobleme P 1,..., P t aufgebrochen. - Die Teilprobleme werden dann, einer Schwierigkeitshierarchie entsprechend,

Mehr

Der Approximationsalgorithmus von Christofides

Der Approximationsalgorithmus von Christofides Der Approximationsalgorithms on Christofides Problem: Traeling Salesman Inpt: Ein Graph G = (V, E) mit einer Distanzfnktion d : E Q 0. Afgabe: Finde eine Tor, die alle Knoten des Graphen G gena einmal

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 9 10.12.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T20 Beweisen Sie die

Mehr

Kompetitive Analysen von Online-Algorithmen

Kompetitive Analysen von Online-Algorithmen Kompetitive Analysen von Online-Algorithmen jonas echterhoff 16. Juli 004 1 Einführung 1.1 Terminologie Online-Algorithmen sind Algorithmen, die Probleme lösen sollen, bei denen Entscheidungen getroffen

Mehr

24. Algorithmus der Woche Bin Packing Wie bekomme ich die Klamotten in die Kisten?

24. Algorithmus der Woche Bin Packing Wie bekomme ich die Klamotten in die Kisten? 24. Algorithmus der Woche Wie bekomme ich die Klamotten in die Kisten? Autor Prof. Dr. Friedhelm Meyer auf der Heide, Universität Paderborn Joachim Gehweiler, Universität Paderborn Ich habe diesen Sommer

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

Alles zu seiner Zeit Projektplanung heute

Alles zu seiner Zeit Projektplanung heute Alles zu seiner Zeit Projektplanung heute Nicole Megow Matheon Überblick Projektplanung Planen mit Graphentheorie Maschinenscheduling Ein 1 Mio. $ Problem Schwere & leichte Probleme? Zeitplanungsprobleme?

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 3. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP Kap..1 Heuristiken Kap.. Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 3. VO DAP SS 008 14. Juli 009 Überblick

Mehr

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 23. VO DAP2 SS 2008 14. Juli 2009

Mehr

2.7 Der Shannon-Fano-Elias Code

2.7 Der Shannon-Fano-Elias Code 2.7 Der Shannon-Fano-Elias Code Die Huffman-Codierung ist ein asymptotisch optimales Verfahren. Wir haben auch gesehen, dass sich die Huffman-Codierung gut berechnen und dann auch gut decodieren lassen.

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Online-Algorithmen. Proseminar von Prof. Dr. Rolf Klein, Dr. Elmar Langetepe, Dipl. Inform. Thomas Kamphans im Wintersemester 00/01

Online-Algorithmen. Proseminar von Prof. Dr. Rolf Klein, Dr. Elmar Langetepe, Dipl. Inform. Thomas Kamphans im Wintersemester 00/01 Online-Algorithmen Proseminar von Prof. Dr. Rolf Klein, Dr. Elmar Langetepe, Dipl. Inform. Thomas Kamphans im Wintersemester 00/01 Vortrag Bin Packing von Thilo Geertzen 25. Oktober 2000 Online Algorithmen

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

Einführung in Scheduling

Einführung in Scheduling Einführung in Scheduling Dr. Julien Bidot Sommersemester 28 Institut für Künstliche Intelligenz Inhalt I. Definition und Formulierung des Scheduling- Problems II. Projektplanung III. Produktionsplanung

Mehr

Klausur Algorithmen und Datenstrukturen II 10. August 2015

Klausur Algorithmen und Datenstrukturen II 10. August 2015 Technische Universität Braunschweig Sommersemester 2015 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christian Scheffer Klausur Algorithmen und Datenstrukturen

Mehr

4 Effizienz und Komplexität 3.1 1

4 Effizienz und Komplexität 3.1 1 4 Effizienz und Komplexität 3.1 1 Effizienz (efficiency): auf den Ressourcen-Verbrauch bezogene Programmeigenschaft: hohe Effizienz bedeutet geringen Aufwand an Ressourcen. Typische Beispiele: Speichereffizienz

Mehr

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner Musterlösung Problem : Average-case-Laufzeit vs Worst-case-Laufzeit pt (a) Folgender Algorithmus löst das Problem der

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Laufzeit und Komplexität

Laufzeit und Komplexität Laufzeit und Komplexität Laufzeit eines Algorithmus Benchmarking versus Analyse Abstraktion Rechenzeit, Anzahl Schritte Bester, Mittlerer, Schlechtester Fall Beispiel: Lineare Suche Komplexitätsklassen

Mehr

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Ein 5.55-Approximationsalgorithmus für das VPND-Problem Lars Schäfers Inhalt Einführung:

Mehr

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle.

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle. Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik Seminar Entscheidungsverfahren für logische Theorien Tobias Hebel Koblenz, am 18.02.2005 Inhaltsverzeichnis 1 Einleitung... 3 2 Grundlagen...

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der

Mehr

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2006/07 in Trier. Henning Fernau Universität Trier

Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2006/07 in Trier. Henning Fernau Universität Trier Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2006/07 in Trier Henning Fernau Universität Trier fernau@informatik.uni-trier.de 1 Näherungsalgorithmen Gesamtübersicht Organisatorisches Einführung

Mehr

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008 Problemseminar Komplexitätstheorie und Kryptographie Martin Huschenbett Student am Institut für Informatik an der Universität Leipzig 30. Oktober 2008 1 / 33 Gliederung 1 Randomisierte Algorithmen und

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

(Lineare) stochastische Optimierung

(Lineare) stochastische Optimierung (Lineare) stochastische Optimierung Bsp: Aus zwei Sorten Rohöl wird Benzin und Heizöl erzeugt. Die Produktivität sowie der Mindestbedarf (pro Woche) und die Kosten sind in folgender Tabelle angegeben:

Mehr

Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion:

Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion: Übungsblatt 1 Aufgabe 1.1 Beweisen oder widerlegen Sie, dass für die im Folgenden definierte Funktion f(n) die Beziehung f(n) = Θ(n 4 ) gilt. Beachten Sie, dass zu einem vollständigen Beweis gegebenenfalls

Mehr

Sortierverfahren für Felder (Listen)

Sortierverfahren für Felder (Listen) Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

Übung Theoretische Grundlagen

Übung Theoretische Grundlagen Übung Theoretische Grundlagen Berechenbarkeit/Entscheidbarkeit Nico Döttling November 26, 2009 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT University of the State of Baden-Wuerttemberg and National Laboratory

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

Das Lastverteilungsproblem

Das Lastverteilungsproblem Das Lastverteilungsproblem Multiprocessor Scheduling Franz Brauße 26. März 2012 Proseminar Theoretische Informatik bei Prof. Dr. H. Fernau FB IV, Universität Trier Inhaltsverzeichnis 1 Einführung 2 1.1

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Ausgabe 22. Dezember 2016 Abgabe 17. Januar 2017, 11:00 Uhr

Mehr

Inhalt. 1. Einführung in die Informatik. 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele.

Inhalt. 1. Einführung in die Informatik. 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele. 1. Einführung in die Informatik Inhalt 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele Peter Sobe 1 Darstellung von Algorithmen Aus den Einführungsbeispielen und

Mehr

Funktionale Programmierung. Funktionale Programmierung: Vorlesungsüberblick. Eigenschaften rein funktionaler Programmierung

Funktionale Programmierung. Funktionale Programmierung: Vorlesungsüberblick. Eigenschaften rein funktionaler Programmierung Funktionale Programmierung 1 Funktionale Programmierung: Vorlesungsüberblick 1. Funktionale Programmierung Prinzipien funktionaler Programmierung Funktionale Programmierung in prozeduralen Sprachen Rekursive

Mehr

Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege

Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege Lange Nacht der Wissenschaft Ein Klassiker Die Mathematik der Kürzesten Wege 09.06.2007 schlechte@zib.de Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) http://www.zib.de/schlechte 2 Überblick

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Lösungsblatt zur Vorlesung. Kryptanalyse WS 2009/2010. Blatt 6 / 23. Dezember 2009 / Abgabe bis spätestens 20. Januar 2010, 10 Uhr (vor der Übung)

Lösungsblatt zur Vorlesung. Kryptanalyse WS 2009/2010. Blatt 6 / 23. Dezember 2009 / Abgabe bis spätestens 20. Januar 2010, 10 Uhr (vor der Übung) Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May Mathias Herrmann, Alexander Meurer Lösungsblatt zur Vorlesung Kryptanalyse WS 2009/2010 Blatt 6 / 23. Dezember

Mehr

Algebra. Patrik Hubschmid. 8. Oktober 2013

Algebra. Patrik Hubschmid. 8. Oktober 2013 Algebra Patrik Hubschmid 8. Oktober 2013 Inhaltsverzeichnis 1 Fortführung der Gruppentheorie 7 1.1 Sylowsätze.................................... 7 3 Vorwort Dieses Skript zur Vorlesung Algebra im Wintersemester

Mehr

Fraktale Geometrie: Julia Mengen

Fraktale Geometrie: Julia Mengen Fraktale Geometrie: Julia Mengen Gunnar Völkel 1. Februar 007 Zusammenfassung Diese Ausarbeitung ist als Stoffsammlung für das Seminar Fraktale Geometrie im Wintersemester 006/007 an der Universität Ulm

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Programmierung 2. Dynamische Programmierung. Sebastian Hack. Klaas Boesche. Sommersemester 2012. hack@cs.uni-saarland.de. boesche@cs.uni-saarland.

Programmierung 2. Dynamische Programmierung. Sebastian Hack. Klaas Boesche. Sommersemester 2012. hack@cs.uni-saarland.de. boesche@cs.uni-saarland. 1 Programmierung 2 Dynamische Programmierung Sebastian Hack hack@cs.uni-saarland.de Klaas Boesche boesche@cs.uni-saarland.de Sommersemester 2012 2 Übersicht Stammt aus den Zeiten als mit Programmierung

Mehr

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27 DLP Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de Fachbereich Mathematik und Informatik ALZAGK SEMINAR Bremen, den 18. Januar 2011 1 / 27 Inhaltsverzeichnis 1 Der diskrete Logarithmus Definition

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Algorithmen & Datenstrukturen 1. Klausur

Algorithmen & Datenstrukturen 1. Klausur Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Algorithmen und deren Programmierung Prof. Dr. Nikolaus Wulff Definition Algorithmus Ein Algorithmus ist eine präzise formulierte Handlungsanweisung zur Lösung einer gleichartigen

Mehr

Kostenmaße. F3 03/04 p.188/395

Kostenmaße. F3 03/04 p.188/395 Kostenmaße Bei der TM nur ein Kostenmaß: Ein Schritt (Konfigurationsübergang) kostet eine Zeiteinheit; eine Bandzelle kostet eine Platzeinheit. Bei der RAM zwei Kostenmaße: uniformes Kostenmaß: (wie oben);

Mehr

Approximations- und Online-Algorithmen

Approximations- und Online-Algorithmen Approximations- und Online-Algorithmen Wie komme ich mit Unfähigkeit und Unwissen zurecht? Rob van Stee 14. April 2010 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der

Mehr

Approximationsalgorithmen. Approximation im Sinne der Analysis:

Approximationsalgorithmen. Approximation im Sinne der Analysis: Approximationsalgorithmen Ulrich Pferschy 1 Approximationsalgorithmen Approximation im Sinne der Analysis: Satz von Weierstrass: (1815-1897) Sei f eine stetige Funktion auf [a, b]. Dann gibt es zu jedem

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft

Mehr

2. Effizienz von Algorithmen

2. Effizienz von Algorithmen Effizienz von Algorithmen 2. Effizienz von Algorithmen Effizienz von Algorithmen, Random Access Machine Modell, Funktionenwachstum, Asymptotik [Cormen et al, Kap. 2.2,3,4.2-4.4 Ottman/Widmayer, Kap. 1.1]

Mehr

Approximation im Sinne der Analysis:

Approximation im Sinne der Analysis: 1 Approximation im Sinne der Analysis: Satz von Weierstrass: (1815-1897) Sei f eine stetige Funktion auf [a, b]. Dann gibt es zu jedem ε > 0 ein Polynom P ε mit: max x [a,b] f(x) P ε(x) < ε Numerische

Mehr

Beweisbar sichere Verschlüsselung

Beweisbar sichere Verschlüsselung Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit bmoeller@crypto.rub.de 6

Mehr

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Kapitel 4 Dynamische Optimierung Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Inhalt Inhalt 4 Dynamische Optimierung Allgemeiner Ansatz und Beispiele Stochastische dynamische

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Scheduling-Theorie. Mathematische Modelle und Methoden für deterministische Scheduling-Probleme. LiSA - A Library of Scheduling Algorithms

Scheduling-Theorie. Mathematische Modelle und Methoden für deterministische Scheduling-Probleme. LiSA - A Library of Scheduling Algorithms Scheduling-Theorie Mathematische Modelle und Methoden für deterministische Scheduling-Probleme LiSA - A Library of Scheduling Algorithms Otto-von-Guericke Universität Magdeburg/FMA/Heidemarie Bräsel &

Mehr

1 Einführung 2 1.1 Zwei Beispiele (MIN JOB SCHEDULING und MAXCUT)... 2 1.2 Notationen und Definitionen... 7 1.3 Übungsaufgaben...

1 Einführung 2 1.1 Zwei Beispiele (MIN JOB SCHEDULING und MAXCUT)... 2 1.2 Notationen und Definitionen... 7 1.3 Übungsaufgaben... Vorwort v I Approximative Algorithmen 1 1 Einführung 2 1.1 Zwei Beispiele (MIN JOB SCHEDULING und MAXCUT).... 2 1.2 Notationen und Definitionen... 7 1.3 Übungsaufgaben..... 18 2 DieKomplexitätsklassen

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 6 Komplexität von Algorithmen 1 6.1 Beurteilung von Algorithmen I.d.R. existieren viele Algorithmen, um dieselbe Funktion zu realisieren. Welche Algorithmen sind die besseren? Betrachtung nicht-funktionaler

Mehr

Codierung, Codes (variabler Länge)

Codierung, Codes (variabler Länge) Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls

Mehr