Einsatz von In-Memory zur Virtualisierung im Data Warehouse

Größe: px
Ab Seite anzeigen:

Download "Einsatz von In-Memory zur Virtualisierung im Data Warehouse"

Transkript

1 Virtualisierung im Data Warehouse mit In-Memory 1 Einsatz von In-Memory zur Virtualisierung im Data Warehouse Es gibt mittlerweile eine Reihe von In-Memory-Techniken für Datenbank-Systeme im Data Warehouse Umfeld.. Hat man bislang bzgl. Data Warehouse auch irgendwie immer an Performance gedacht, so wird In-Memory auch gleich als ultimativer Performance-Kick für das Data Warehouse wahrgenommen, als wäre dies die einzige Herausforderung. Ein Data Warehouse ist mehr als nur (platt verstanden) eine performante Datenbank oder ein Daten- Durchlauferhitzer für Business Intelligence-Tools 1. Viele aktuelle Probleme haben ihre Ursache oft in genau dieser verkürzten Betrachtung: Nicht die richtigen Informationen für die Benutzer. Fehlende Kombinationsmöglichkeiten zwischen den Daten. Fehlende Stimmigkeit in den Auswertungen. Unflexibilität gegenüber neuen Anwenderanforderungen (zu lange Lieferzeiten für neue Berichte und Daten). Zu viel Technik Einsatz bei zu wenig Erfolg und of als zu teuer empfunden. Zu komplexe Systeme, die nur mit viel Personal und Experten zu beherrschen sind. In-Memory lindert auch solche Probleme, wenn man mithilfe dieser Technik Architekturen modifiziert. Kurz gesagt: wenn man Architekturen verschlankt, Wege kürzer gestaltet und indirekt Aufwand senkt. So sind z. B. Aggregate und ganze Data Marts (Star Schemen) verzichtbar und automatisch alle technischen Objekte und Funktionen, zur Verwaltung dieser Objekte, wie Teile des ETL, Indexe etc. Man spart erheblich Plattenplatz. Man wird schneller neue Informationen bereitstellen, Komplexität senken und man schafft korrektere Kennzahlen. Aber wie? Zugegeben, bei den meisten Warehouse-Systemen wird In-Memory zwar etwas Luft gegenüber Performance- Qualen verschaffen, aber nachhaltige Veränderungen bleiben aus: Strohfeuer-Effekt. Starten wir mit dem klassischen 3-Schichtenmodell 2, also 1. einer Stage-Schicht zum harmonisieren und integrieren von Unternehmensdaten, 2. einer Sachgebiets-neutralen Kern-Warehouse-Schicht mit granularen Stamm-, Bewegungs- und Referenzdaten, 3. und den nachgelagerten Sachgebiets-bezogenen Data Marts, mit synchronisierten und für Anwender mundgerecht aufbereitetet Informationen aus der zentralen Warehouse-Schicht. Landläufig modellieren wir die 3. Schicht (Data Marts) genau nach dem Geschmack der Anwender. Hier passen multidimensionale Modelle ( z. B. Star Schemen), mit Dimensionen (Geschäftsobjekte aus den realen Prozessen der Anwender) und die Fakten (die zu analysierenden Kennzahlen). 1 Die strategische Rolle der Systeme für ein Unternehmen wird gerne unterschätz, weil Data Warehouse im Gegensatz zu manch anderen Hype-Themen heute eher im Hintergrund wirkt. 2 Die meisten größeren und unternehmensweit angelegten Data Warehouse-Systeme nutzen heute diese von Inmon Mitte der 90er Jahren besprochene Architektur.

2 Virtualisierung im Data Warehouse mit In-Memory 2 Oft eingesetzte 3-Schichten-Architektur für unternehmensweite Warehouses Vielen Unternehmen handhaben diese Architektur jedoch zu statisch. Die 1. und 2. Schicht ist Domaine der IT- Abteilung, die sie oft nur technisch administrieren. Mangels Einsicht in echte Endanwenderbedarfe pumpt man die zentrale Schicht voll mit allem, was die Vorsysteme hergeben Was man hat, das hat man. Viele zentrale Warehouse-Schichten sind überfüllt mit nicht benötigten Daten. Dagegen erfahren die Data Marts gerne ein Eigenleben in Richtung Fachabteilung. Technischen Unzulänglichkeiten, Redundanzen, doppelte Modellierungstätigkeiten, unabgestimmten Begriffen und Kennzahlendefinitionen sind die Folgen. Wenn jemand jetzt diese chaotischen Data Marts noch In-Memory packt, oder in ein In-Memory-basiertes BI-Tool lädt, wird er dieses Chaos einfach nur beschleunigen, anstatt den oben genannten Herausforderungen zu begegnen. Sinnvolle Umsetzung der 3-Schichten-Architektur mit In-Memory sinnvoll Zunächst sollten wir den Begriff Schicht etwas lockerer betrachten. Die Kern-Warehouse- und Data Mart-Schicht sollte man nur aufgrund ihrer funktionalen Verwendung unterscheiden. Data Marts sind benutzerbezogen modelliert, oft multidimensional und die Kern Warehouse Schicht ist granular entworfen (z. T. normalisiert). Die Kern Warehouse Schicht verfügt zu einem früheren Zeitpunkt konsistente Informationen. Das ist aber auch schon alles. Keinesfalls sind Schichten eine Blaupause für Abteilungs- oder Verantwortlichkeitsgrenzen. Die zusammenhängende Betrachtung schafft eine Reihe von Vorteilen: Aufbereitende, berechnende Funktionen, aber auch sachgebietsübergreifende Daten und standardisierte Kennzahlen lassen sich früher im Informationsbeschaffungsprozess positionieren, also auch schon in der Kern- Warehouse-Schicht: Je früher eine Information fixiert ist, um so mehr wächst die Chance der Wiederverwendung in nachgelagerten Schritten und umso geringer ist die Gefahr von Fehlern bei redundantem Tun. Referenzdaten müssen nicht in die Data Marts kopiert werden. Das Gleiche gilt für große transaktionale Bewegungsdatentabellen, deren Strukturen und Inhalte sich nicht von Faktentabellen der Data Mart-Star Schemen unterscheiden. Insgesamt weniger ETL und es spart Datenbankobjekte. In-Memory liefert das nächste Argument: Eine enge Kopplung zwischen Kern-Warehouse und Data Marts ermöglicht die Virtualisierung der Data Marts. Multidimensionale Modelle wie Star Schemen aber auch fixe Kennzahlen lassen sich In-Memory für Analysen vorhalten, ohne die nötigen Datenbanktabellen durch aufwendige ETL-Läufe in den Data Marts zu persistieren. Anwender verfügen weiter über Data Marts, mit ihren aufbereiteten, multidimensionalen Sichten bzw. Kennzahlenlisten. Technisch und administrativ sind dies jedoch keine Tabellen mehr, sondern Views, auf einzelne, granularen und mit In-Memory-Technik vorgehaltene Tabellen.

3 Virtualisierung im Data Warehouse mit In-Memory 3 Damit die Virtualisierung von Data Marts durch In-Memory gelingt, muss die Struktur-Information dazu muss bereits in der Warehouse-Schicht erkennbar sein. Viele Warehouse-Umgebungen sehen dies nicht vor, sondern sind dominiert von den Strukturen der Vorsysteme, anstatt auf Anwendernutzen ausgerichtete Modelle hin zu orientieren. Ist die Virtualisierung performant machbar? Ja. In-Memory-Technik macht Abfragen auf Hunderte Gigabyte große Tabellen im Millisekunden-Bereich möglich. Der Grund ist nicht nur alleine das Vorhalten der Daten im Hauptspeicher, sondern Techniken wie Columnbezogene Speicherung, höhere Kompressionsraten, neue Arten der In-Memory-Indizierung, höhere Parallelisierung, In-Memory-Aggregation, Bloom-Filtering, SIMD-Techniken u. a. m.. Was ist mit Views und denormalisierenden Joins? Umfangreiche Tests haben gezeigt, dass Abfragen auf Views mit dahinter liegenden Joins auf In-Memory-Tabellen der Warehouse-Schicht, fast genauso kurze Antwortzeiten benötigen, wie eine Abfrage auf die denormalisierte Dimensionstabelle die ebenfalls in einem In-Memory-Store liegt. Die Unterschiede liegen im Zentel-Sekundenbereich. Betrachtet man die typische Struktur einer Dimension in einem Star Schema, dann wird die Erklärung für diesen Effekt augenfällig. Die Anzahl Sätze eines Joins auf eine normalisierte zusammenhängende Gruppe von Tabellen ist genauso groß, wie die daraus abgeleitete denormalisierte Dimensionstabelle eines Star Schemas. Und die Anzahl Sätze nimmt entlang der Aggregationslinie hin zu dem Top-Aggregat-Level sehr schnell ab. An den äußeren Rändern finden sich oft Tabellen mit wenigen 100 Sätzen. Für heutige Datenbanksysteme sind solche nach außen ausgedünnten Joins in kaum messbarer Zeit auflösbar. Dimensions-Joins auf normalisierte In-Memory-Tabellen sind nicht teuer. Grund ist die Ausdünnung der Satzmengen entlang der Hierarchie-Stufen. Entwicklungsschritte bei der Umsetzung des Konzeptes Wie in jeder klassischen Vorgehensweise erfassen wir zunächst Anwenderanforderungen und dokumentieren über einfache Analysemodelle die Abhängigkeit zwischen Geschäftsobjekten und Geschäftstransaktionen der operativen Prozesse. Das ergibt eine lockere Sammlung relevanter aber noch nicht untereinander organisierter Geschäftsobjekte. Durch Generalisierung bzw. Spezialisierung modelliert man hierarchische Beziehungen zwischen

4 Virtualisierung im Data Warehouse mit In-Memory 4 den gefundenen Geschäftsobjekten: Ziel ist das sog. Objektmodell. Die über Hierarchiebeziehungen verbundenen Objekte ergeben schließlich in dem darauf aufbauenden konzeptionellen Modell (z. B. M E/R Multidimensional Entity Relationship) die Dimensionen einer multidimensionalen Sicht. Zum Schluss verbindet man die untersten Hierarchielevel der Dimensionen durch Kennzahlenobjekte (Transaktionen der operativen Prozesse). Zwei Etappenziele sind erreicht: 1. Es sind genau die Informationen strukturiert, die der Anwender wirklich benötigt. 2. Die Strukturierung von potenziellen Auswertemodellen mit Drillpfaden und Aggregatleveln für die Anwender. Jetzt folgt nur noch mechanische Umsetzung. Das konzeptionelle Modell zur Beschreibung von Strukturen und Inhalten liegt ja vor. Mit Blick auf die Virtualisierung der Data Marts nutzen wir diese Information an zwei Stellen der Schichten-Architektur: Erstens ganz klassisch für den Entwurf der Star Schemen der Data Marts. Auch wenn wir später Star Schemen virtuell in Form von Views auf die zentrale Warehouse-Schicht abbilden, so brauchen wir doch ein Zugriffsmodell, für die der Anwender bzw. BI-Tool-Zugriffe. Wir brauchen eine multidimensionale Sicht. Zum anderen ist das konzeptionelle Modell auch Input für die Modellierung der Kern-Warehouse-Schicht. Das mag den ein oder anderen überraschen, der es gewohnt ist, die zentrale Schicht als reines Tabellenwerk aus den Vorsystemen abzuleiten. Bei der hier vorgestellten Vorgehensweise sind primär die Levelobjekte des konzeptionellen Modells die Grundlage für die Tabellen der zentralen Schicht. Damit lassen sich die Tabellen der zentralen Schicht zur Abfragezeit sehr leicht über die bereits erwähnten Views (virtuelles Star Schema) zu Dimensions-Hierarchie-Leveln zusammen-joinen. Die potenziellen Strukturen einer multidimensionalen Benutzersicht sind damit bereits in der zentralen Schicht vorbereitet 3. 3 Nebeneffekt ist automatisch eine Einschränkung der Tabellen- und Tabellenspaltenanzahl. In viele Warehouse- Systemen verfügen die Tabellen über die gleichen Spalten, wie die Vorsysteme, d. h., es ist eine hohe Anzahl nich genutzter Spalten.

5 Virtualisierung im Data Warehouse mit In-Memory 5 Die Vorteile des Konzeptes? Herleitungsweg von Modellen im Data Warehouse Größter Pluspunkt ist die gewonnene Flexibilität: In der zentralen Warehouse-Schicht ist die maximale Informationsmenge auf granularstem Level übersichtlich sortiert abgelegt. Jede aus dieser Informationsmenge ableitbare Anwendersicht ist bei Bedarf und ohne großen Aufwand über View-Definitionen ableitbar. Die Anleitung zu dieser Ableitung liefert das beschriebene konzeptionelle Modell. Das Definieren der Views ist weit weniger aufwendig und zeitraubend als z. B. ETL-Projekte. Das inhaltliche Auseinanderdriften der Data Marts wird verhindert, denn die Ausgangsbasis aller abgeleiteten Data Marts ist in jedem Fall die gleiche. Plattenplatz wird geschont: Durch das Virtualisieren der Data Marts entfallen viele Tabellen von den berühmten 10% die oft 90% und mehr Plattenplatz benötigen. Es sind die nicht persistierten Faktentabellen. Sie sind in diesem Konzept In-Memory-Tabellen (Partitionen oder Spalten-Extrakte) der zentralen Warehouse-Schicht. Hinzu kommt der Wegfall von Indexen in den Data Marts. Man schätzt eine Speicherplatzreduzierung von 20 50%. Man bedenke auch den sekundären Plattenplatzbedarf durch Sicherungen, temporäre Daten, Kapazitätspuffer usw.. 20 Terabyte Nutzdaten lassen sich damit rechnerisch auf 10 TB reduzieren. Voraussetzungen der Virtualisierung von Data Marts Die Virtualisierung von Data Marts erfordert einige Randbedingungen. Die Idee des Wegwerf-Data Mart stellt hierfür eine gute Messlatte dar: Man löscht einen Data Mart, um ihn dann wieder (hoffentlich ohne Verluste )

6 Virtualisierung im Data Warehouse mit In-Memory 6 über die zentrale Warehouse-Schicht neu aufzubauen. Bei bestandenem Test funktionieren die Abfragen auf den Data Mart weiter. (Vorschlag nur theoretisch durchführen, um Unfälle zu vermeiden). Als nötige Randbedingungen sollten in der zentralen Warehouse-Schicht bereits existieren: Historisierung und Versionierungen (im Sinne von Slowly Changing Dimensions) Künstlichen Warehouse-Schlüssel. Schlüssel-Referenzen zwischen Stamm-/Referenz und den transaktionalen Bewegungsdaten (die späteren Fakten). Das Orphan-Management zwischen Bewegungs- und Stammdaten. Referenzdaten Leserecht der Benutzer Besondere Kennzahlenberechnungen als Vorschrift, z. B. als Views oder als Metadatenobjekte. Level-Objekte zur Orientierung bei dem Aufbau von Dimensionshierarchien (i. d. R. als einfache relationale Tabellen). Zusammengefasst: In-Memory schafft nicht nur Performance? In vielen Data Warehouse-Installationen ist die Art, wie man das 3-Schichten-Modell praktiziert eine der Hauptursachen für unnötigen Aufwand und unkontrollierte Zustände. Führt man die In-Memory-Technik ohne Änderung der Architektur ein, wird sich an diesem Zustand nichts ändern. In-Memory bietet Chancen für geänderte Architekturen. Man sollte sie nutzen. Das Ergebnis: eine um die Data Mart-Distanz verkürzte Architektur Alfred Schlaucher, Oracle, Mai 2015

Modellbasierte Business Intelligence in der Praxis. Nürnberg, 10.11.2009

Modellbasierte Business Intelligence in der Praxis. Nürnberg, 10.11.2009 Modellbasierte Business Intelligence in der Praxis Nürnberg, 10.11.2009 I N H A L T 1. Warum Modelle für Business Intelligence (BI)? 2. Inhalte von Datenmodellen für BI 3. Inhalte von Prozessmodellen 4.

Mehr

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -

Mehr

Moderne Data-Warehouse-Architekturen

Moderne Data-Warehouse-Architekturen Moderne Data-Warehouse-Architekturen Autor: Alfred Schlaucher, ORACLE Deutschland GmbH DOAGNews Q3_2004 Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der

Mehr

Data Lineage goes Traceability - oder was Requirements Engineering von Business Intelligence lernen kann

Data Lineage goes Traceability - oder was Requirements Engineering von Business Intelligence lernen kann Data Lineage goes Traceability - oder was Requirements Engineering von Business Intelligence lernen kann Andreas Ditze MID GmbH Kressengartenstraße 10 90402 Nürnberg a.ditze@mid.de Abstract: Data Lineage

Mehr

Logische Modellierung von Data Warehouses

Logische Modellierung von Data Warehouses Logische Modellierung von Data Warehouses Vertiefungsarbeit von Karin Schäuble Gliederung. Einführung. Abgrenzung und Grundlagen. Anforderungen. Logische Modellierung. Methoden.. Star Schema.. Galaxy-Schema..

Mehr

Oracle-Statistiken im Data Warehouse effizient nutzen

Oracle-Statistiken im Data Warehouse effizient nutzen Oracle-Statistiken im Data Warehouse effizient nutzen Reinhard Mense ARETO Consulting Köln Schlüsselworte: DWH, Data Warehouse, Statistiken, Optimizer, Performance, Laufzeiten Einleitung Für die performante

Mehr

Modellbasierte Business Intelligence- Praxiserfahrungen in einem komplexen Data Warehouse Umfeld. München, 26. Januar 2010

Modellbasierte Business Intelligence- Praxiserfahrungen in einem komplexen Data Warehouse Umfeld. München, 26. Januar 2010 Modellbasierte Business Intelligence- Praxiserfahrungen in einem komplexen Data Warehouse Umfeld München, 26. Januar 2010 I N H A L T 1. Warum Modelle für Business Intelligence (BI)? 2. Inhalte von Datenmodellen

Mehr

Oracle Database In-Memory Option

Oracle Database In-Memory Option Oracle Data Warehouse In Memory Database Option 1/9 (Wichtige Vorbemerkung: An dieser Stelle sind Informationen zusammengetragen, wie sie im Rahmen der Oracle Open World im September 2013 bereits über

Mehr

Data Warehouse Grundlagen

Data Warehouse Grundlagen Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Fördercontrolling im öffentlichen Bereich Aspekte beim Aufbau eines DWH. Software mit Format.

Fördercontrolling im öffentlichen Bereich Aspekte beim Aufbau eines DWH. Software mit Format. Fördercontrolling im öffentlichen Bereich Aspekte beim Aufbau eines DWH Gerd Schandert, Neuss den 18.03.2014 Agenda 1. Vorstellung Auftraggeber 2. Förderung allgemein 3. Schichten im Data Warehouse 4.

Mehr

Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen

Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen Christoph Arnold (B. Sc.) Prof. Dr. Harald Ritz Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen AKWI-Tagung, 17.09.2012, Hochschule Pforzheim Christoph Arnold, Prof. Dr. Harald

Mehr

Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten

Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten Michael Hahne T&I GmbH Workshop MSS-2000 Bochum, 24. März 2000 Folie 1 Worum es geht...

Mehr

Performanceaspekte in der SAP BI Modellierung

Performanceaspekte in der SAP BI Modellierung Performanceaspekte in der SAP BI Modellierung SAP BW 7.3 & SAP HANA Performance Indizes Aggregate DSO & InfoCube BWA SAP HANA Empfehlung 2 Performance Performance bedeutet, unter gegebenen Anforderungen

Mehr

Solution for Business Intelligence. MID Insight 2013

Solution for Business Intelligence. MID Insight 2013 Solution for Business Intelligence MID Insight 2013 A G E N D A 1. Solution für Business Intelligence (BI) 2. Die Gründe und Hintergründe 3. Die Methode 4. Vorteile MID GmbH 2013 2 Solution für Business

Mehr

Aufgabe 1: [Logische Modellierung]

Aufgabe 1: [Logische Modellierung] Aufgabe 1: [Logische Modellierung] a) Entwerfen Sie für das von Ihnen entworfene Modell aus Aufgabe 2 des 1. Übungsblattes ein Star-Schema. b) Entwerfen Sie für das vorangegangene Modell einen Teil eines

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

VisualCockpit. agile business analytics

VisualCockpit. agile business analytics VisualCockpit agile business analytics Agile Business Analytics mit VisualCockpit Für Unternehmen wird es immer wichtiger die gesamte Wertschöpfungskette aus Daten, sowohl für das operative Geschäft als

Mehr

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Dani Schnider Principal Consultant Business Intelligence BI Trilogie, Zürich/Basel 25./26. November 2009 Basel Baden Bern Lausanne Zürich

Mehr

Data Warehousing mit Oracle

Data Warehousing mit Oracle Data Warehousing mit Oracle Business Intelligence in der Praxis von Claus Jordan, Dani Schnider, Joachim Wehner, Peter Welker 1. Auflage Hanser München 2011 Verlag C.H. Beck im Internet: www.beck.de ISBN

Mehr

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Prof. Dr. Anett Mehler-Bicher Fachhochschule Mainz, Fachbereich Wirtschaft Prof. Dr. Klaus Böhm health&media GmbH 2011 health&media

Mehr

Das Multidimensionale Datenmodell

Das Multidimensionale Datenmodell Das Multidimensionale Datenmodell Konzeptuelle Modellierung Umsetzung des Modells Beispiel ER-Modell 2 / 36 Probleme ER-Modellierung Keine Unterscheidung Klassifikation, Attribute, Kenngrößen Dimension

Mehr

Data Warehouse. für den Microsoft SQL SERVER 2000/2005

Data Warehouse. für den Microsoft SQL SERVER 2000/2005 Warehouse für den Microsoft SQL SERVER 2000/2005 Begriffe 1 DWH ( Warehouse) ist eine fachübergreifende Zusammenfassung von Datentabellen. Mart ist die Gesamtheit aller Datentabellen für einen fachlich

Mehr

Performance by Design Wie werden performante ETL-Prozesse erstellt?

Performance by Design Wie werden performante ETL-Prozesse erstellt? Performance by Design Wie werden performante ETL-Prozesse erstellt? Reinhard Mense ARETO Consulting Bergisch Gladbach Schlüsselworte: DWH, Data Warehouse, ETL-Prozesse, Performance, Laufzeiten, Partitionierung,

Mehr

www.braunconsult.de SAP BW 7.3 & SAP HANA

www.braunconsult.de SAP BW 7.3 & SAP HANA Performanceaspekte in der SAP BI Modellierung SAP BW 7.3 & SAP HANA Performance Indizes Aggregate DSO & InfoCube BWA SAP HANA Empfehlung 2 Performance Performance bedeutet, unter gegebenen Anforderungen

Mehr

Intelligence (BI): Von der. Nürnberg, 29. November 2011

Intelligence (BI): Von der. Nürnberg, 29. November 2011 Modelle für Business Intelligence (BI): Von der Anforderung zum Würfel Nürnberg, 29. November 2011 Warum Modelle für Business Intelligence (BI)? Warum Modelle für Business Intelligence (BI)? Bis zur Auswertung

Mehr

Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle

Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle ??? Zusammenfassung, Ergänzung, Querverbindungen, Beispiele A.Kaiser; WU-Wien MIS 188 Data Warehouse Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle

Mehr

Einteilung von Datenbanken

Einteilung von Datenbanken Datenbanksysteme (c) A.Kaiser; WU-Wien 1 Einteilung von Datenbanken 1. formatierte Datenbanken 2. unformatierte Datenbanken Information Retrieval Systeme 2 Wozu Datenbanken? Speicherung und Verwaltung

Mehr

Logische Datenmodellierung zur Abbildung mehrdimensionaler Datenstrukturen im SAP Business Information Warehouse

Logische Datenmodellierung zur Abbildung mehrdimensionaler Datenstrukturen im SAP Business Information Warehouse Logische Datenmodellierung zur Abbildung mehrdimensionaler Datenstrukturen im SAP Business Information Warehouse Vortrag auf der BTW 2003, Leipzig 26.-28.02.2003 Dr. Michael Hahne cundus AG Prokurist,

Mehr

Business Intelligence Aufgabenstellung

Business Intelligence Aufgabenstellung Hochschule Darmstadt Business Intelligence (BI) Fachbereich Informatik Praktikum 2 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Sebastian Gobst Änderung: 15.06.2012 Datum: 30.05.2012 1. Einführung

Mehr

OLAP und der MS SQL Server

OLAP und der MS SQL Server OLAP und der MS SQL Server OLAP und der MS SQL Server OLAP-Systeme werden wie umfangreiche Berichtssysteme heute nicht mehr von Grund auf neu entwickelt. Stattdessen konzentriert man sich auf die individuellen

Mehr

Oracle-Statistiken im Data Warehouse effizient nutzen

Oracle-Statistiken im Data Warehouse effizient nutzen Zur performanten Ausführung von Berichten und Ad-hoc-Abfragen eines BI-Systems sind beim Oracle Optimizer aussagekräftige und aktuelle Statistiken für die Tabellen und Indizes von essenzieller Bedeutung.

Mehr

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden Jens Kaminski ERP Strategy Executive IBM Deutschland Ungebremstes Datenwachstum > 4,6 Millarden

Mehr

Dimensionale Modellierung mit Oracle BI EE und Oracle OLAP Tipps und Tricks aus der Praxis

Dimensionale Modellierung mit Oracle BI EE und Oracle OLAP Tipps und Tricks aus der Praxis Dimensionale Modellierung mit Oracle BI EE und Oracle OLAP Tipps und Tricks aus der Praxis DOAG Konferenz 2010 Claus Jordan Senior Consultant, Trivadis GmbH 16.11.2010 Basel Bern Lausanne Zürich Düsseldorf

Mehr

Zeitgemäße Verfahren für ganzheitliche Auswertungen

Zeitgemäße Verfahren für ganzheitliche Auswertungen Intelligente Vernetzung von Unternehmensbereichen Zeitgemäße Verfahren für ganzheitliche Auswertungen Sächsische Industrie- und Technologiemesse Chemnitz, 27. Juni 2012, Markus Blum 2012 TIQ Solutions

Mehr

Wann nutze ich welchen semantischen Layer im Kontext von SAP HANA? [B3] Francis Fink Uetliberg, 16.09.2014 www.boak.ch

Wann nutze ich welchen semantischen Layer im Kontext von SAP HANA? [B3] Francis Fink Uetliberg, 16.09.2014 www.boak.ch Wann nutze ich welchen semantischen Layer im Kontext von SAP HANA? [B3] Francis Fink Uetliberg, 16.09.2014 www.boak.ch Obwohl mit der Verwendung von SAP HANA ein neuer semantischer Layer zum Einsatz kommt,

Mehr

Anwendung des Prinzips der Doppik beim Aufbau eines Data Warehouses

Anwendung des Prinzips der Doppik beim Aufbau eines Data Warehouses Anwendung des Prinzips der Doppik beim Aufbau eines Data Warehouses Einführung Einer der Nachteile der Data Warehouse Technologie besteht daran, dass in einem Data Warehouse (DWH ) nur Momentaufnahmen

Mehr

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube Fragen des Marketingleiters Data Warehousing Wie viele Bestellungen haben wir jeweils im Monat vor Weihnachten, aufgeschlüsselt nach? Aufbau eines DWH OLAP OLTP Datacube Beispiel: : Amazon Technisch

Mehr

Kampagnenmanagement mit Siebel Marketing/Oracle BI ein Praxisbericht

Kampagnenmanagement mit Siebel Marketing/Oracle BI ein Praxisbericht Kampagnenmanagement mit Siebel Marketing/Oracle BI ein Praxisbericht Thomas Kreuzer ec4u expert consulting ag Karlsruhe Schlüsselworte: Kampagnenmanagement Praxisbericht Siebel Marketing Oracle BI - ec4u

Mehr

Hetero-Homogene Data Warehouses

Hetero-Homogene Data Warehouses Hetero-Homogene Data Warehouses TDWI München 2011 Christoph Schütz http://hh-dw.dke.uni-linz.ac.at/ Institut für Wirtschaftsinformatik Data & Knowledge Engineering Juni 2011 1 Data-Warehouse-Modellierung

Mehr

ENTERBRAIN Reporting & Business Intelligence

ENTERBRAIN Reporting & Business Intelligence Überblick Vorhandene Listen/Analysen in ENTERBRAIN Die Daten in ENTERBRAIN Das Fundament des BI - Hauses Details zur ENTERBRAIN Staging Area Reports und Cubes auf Basis der Staging Area Data Mining mit

Mehr

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit BI Konsolidierung: Anspruch & Wirklichkeit Jacqueline Bloemen in Kooperation mit Agenda: Anspruch BI Konsolidierung Treiber Was sind die aktuellen Treiber für ein Konsolidierungsvorhaben? Kimball vs. Inmon

Mehr

Vorwort zur 5. Auflage... 15 Über den Autor... 16

Vorwort zur 5. Auflage... 15 Über den Autor... 16 Vorwort zur 5. Auflage...................................... 15 Über den Autor............................................ 16 Teil I Grundlagen.............................................. 17 1 Einführung

Mehr

1 Einleitung. Betriebswirtschaftlich administrative Systeme

1 Einleitung. Betriebswirtschaftlich administrative Systeme 1 1 Einleitung Data Warehousing hat sich in den letzten Jahren zu einem der zentralen Themen der Informationstechnologie entwickelt. Es wird als strategisches Werkzeug zur Bereitstellung von Informationen

Mehr

Data Warehousing mit Oracle

Data Warehousing mit Oracle Data Warehousing mit Oracle Business Intelligence in der Praxis von Claus Jordan, Dani Schnider, Joachim Wehner, Peter Welker 1. Auflage Hanser München 2011 Verlag C.H. Beck im Internet: www.beck.de ISBN

Mehr

Möglichkeiten für bestehende Systeme

Möglichkeiten für bestehende Systeme Möglichkeiten für bestehende Systeme Marko Filler Bitterfeld, 27.08.2015 2015 GISA GmbH Leipziger Chaussee 191 a 06112 Halle (Saale) www.gisa.de Agenda Gegenüberstellung Data Warehouse Big Data Einsatz-

Mehr

good. better. outperform.

good. better. outperform. good. better. outperform. Quo Vadis Oracle BI Relational oder besser multidimensional? DOAG 2013 Business Intelligence, 17.04.2013 Dirk Fleischmann Director Business Intelligence & DWH Business Intelligence

Mehr

Allgemeines zu Datenbanken

Allgemeines zu Datenbanken Allgemeines zu Datenbanken Was ist eine Datenbank? Datensatz Zusammenfassung von Datenelementen mit fester Struktur Z.B.: Kunde Alois Müller, Hegenheimerstr. 28, Basel Datenbank Sammlung von strukturierten,

Mehr

Intelligente Kanzlei

Intelligente Kanzlei Seite 1 von 5 Intelligente Kanzlei Datawarehouse und OLAP in der Steuerkanzlei Notwendigkeit eines Kanzleiinformationssystems Seit einigen Jahren sind enorme Veränderungen am Beratungsmarkt durch einen

Mehr

Online Analytical Processing

Online Analytical Processing Online Analytical Processing Online Analytical Processing Online Analytical Processing (OLAP) ermöglicht die multidimensionale Betrachtung von Daten zwecks E rmittlung eines entscheidungsunterstützenden

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr

BARC-Studie Data Warehousing und Datenintegration

BARC-Studie Data Warehousing und Datenintegration Ergebnisse der BARC-Studie Data Warehouse Plattformen Dr. Carsten Bange BARC-Studie Data Warehousing und Datenintegration Data-Warehouse -Plattformen und Datenintegrationswerkzeuge im direkten Vergleich

Mehr

Oracle BI EE mit großen Datenmengen

Oracle BI EE mit großen Datenmengen Oracle BI EE mit großen Datenmengen Christian Casek Riverland Solutions GmbH München Schlüsselworte: Oracle BI EE, Oracle BI Applications, Informatica, RPD, große Datenmengen, Performance, Performanceoptimierung,

Mehr

Business Intelligence Praktikum 1

Business Intelligence Praktikum 1 Hochschule Darmstadt Business Intelligence SS 2014 Fachbereich Informatik Praktikumsversuch 1 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 07.05.2014 Business Intelligence Praktikum

Mehr

Performance-Optimierung in SAP BW. Helmut Tack

Performance-Optimierung in SAP BW. Helmut Tack Performance-Optimierung in SAP BW Helmut Tack INHALTSVERZEICHNIS Inhaltsverzeichnis Einleitung 9 1 Grundlegende Betrachtungen 13 2 Grundlagen der SAP BW-Datenhaltung 17 2.1 Flache Datenspeicher 21 2.2

Mehr

Master-Thesis (m/w) für unseren Standort Stuttgart

Master-Thesis (m/w) für unseren Standort Stuttgart Master-Thesis (m/w) für unseren Standort Abschlussarbeit im Bereich Business Process Management (BPM) Effizienzsteigerung von Enterprise Architecture Management durch Einsatz von Kennzahlen Braincourt

Mehr

Star - Schema. AnPr. Name Klasse Datum. ANPR_StarSchema_v03.docx Seite 1

Star - Schema. AnPr. Name Klasse Datum. ANPR_StarSchema_v03.docx Seite 1 Name Klasse Datum 1 OLAP vs. OLTP In den RDBMS Konfigurationen unterscheidet man zwei verschiedene Grundtypen: OLTP: OnLine Transactional Processing ist für die Transaktionsprozesse und somit zur funktionalen

Mehr

Leseprobe. Claus Jordan, Dani Schnider, Joachim Wehner, Peter Welker. Data Warehousing mit Oracle. Business Intelligence in der Praxis

Leseprobe. Claus Jordan, Dani Schnider, Joachim Wehner, Peter Welker. Data Warehousing mit Oracle. Business Intelligence in der Praxis Leseprobe Claus Jordan, Dani Schnider, Joachim Wehner, Peter Welker Data Warehousing mit Oracle Business Intelligence in der Praxis ISBN: 978-3-446-42562-0 Weitere Informationen oder Bestellungen unter

Mehr

Datenbanken. Prof. Dr. Bernhard Schiefer. bernhard.schiefer@fh-kl.de http://www.fh-kl.de/~schiefer

Datenbanken. Prof. Dr. Bernhard Schiefer. bernhard.schiefer@fh-kl.de http://www.fh-kl.de/~schiefer Datenbanken Prof. Dr. Bernhard Schiefer bernhard.schiefer@fh-kl.de http://www.fh-kl.de/~schiefer Wesentliche Inhalte Begriff DBS Datenbankmodelle Datenbankentwurf konzeptionell, logisch und relational

Mehr

Wie integriert sich BI in den unternehmensweiten Softwareentwicklungsprozess? Nürnberg, 10.11.2009

Wie integriert sich BI in den unternehmensweiten Softwareentwicklungsprozess? Nürnberg, 10.11.2009 Wie integriert sich BI in den unternehmensweiten Softwareentwicklungsprozess? Nürnberg, 10.11.2009 I N H A L T 1. Warum Modelle für Business Intelligence (BI)? 2. Anforderungen von BI an Software- Entwicklungsprozesse

Mehr

Einführung. Kapitel 1 2 / 508

Einführung. Kapitel 1 2 / 508 Kapitel 1 Einführung 2 / 508 Einführung Was ist ein Datenbanksystem (DBS)? Ein System zum Speichern und Verwalten von Daten. Warum kein herkömmliches Dateisystem verwenden? Ausfallsicherheit und Skalierbarkeit

Mehr

Business Intelligence Praktikum 1

Business Intelligence Praktikum 1 Hochschule Darmstadt Business Intelligence WS 2013-14 Fachbereich Informatik Praktikumsversuch 1 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.10.2013 Business Intelligence Praktikum

Mehr

Data-Vault-Automation aus dem Datenmodellierungstool. 1. Tagung der DDVUG am 24.Juni2014

Data-Vault-Automation aus dem Datenmodellierungstool. 1. Tagung der DDVUG am 24.Juni2014 Data-Vault-Automation aus dem Datenmodellierungstool 1. Tagung der DDVUG am 24.Juni2014 A G E N D A 1. MID & Innovator 2. Modell & Methode 3. Architektur & Automatisierung 4. Nutzen & Veränderung MID GmbH

Mehr

Integration Services Übersicht

Integration Services Übersicht Integration Services Übersicht Integration Services Übersicht Integration Services stellt umfangreiche integrierte Tasks, Container, Transformationen und Datenadapter für die En t- wicklung von Geschäftsanwendungen

Mehr

Szenarien DPE Reporting

Szenarien DPE Reporting Szenarien DPE Reporting Das nachfolgende Dokument beschreibt mögliche Szenarien zur Generierung von Reports aus dem Delmia Process Engineer (DPE). 1 Einleitung Der DPE ist eine Lösung zur Prozeßplanung

Mehr

Vorteile einer standardisierten DV-orientierten BI-Architektur hinsichtlich Modellierung, Bewirtschaftung und Betrieb. Thomas Mattick, BBF GmbH

Vorteile einer standardisierten DV-orientierten BI-Architektur hinsichtlich Modellierung, Bewirtschaftung und Betrieb. Thomas Mattick, BBF GmbH Vorteile einer standardisierten DV-orientierten BI-Architektur hinsichtlich Modellierung, Bewirtschaftung und Betrieb Thomas Mattick, BBF GmbH Vorstellung Thomas Mattick Projektauszug (BI) Auftragsabwicklung/Leistungsbewertung

Mehr

Business Intelligence im Krankenhaus

Business Intelligence im Krankenhaus Business Intelligence im Krankenhaus Dr. Thomas Lux Holger Raphael IT-Trends in der Medizin 03.September 2008 Essen Gliederung Herausforderungen für das Management im Krankenhaus Business Intelligence

Mehr

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 MIS Glossar by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 Aggregat Data Cube Data Marts Data Mining Data Warehouse (DWH) Daten Decision Support Systeme (DSS)

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

Aufgaben zur fachwissenschaftlichen Prüfung Modul 3 Daten erfassen, ordnen, verarbeiten und austauschen: Schwerpunkt Datenbanken

Aufgaben zur fachwissenschaftlichen Prüfung Modul 3 Daten erfassen, ordnen, verarbeiten und austauschen: Schwerpunkt Datenbanken Aufgaben zur fachwissenschaftlichen Prüfung Modul 3 Daten erfassen, ordnen, verarbeiten und austauschen: Schwerpunkt Datenbanken 30 Wozu dient ein Primärschlüssel? Mit dem Primärschlüssel wird ein Datenfeld

Mehr

Seminar C16 - Datenmodellierung für SAP BW

Seminar C16 - Datenmodellierung für SAP BW C16: Datenmodellierung für SAP BW Ein Seminar der DWH academy Seminar C16 - Datenmodellierung für SAP BW Dieses Seminar soll einen umfassenden Einblick in die Datenmodellierung beim Einsatz von SAP BW

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis ix 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...

Mehr

Marketing Intelligence Schwierigkeiten bei der Umsetzung. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Schwierigkeiten bei der Umsetzung. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Schwierigkeiten bei der Umsetzung Josef Kolbitsch Manuela Reinisch Übersicht Schwierigkeiten bei der Umsetzung eines BI-Systems Schwierigkeiten der Umsetzung 1/13 Strategische Ziele

Mehr

HANA. TOBA-Team Dresden 19.05.2012

HANA. TOBA-Team Dresden 19.05.2012 HANA TOBA-Team Dresden 19.05.2012 Kunde droht mit Auftrag! Ein großer Discounter schickt Anfrage: Bis wann und zu welchem Preis können Sie 30.000 Stück liefern? Die Hektik beginnt! Bis wann Welche und

Mehr

Profilbezogene informatische Bildung in den Klassenstufen 9 und 10. Schwerpunktthema Daten und Datenbanken

Profilbezogene informatische Bildung in den Klassenstufen 9 und 10. Schwerpunktthema Daten und Datenbanken Profilbezogene informatische Bildung in den Klassenstufen 9 und 10 Schwerpunktthema Robby Buttke Fachberater für Informatik RSA Chemnitz Fachliche Einordnung Phasen relationaler Modellierung Fachlichkeit

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen (AIS)

Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation 27. Juni 2013 Hinweis Diese Folien ersetzen keinesfalls den Übungsstoff des zugehörigen e-learning-kurses.

Mehr

Strategie und Self Service BI im Unternehmen. Gegensätze miteinander kombinieren

Strategie und Self Service BI im Unternehmen. Gegensätze miteinander kombinieren Strategie und Self Service BI im Unternehmen Gegensätze miteinander kombinieren Claas Planitzer Düsseldorf Juni 2015 Agenda 5. Herausforderungen 1. Idealbild 2. Realität 3. Self Service 4. BI. Was ist

Mehr

Software-Engineering und Datenbanken

Software-Engineering und Datenbanken Software-Engineering und Datenbanken Prof. Dr. Bernhard Schiefer bernhard.schiefer@fh-kl.de http://www.fh-kl.de/~schiefer Prof. Dr. Bernhard Schiefer 1-1 Wesentliche Inhalte Begriff DBS Datenbankmodelle

Mehr

Vertriebssteuerung & Controlling Konkrete Vertriebsziele, passend zur Unternehmensstrategie

Vertriebssteuerung & Controlling Konkrete Vertriebsziele, passend zur Unternehmensstrategie Konkrete Vertriebsziele, passend zur Unternehmensstrategie Wir ermöglichen Ihnen mit dem Service Vertriebssteuerung die erfolgreiche Umsetzung Ihrer Unternehmensstrategie in operativ umsetzbare Vertriebsziele.

Mehr

Fachbereich Informatik Praktikumsversuch 4. Prof. Dr.. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.06.2015

Fachbereich Informatik Praktikumsversuch 4. Prof. Dr.. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.06.2015 Hochschule Darmstadt Data Warehouse SS2015 Fachbereich Informatik Praktikumsversuch 4 Prof. Dr.. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.06.2015 1. Kurzbeschreibung Dieses Praktikum

Mehr

IT-Kompaktkurs. Datenbanken Skript zur Folge 5. Prof. Dr. Georg Herde Fachhochschule Deggendorf

IT-Kompaktkurs. Datenbanken Skript zur Folge 5. Prof. Dr. Georg Herde Fachhochschule Deggendorf IT-Kompaktkurs Skript zur Folge 5 Prof. Dr. Georg Herde Fachhochschule Deggendorf Semantisches Datenmodell, Entity-Relationship, Normalformen Bei der Entwicklung einer Datenbank wird das Ziel angestrebt,

Mehr

Einführung in Hauptspeicherdatenbanken

Einführung in Hauptspeicherdatenbanken Einführung in Hauptspeicherdatenbanken Harald Zankl Probevorlesung 13. 01., 13:15 14:00, HS C Inhaltsverzeichnis Organisation Überblick Konklusion Harald Zankl (LFU) Hauptspeicherdatenbanken 2/16 Organisation

Mehr

Teil VI. Datenbanken

Teil VI. Datenbanken Teil VI Datenbanken Überblick 1 Grundlegende Begriffe Motivation 2 Relationale Datenbanksysteme Das Relationale Datenmodell SQL 3 Entwurf von Datenbanken Das Enity Relationship (ER) Modell Abbildung von

Mehr

Seminare im Kontext des Data Warehouse für die Oracle Data Warehouse Kunden-Community. Organisatorisches. Gesamtübersicht

Seminare im Kontext des Data Warehouse für die Oracle Data Warehouse Kunden-Community. Organisatorisches. Gesamtübersicht Seminare im Kontext des Data Warehouse für die Oracle Data Warehouse Kunden-Community Bei den Seminaren der Oracle Data Warehouse Gruppe steht die Wissenvermittlung im Vordergrund. Die Themen werden anhand

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH Lars Priebe Senior Systemberater ORACLE Deutschland GmbH Data Mining als Anwendung des Data Warehouse Konzepte und Beispiele Agenda Data Warehouse Konzept und Data Mining Data Mining Prozesse Anwendungs-Beispiele

Mehr

Data Warehouses. Data Warehouse Architektur ... Sommersemester 2011. Melanie Herschel melanie.herschel@uni-tuebingen.de

Data Warehouses. Data Warehouse Architektur ... Sommersemester 2011. Melanie Herschel melanie.herschel@uni-tuebingen.de Data Warehouses Sommersemester 2011 Melanie Herschel melanie.herschel@uni-tuebingen.de Lehrstuhl für Datenbanksysteme, Universität Tübingen Data Warehouse Architektur Data-Warehouse-System Teilsichten

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Refactoring relationaler Datenbank. Shaoke Wu

Refactoring relationaler Datenbank. Shaoke Wu Refactoring relationaler Datenbank Shaoke Wu Überblick Einführung Bad Smells Probleme bei Database Refactoring Durchführung von Database Refactoring Visualisierung Refactoring relationaler DB Einführung

Mehr

6 HANA-optimierte InfoCubes

6 HANA-optimierte InfoCubes 117 HANA-optimierte InfoCubes bilden im»sap BW powered by SAP HANA«das Pendant zu relationalen InfoCubes in BW-Systemen mit relationalen Datenbanksystemen. Obwohl ihr Modell wesentlich auf die spaltenorientierte

Mehr

UNIVERSITY POLITEHNICA OF BUCHAREST POWER DEPARTMENT HYDRAULICS AND HYDRAULIC MACHINES CHAIR

UNIVERSITY POLITEHNICA OF BUCHAREST POWER DEPARTMENT HYDRAULICS AND HYDRAULIC MACHINES CHAIR UNIVERSITY POLITEHNICA OF BUCHAREST POWER DEPARTMENT HYDRAULICS AND HYDRAULIC MACHINES CHAIR drd. ing. Matthias Marcus Wanner Das empirische Prozessmanagement und die semantische Prozessmodellierung zur

Mehr

Hochschule Darmstadt Business Intelligence WS 2013-14 Fachbereich Informatik Praktikumsversuch 3. Aufgabenstellung

Hochschule Darmstadt Business Intelligence WS 2013-14 Fachbereich Informatik Praktikumsversuch 3. Aufgabenstellung Hochschule Darmstadt Business Intelligence WS 2013-14 Fachbereich Informatik Praktikumsversuch 3 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 18.12.2013 1. Kurzbeschreibung Dieses Praktikum

Mehr

mywms Vorlage Seite 1/5 mywms Datenhaltung von Haug Bürger

mywms Vorlage Seite 1/5 mywms Datenhaltung von Haug Bürger mywms Vorlage Seite 1/5 mywms Datenhaltung von Haug Bürger Grundlegendes Oracle9i PostgreSQL Prevayler Memory mywms bietet umfangreiche Konfigurationsmöglichkeiten um die Daten dauerhaft zu speichern.

Mehr

Executive Briefing. Big Data und Business Analytics für Kunden und Unternehmen. In Zusammenarbeit mit. Executive Briefing. In Zusammenarbeit mit

Executive Briefing. Big Data und Business Analytics für Kunden und Unternehmen. In Zusammenarbeit mit. Executive Briefing. In Zusammenarbeit mit Big Data und Business Analytics für Kunden und Unternehmen Umfangreiche und ständig anwachsende Datenvolumen verändern die Art und Weise, wie in zahlreichen Branchen Geschäfte abgewickelt werden. Da immer

Mehr

1 Die Active Directory

1 Die Active Directory 1 Die Active Directory Infrastruktur Prüfungsanforderungen von Microsoft: Configuring the Active Directory Infrastructure o Configure a forest or a domain o Configure trusts o Configure sites o Configure

Mehr

Adlerblick So gewinnen Sie einen Überblick über ein DWH Dr. Andrea Kennel InfoPunkt Kennel GmbH CH-8600 Dübendorf Schlüsselworte Einleitung

Adlerblick So gewinnen Sie einen Überblick über ein DWH Dr. Andrea Kennel InfoPunkt Kennel GmbH CH-8600 Dübendorf Schlüsselworte Einleitung Adlerblick So gewinnen Sie einen Überblick über ein DWH Dr. Andrea Kennel InfoPunkt Kennel GmbH CH-8600 Dübendorf Schlüsselworte DWH Projekt, Methodik, Stärken und Schwächen, Übersicht, Weg der Daten,

Mehr

In die Zeilen würden die Daten einer Adresse geschrieben werden. Das Ganze könnte in etwa folgendermaßen aussehen:

In die Zeilen würden die Daten einer Adresse geschrieben werden. Das Ganze könnte in etwa folgendermaßen aussehen: 1 Einführung in Datenbanksysteme Fast jeder kennt Excel und hat damit in seinem Leben schon einmal gearbeitet. In Excel gibt es Arbeitsblätter, die aus vielen Zellen bestehen, in die man verschiedene Werte

Mehr

SOLISYON GMBH CHRISTIAN WOLF, BENJAMIN WEISSMAN. Optimierung von Abfragen in MS SQL Server DWH-Umgebungen

SOLISYON GMBH CHRISTIAN WOLF, BENJAMIN WEISSMAN. Optimierung von Abfragen in MS SQL Server DWH-Umgebungen WEITER BLICKEN. MEHR ERKENNEN. BESSER ENTSCHEIDEN. Optimierung von Abfragen in MS SQL Server DWH-Umgebungen SOLISYON GMBH CHRISTIAN WOLF, BENJAMIN WEISSMAN VERSION 1.0 OPTIMIERUNG VON ABFRAGEN IN MS SQL

Mehr

Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr

Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr Copyright 2007 Infor. Alle Rechte vorbehalten. Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr Hubertus Thoma Presales Consultant PM Schalten Sie bitte während

Mehr

Carl-Christian Kanne. Einführung in Datenbanken p.1/513

Carl-Christian Kanne. Einführung in Datenbanken p.1/513 Einführung in Datenbanken Carl-Christian Kanne Einführung in Datenbanken p.1/513 Kapitel 1 Einführung Einführung in Datenbanken p.2/513 Einführung Was ist ein Datenbanksystem (DBS)? Ein System zum Speichern

Mehr