Experimentierbeginn an der Fusionsanlage Wendelstein 7-X Start of scientific experimentation at the Wendelstein 7-X fusion device

Größe: px
Ab Seite anzeigen:

Download "Experimentierbeginn an der Fusionsanlage Wendelstein 7-X Start of scientific experimentation at the Wendelstein 7-X fusion device"

Transkript

1 Experimentierbeginn an der Fusionsanlage Start of scientific experimentation at the fusion device Klinger, Thomas; Milch, Isabella Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Greifswald Korrespondierender Autor Zusammenfassung Nach neun Jahren Bauzeit und gut einem Jahr technischer Vorbereitungen und Tests wurde am 10. Dezember 2015 in der Fusionsanlage im Max-Planck-Institut für Plasmaphysik (IPP) in Greifswald das erste Helium-Plasma erzeugt. Das erste Wasserstoff-Plasma folgte am 3. Februar Damit hat der wissenschaftliche Experimentierbetrieb begonnen., die weltweit größte Fusionsanlage vom Typ Stellarator, soll die Kraftwerkseignung dieses Bautyps untersuchen. Summary Following nine years of construction work and one year of technical preparations and tests on 10 December 2015 the first helium plasma was produced in the fusion device at the Max Planck Institute for Plasma Physics (IPP) in Greifswald. The first hydrogen plasma was to follow on 3 February 2016, this marking the start of scientific operation., the world s largest fusion device of the stellarator type, is to investigate this configuration s suitability for use in a power plant. Die Montage von hatte im April 2005 begonnen: Kernstück der Anlage ist ein Ring aus 50 supraleitenden, etwa 3,5 Meter hohen Magnetspulen. Ihre speziellen Formen sind das Ergebnis ausgefeilter Optimierungsrechnungen des IPP-Bereichs Stellarator-Theorie und einer über zehnjährigen Suche nach einem besonders wärmeisolierenden magnetischen Käfig. Die Spulen sind auf ein stählernes Plasmagefäß aufgefädelt und von einer ringförmigen Stahlhülle umschlossen. In ihrem luftleer gepumpten Innenraum werden die Spulen mit flüssigem Helium auf Supraleitungstemperatur bis nahe an den absoluten Nullpunkt abgekühlt. So verbrauchen sie nach dem Einschalten kaum Energie. Der von ihnen erzeugte Magnetfeldkäfig kann das 30 Kubikmeter füllende ultra-dünne Plasma im Inneren des Plasmagefäßes dauerhaft, d. h. bis zu 30 Minuten lang, in Schwebe halten. Nach neun Jahren Bauzeit und über einer Million Montagestunden wurde im April 2014 die Hauptmontage von abgeschlossen [1]. Die Betriebsvorbereitungen begannen: Nacheinander wurden alle technischen Systeme geprüft das Vakuum in den Gefäßen, das Kühlsystem, die supraleitenden Spulen, das von ihnen erzeugte Magnetfeld, das Steuersystem sowie die Heiz- und Messapparaturen Max-Planck-Gesellschaft 1/5

2 A bb. 1: Das erste Plasm a in. Es bestand aus Helium und erreichte eine Tem peratur von einer Million Grad Celsius. Max-Planck-Institut für Plasm aphysik, Greifswald Am 10. Dezember 2015 war es soweit: Im Kontrollraum fuhr die Betriebsmannschaft das Magnetfeld hoch und startete die computergeregelte Experiment-Steuerung. Sie speiste rund ein Milligramm Heliumgas in das ausgepumpte Plasmagefäß ein, schaltete die Mikrowellenheizung für einen kurzen 1,3-Megawatt-Puls an: Im Visier der eingebauten Kameras und Messgeräte zeigte sich das erste Plasma in der Maschine. Es dauerte eine Zehntel-Sekunde und erreichte eine Temperatur von rund einer Million Grad Celsius (Abb. 1). Für den Betriebsstart hatte man sich für Helium als Arbeitsgas entschieden, weil das Edelgas leichter ionisierbar ist als das spätere Untersuchungsobjekt Wasserstoff. Denn Wasserstoff bildet Moleküle, die zunächst von den Mikrowellen aufgebrochen werden müssen und dann dazu tendieren, mit der Gefäßwand chemisch zu reagieren. Dies wird mit dem atomaren, chemisch inaktiven Helium vermieden. Als Folge ist der Aufbau eines Plasmas mit Helium leichter und sicherer zu erreichen als mit Wasserstoff. Zusätzlich sind die schwereren Helium-Ionen effizienter bei der Reinigung der Wände, an die sich während der langen Montagezeit Wasser und winzige Schmutzpartikel angelagert haben Max-Planck-Gesellschaft 2/5

3 A bb. 2: Das erste Wasserstoff-Plasm a in wurde am 3. Februar 2016 erzeugt. Max-Planck-Institut für Plasm aphysik, Greifswald In den folgenden rund 300 Helium-Entladungen in zeigte sich dies deutlich. Je sauberer die Gefäßwand, desto höher stieg die Plasmatemperatur. Außerdem wurden in diesen ersten Entladungen die Mikrowellenheizung und die Datenaufnahme getestet sowie die ersten Messinstrumente zur Untersuchung des Plasmas in Betrieb genommen, darunter Interferometer, Laserstreuungs- und Videodiagnostik sowie Röntgenspektrometer. Das erste Wasserstoff-Plasma folgte am 3. Februar 2016 im Rahmen eines Festakts mit zahlreichen Gästen aus Wissenschaft und Politik (Abb. 2). Auf Knopfdruck von Bundeskanzlerin Dr. Angela Merkel verwandelte ein 2-Megawatt-Puls der Mikrowellenheizung rund ein Milligramm Wasserstoff-Gas in ein ultradünnes, heißes Wasserstoff-Plasma. Die Plasma-Ionen erreichten eine Temperatur von rund 10 Millionen Grad Celsius, die Plasma-Elektronen ungefähr 100 Millionen Grad Celsius. Die Entladungen waren charakterisiert durch sehr hohe Elektronentemperaturen zu Beginn des Mikrowellenpulses ungefähr 10 kev, d. h. 100 Millionen Grad Celsius, bei einer Dichte von rund Teilchen pro Kubikmeter und 4 Megawatt Mikrowellenleistung, gefolgt von steigenden Dichten und Ionentemperaturen bis zu Teilchen pro Kubikmeter bzw. 2 kev (Abb. 3). Die an der Wandverkleidung gemessenen moderaten Temperaturen sprechen dafür, dass noch keine stationären Verhältnisse erreicht wurden und ein großer Teil der Heizleistung in die Steigerung der Plasmaenergie fließt Max-Planck-Gesellschaft 3/5

4 A bb. 3: Profil der Elektronendichte, aufgenom m en per Thom son-streuung, sowie Profile der Ionen- und Elektronentem peratur, gewonnen per Thom son-streuung und Röntgen-Spektroskopie, bei einer Heizleistung von 4 MW in einer Helium -Entladung vom 28. Januar (Grund für die großen Fehlerbalken der Thom son-daten bei Tem peraturen über 10 kev sind die zurzeit noch benutzten Polychrom atoren, die für Werte über 10 kev nicht ausgelegt sind.) IPP, links: S. Bozhenkov, G. Fuchert, E. Pasch; rechts: A. Langenberg (IPP), N. Pablent (PPPL, US) Forschungsaufgaben von Ziel der internationalen Fusionsforschung ist es, ein klima- und umweltfreundliches Kraftwerk zu entwickeln, das die Verschmelzung von Atomkernen zum Energiegewinn nutzt [2]. Für den magnetischen Käfig haben sich zwei verschiedene Bauweisen durchgesetzt, Tokamak und Stellarator. Das IPP ist das einzige Institut weltweit, das beide Anlagentypen parallel untersucht: den Stellarator in Greifswald (Abb. 4) und den Tokamak ASDEX Upgrade in Garching. Dies gibt die Möglichkeit des direkten Vergleichs. Gegenwärtig traut man nur einem Tokamak dem internationalen Testreaktor ITER, der zurzeit in weltweiter Zusammenarbeit in Cadarache aufgebaut wird ein energielieferndes Plasma zu., die weltweit größte Fusionsanlage vom Typ Stellarator, wird keine Energie erzeugen. Trotzdem soll die Anlage beweisen, dass auch Stellaratoren kraftwerkstauglich sind. Mit soll die Qualität des Plasmaeinschlusses erstmals der eines Tokamaks ebenbürtig werden. Mit 30 Minuten langen Entladungen soll die Anlage das wesentliche Plus der Stellaratoren vorführen, die Fähigkeit zum Dauerbetrieb. Dagegen können Tokamaks ohne aufwendige Zusatzmaßnahmen lediglich in Pulsen arbeiten. A bb. 4: Die Fusionsanlage. Max-Planck-Institut für Plasm aphysik, Greifswald / Kem nitz Zur Erreichung dieses Zieles spielen die modularen Spulen zur Erzeugung des Magnetfeldes eine Schlüsselrolle. Mit ihrer gekrümmten Form erzeugen sie den kompletten Magnetfeldkäfig, ohne wie der Tokamak einen Strom im Plasma zu benötigen. Zudem lässt sich mit den nicht ebenen Spulen das Magnetfeld 2016 Max-Planck-Gesellschaft 4/5

5 des Stellarators relativ frei formen, sodass dessen lokale Stärke und Krümmung optimal an die physikalischen Gesetze des heißen Plasmas angepasst werden konnte. Sieben aus den Kraftwerkserfordernissen abgeleitete Forderungen soll das optimierte Magnetfeld gleichzeitig erfüllen: Verlangt ist erstens eine geringe Rückwirkung des Plasmadrucks auf das einschließende Magnetfeld und zweitens eine gute Qualität des Magnetfeldes und Robustheit gegenüber möglichen Feldstörungen. Drittens ist die für ökonomischen Kraftwerksbetrieb notwendige Energiedichte des Plasmas bei nicht zu hohem Magnetfeld verlangt. Viertens sollen die Wärmeverluste des Plasmas in der richtigen Größe liegen in den früheren Stellaratorkonzepten wären die Wärmeverluste unakzeptabel hoch gewesen. Fünftens muss der sogenannte Bootstrap -Strom vernachlässigbar klein sein. Dieser Ringstrom entsteht durch den radialen Dichte- und Temperaturabfall und könnte das Magnetfeld unerwünscht verformen. Sechstens müssen auch schnelle Teilchen gut eingeschlossen bleiben eine besondere Schwachstelle klassischer Stellaratoren. Denn in einem späteren Kraftwerk müssen die bei der Fusion entstehenden schnellen Heliumkerne das Plasma auf der Fusionstemperatur halten, wenn die äußere Heizung abgeschaltet ist. Schließlich soll siebtens der Magnetfeldkäfig durch ein System modularer supraleitender Spulen technisch möglichst einfach und kostengünstig herzustellen sein. Diese sieben Kriterien verlangten die Formulierung neuer komplexer Rechencodes. Voraussetzung war außerdem die Entwicklung passender Rechenmethoden, um die großen Codes mit brauchbarer Geschwindigkeit durch den Computer zu schleusen. Insgesamt wurde die Optimierung erst durch die Supercomputer-Generationen der 1980er Jahre möglich. Ausblick Die im Februar begonnenen Experimente werden bis Mitte März 2016 fortgesetzt [3]. Danach wird das Plasmagefäß wieder geöffnet, um Kohlenstoffkacheln zum Schutz der Gefäßwände zu montieren. So ausgerüstet, werden höhere Heizleistungen, höhere Temperaturen und längere Entladungen von etwa einer Sekunde möglich. Stufenweise sind weitere Ausbauten geplant, bis in rund vier Jahren 30 Minuten lange Entladungen erzeugt werden können und bei voller Heizleistung von 20 Megawatt überprüft werden kann, ob seine Optimierungsziele erfüllt. Literaturhinweise [1] Klinger, T. et al. Towards assembly completion and preparation of experimental campaigns of in the perspective of a path to a stellarator fusion power plant Fusion Engineering and Design 88, (2013) [2] Klinger, T.; Kemnitz, B. Fusion von Wasserstoff Sonnenergie der Zukunft oder ewiger Traum? Naturwissenschaftliche Rundschau 10, 581 (2015) [3] Pedersen, T. S. et al. Plans for the first plasma operation of Nuclear Fusion 55, (2015) 2016 Max-Planck-Gesellschaft 5/5

Fusionsexperiment Wendelstein 7-X

Fusionsexperiment Wendelstein 7-X Fusionsexperiment Wendelstein 7-X Garching - Greifswald Wendelstein 7-X, die weltweit größte und modernste Fusionsforschungsanlage ihrer Bauart, wird gegenwärtig im Teilinstitut Greifswald des Max-Planck-Instituts

Mehr

RITZ-Gießharz-Leistungstransformatoren auch präsent im Forschungsbereich

RITZ-Gießharz-Leistungstransformatoren auch präsent im Forschungsbereich RITZ-Gießharz-Leistungstransformatoren auch präsent im Forschungsbereich 14 Stück RITZ Gießharz-Transformatoren in der Glasfaser-Vakuum Technologie (GVT) speisen die supraleitenden Magnetspulen für das

Mehr

Forschung für die Energie der Zukunft

Forschung für die Energie der Zukunft Forschung für die Energie der Zukunft Die Sonne, ein gewaltiger Plasmaball. Seit Jahrmillionen verströmt sie Licht und Wärme. Fusion eine neue Energiequelle Kernverschmelzungen sind wichtige Natur prozesse:

Mehr

Neue Einsatzbereiche der Mikrowellenheizung an ASDEX Upgrade New applications for microwave plasma heating on the ASDEX Upgrade fusion experiment

Neue Einsatzbereiche der Mikrowellenheizung an ASDEX Upgrade New applications for microwave plasma heating on the ASDEX Upgrade fusion experiment Neue Einsatzbereiche der Mikrowellenheizung an ASDEX New applications for microwave plasma heating on the ASDEX fusion experiment Zohm, Hartmut; Stober, Jörg Max-Planck-Institut für Plasmaphysik, Garching

Mehr

Projekt Wendelstein 7-X Feinwerktechnik in der Fusionsforschung

Projekt Wendelstein 7-X Feinwerktechnik in der Fusionsforschung Projekt Wendelstein 7-X Feinwerktechnik in der Fusionsforschung 11. Tagung "Feinwerktechnische Konstruktion" 22.09.2017, Dresden Martin Banduch für das W7-X Team This work has been carried out within the

Mehr

Ziel der internationalen Fusionsforschung ist es, ein

Ziel der internationalen Fusionsforschung ist es, ein DOI: 10.1002/piuz.201901524 Fusionsforschung mit Stellaratoren Wendelstein 7-X im Betrieb Isabella Milch Wendelstein 7-X, die weltweit größte Fusionsanlage vom Typ Stellarator, soll die Kraftwerkseignung

Mehr

Energiegewinnung nach dem Vorbild der Sonne

Energiegewinnung nach dem Vorbild der Sonne Energiegewinnung nach dem Vorbild der Sonne Vakuumtechnik ermöglicht die Herstellung von Fusionsbedingungen Auf der Suche nach alternativen und sauberen Energiequellen gewinnt die Energieerzeugung durch

Mehr

Energie für die Zukunft - MPI für Plasmaphysik feiert Jubiläumsreigen

Energie für die Zukunft - MPI für Plasmaphysik feiert Jubiläumsreigen Pressemitteilung Max-Planck-Institut für Plasmaphysik Isabella Milch 30.10.2001 http://idw-online.de/de/news40708 Buntes aus der Wissenschaft, Forschungsergebnisse Elektrotechnik, Energie, Mathematik,

Mehr

MAX-PLANCK-INSTITUT FOR PLASMAPHYSIK

MAX-PLANCK-INSTITUT FOR PLASMAPHYSIK MAX-PLANCK-INSTITUT FOR PLASMAPHYSIK 8046 GARCHING B. MüNCHEN PI 4/88 12. Oktober 1988 Fusionsexperiment WENDELSTEIN VII-AS in Betrieb Das erste Plasma in einem "Advanced Stellarator"/Stellaratoren im

Mehr

Kernfusion und Wendelstein 7-X

Kernfusion und Wendelstein 7-X Kernfusion und Wendelstein 7-X Dirk Hartmann Max-Planck Institut für Plasmaphysik EURATOM Association Wendelsteinstr. 1 Greifswald Dirk Hartmann 1 Kernfusion Pro Sekunde werden in der Sonne 675.000.000

Mehr

Die Welt von morgen - die Sicht eines Energieforschers

Die Welt von morgen - die Sicht eines Energieforschers DHV Symposium Die Welt von morgen Die Welt von morgen - die Sicht eines Energieforschers Thomas Klinger Max Planck-Institut für Plasmaphysik Garching und Greifswald DHV Symposium, Bonn 2. November 2016

Mehr

Am 26. Juli 2010 feiert das Max-Planck-Institut für Plasmaphysik (IPP) sein 50-jähriges Bestehen,

Am 26. Juli 2010 feiert das Max-Planck-Institut für Plasmaphysik (IPP) sein 50-jähriges Bestehen, Max-Planck-Institut für Plasmaphysik Forschung für die Energie der Zukunft Am 26. Juli 2010 feiert das Max-Planck-Institut für Plasmaphysik (IPP) sein 50-jähriges Bestehen, ein Anlass, die große, auf dem

Mehr

Testanlage ITER Fusionsforschung in globaler Zusammenarbeit Alexander M. Bradshaw, Max-Planck-Institut für Plasmaphysik (IPP), Garching, Greifswald

Testanlage ITER Fusionsforschung in globaler Zusammenarbeit Alexander M. Bradshaw, Max-Planck-Institut für Plasmaphysik (IPP), Garching, Greifswald Testanlage ITER Fusionsforschung in globaler Zusammenarbeit Alexander M. Bradshaw, Max-Planck-Institut für Plasmaphysik (IPP), Garching, Greifswald Die Entscheidung für den Bau der internationalen Fusionstestanlage

Mehr

VAKUUMLÖSUNGEN FÜR WENDELSTEIN 7-X

VAKUUMLÖSUNGEN FÜR WENDELSTEIN 7-X VAKUUMLÖSUNGEN FÜR WENDELSTEIN 7-X Abbildung 1: Wendelstein 7-X ist die weltweit größte Fusions-Forschungsanlage vom Typ Stellerator, Quelle: IPP Pfeiffer Vacuum im Interview mit Dr. Heinz Grote, Leiter

Mehr

Sonnenfeuer im Labor. Wo steht die Fusionsforschung? 44 02/2007 Magazin

Sonnenfeuer im Labor. Wo steht die Fusionsforschung? 44 02/2007 Magazin Sonnenfeuer im Labor Wo steht die Fusionsforschung? Ein energielieferndes Fusionsfeuer soll der internationale Experimentalreaktor ITER erzeugen. Die Großanlage, die demnächst im französischen Cadarache

Mehr

Kraft. Sonne. der. Mit der FUSIONSENERGIE

Kraft. Sonne. der. Mit der FUSIONSENERGIE FEUERBALL: Die Sonne ist ein riesiger Ball aus glühenden Gasen. Pro Jahr strahlt sie eine Energiemenge auf die Erde ab, die 15.000-mal größer ist als der Energieverbrauch aller Menschen auf der Welt in

Mehr

Erste Bauteile für Wendelstein 7-X First Components for Wendelstein 7-X

Erste Bauteile für Wendelstein 7-X First Components for Wendelstein 7-X Erste Bauteile für Wendelstein 7-X First Components for Wendelstein 7-X Wanner, Manfred Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Greifswald Korrespondierender Autor E-Mail: info@ipp.mpg.de

Mehr

Ziel nuklearer Zündbereich/Vorarbeiten für NET/ Die neuen Fusionsapparate des IPP

Ziel nuklearer Zündbereich/Vorarbeiten für NET/ Die neuen Fusionsapparate des IPP V..--:----;" "..- " \U, IV, 4/83 [=~ ~. ~ v I ±l~ i FU"O",","C","E JET '" ''''RIEB GENO. ~~-j "j"--"'[-"""-' '''''1=' Ziel nuklearer Zündbereich/Vorarbeiten für NET/ Die neuen Fusionsapparate des IPP Der

Mehr

FWU Schule und Unterricht. FWU-Klassiker Kernfusion. FWU das Medieninstitut der Länder

FWU Schule und Unterricht. FWU-Klassiker Kernfusion. FWU das Medieninstitut der Länder FWU Schule und Unterricht DVD 46 02527 18 min, Farbe FWU-Klassiker Kernfusion FWU das Medieninstitut der Länder 00 Lernziele nach Lehrplänen und Schulbüchern Die Schüler lernen, dass bestimmte Atomkerne

Mehr

Ein Divertor für Wendelstein 7-X A divertor for Wendelstein 7-X

Ein Divertor für Wendelstein 7-X A divertor for Wendelstein 7-X Ein Divertor für Wendelstein 7-X A divertor for Wendelstein 7-X Pedersen, Thomas Sunn Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Greifswald Korrespondierender Autor E-Mail: info@ipp.mpg.de

Mehr

Ferienakademie Kernfusion. von Matthias Dodenhöft

Ferienakademie Kernfusion. von Matthias Dodenhöft Ferienakademie 18.09.11-30.09.11 Kernfusion von Matthias Dodenhöft 1 Inhalt 1. Geschichte der Kernfusion 2. Physikalische Grundlagen 3. Kernfusion auf der Sonne 4. Kernfusion auf der Erde 4.1 Umsetzung

Mehr

Fusion von Wasserstoff

Fusion von Wasserstoff Fusion von Wasserstoff Die neue Energie? Thomas Klinger Max-Planck-Institut für Plasmaphysik, Greifswald Frage 1 Die Energiefrage ist absolut fundamental. Wohin geht die Entwicklung in diesem Jahrhundert?

Mehr

Europa baut für Greifswald. Das Fusionsexperiment Wendelstein 7-X nimmt Formen an.

Europa baut für Greifswald. Das Fusionsexperiment Wendelstein 7-X nimmt Formen an. Europa baut für Greifswald Das Fusionsexperiment Wendelstein 7-X nimmt Formen an. Ein Beitrag aus dem Max-Planck-Institut für Plasmaphysik Firmen und Institute aus ganz Europa arbeiten an den Komponenten

Mehr

Magnetic perturbations in ASDEX Upgrade facilitate power exhaust in a fusion plasma

Magnetic perturbations in ASDEX Upgrade facilitate power exhaust in a fusion plasma Magnetische Störfelder in ASDEX Upgrade erleichtern die Magnetic perturbations in ASDEX Upgrade facilitate power exhaust in a fusion plasma Suttrop, Wolfgang Max-Planck-Institut für Plasmaphysik, Garching

Mehr

FOKUS_Energie. Ein Labyrinth der Technik: Verborgen unter einem Gewirr von Leitungen, Stutzen und Gängen liegt die Plasmakammer von Wendelstein 7-X.

FOKUS_Energie. Ein Labyrinth der Technik: Verborgen unter einem Gewirr von Leitungen, Stutzen und Gängen liegt die Plasmakammer von Wendelstein 7-X. FOKUS_Energie Ein Labyrinth der Technik: Verborgen unter einem Gewirr von Leitungen, Stutzen und Gängen liegt die Plasmakammer von Wendelstein 7-X. Foto: Jan Michael Hosan/IPP Funken in der Sternenmaschine

Mehr

Physik VI Plasmaphysik

Physik VI Plasmaphysik Physik VI Plasmaphysik Physik VI Plasmaphysik Inhaltsübersicht 1. Charakteristik des Plasmazustandes 2. Experimentelle Grundlagen der Plasmaphysik 3. Thermodynamische Gleichgewichtsplasmen 4. Plasmen im

Mehr

Der Weg zu einem Fusionskraftwerk

Der Weg zu einem Fusionskraftwerk EURATOM Max-Planck-Institut für Plasmaphysik Standort Greifswald Der Weg zu einem Fusionskraftwerk Standort Garching G. Hasinger, IPP Garching TU München Ringvorlesung Umwelt 3. Juni 2009, TU München Das

Mehr

Kernfusion durch magnetischen Einschluss

Kernfusion durch magnetischen Einschluss Bachelor Seminar SoSe 2012 13. Juli 2012 Gliederung Grundlagen der Kernfusion 1 Grundlagen der Kernfusion 2 Grundprinzip des magnetischen Einschlusses Der Tokamak Der Stellarator 3 Die Deuterium-Tritium-Reaktion

Mehr

ELMs unter Kontrolle

ELMs unter Kontrolle ELMs unter Kontrolle PD Dr. Wolfgang Suttrop Max-Planck-Institut für Plasmaphysik, D-85740 Garching e-mail: suttrop@ipp.mpg.de Neue Experimente an Fusions-Plasmen in Tokamaks demonstrieren die Kontrolle

Mehr

Plasmatechnologie für Medizin und Pharmazie

Plasmatechnologie für Medizin und Pharmazie Powered by Seiten-Adresse: https://www.gesundheitsindustriebw.de/de/fachbeitrag/aktuell/plasmatechnologie-fuermedizin-und-pharmazie/ Plasmatechnologie für Medizin und Pharmazie In der Medizin kommen häufig

Mehr

Dem Elektronen-Positronen-Plasma auf der Spur En route to electron-positron plasmas

Dem Elektronen-Positronen-Plasma auf der Spur En route to electron-positron plasmas Dem Elektronen-Positronen-Plasma auf der Spur En route to electron-positron plasmas Horn-Stanja, Juliane Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Greifswald Korrespondierender Autor

Mehr

Fusionsforschung auf dem Weg zu einem energieliefernden Plasma

Fusionsforschung auf dem Weg zu einem energieliefernden Plasma Zum Gedenken an Lise Meitner, Ehrendoktorin der FU Ringvorlesung Wintersemester 2018/2019 Fusionsforschung auf dem Weg zu einem energieliefernden Plasma Robert Wolf robert.wolf@ipp.mpg.de Fakultät II Zentrum

Mehr

MAX-PLANCK-INSTITUT FOR PLASMAPHYSIK. Wie man mit Radiowellen Fusionsplasmen auf 100 Millionen Grad aufheizt / Neue Heizmethode im Einsatz

MAX-PLANCK-INSTITUT FOR PLASMAPHYSIK. Wie man mit Radiowellen Fusionsplasmen auf 100 Millionen Grad aufheizt / Neue Heizmethode im Einsatz MAX-PLANCK-INSTITUT FOR PLASMAPHYSIK 8046 GARCHING B. MüNCHEN r~. t= ;, VA~/83 t[---i 7D : D7 i, 17. November 1983 STÄRKER ALS JEDER RADIOSENDER Wie man mit Radiowellen Fusionsplasmen auf 100 Millionen

Mehr

Bei dieser Reaktion fusionieren Deuterium und Tritium zu einem Heliumkern und einem Neutron: 2 H +

Bei dieser Reaktion fusionieren Deuterium und Tritium zu einem Heliumkern und einem Neutron: 2 H + Kernfusion Die ungeheuren Energiemengen, die bei der Kernfusion in der Sonne freiwerden, möchte der Mensch auch nutzen können. Doch das gestaltet sich schwieriger, als in den Anfängen der Fusionsforschung

Mehr

Ein (Tokamak-) Fusionsreaktor. Wolfgang Suttrop, Max-Planck-Institut fu r Plasmaphysik, Garching

Ein (Tokamak-) Fusionsreaktor. Wolfgang Suttrop, Max-Planck-Institut fu r Plasmaphysik, Garching Einfu hrung in die Fusionsforschung Ein (Tokamak-) Fusionsreaktor Ein (Tokamak-) Fusionsreaktor Wolfgang Suttrop, Max-Planck-Institut fu r Plasmaphysik, Garching 1 Einführung in die Fusionsforschung Ein

Mehr

Forschung für die Energie der Zukunft

Forschung für die Energie der Zukunft Forschung für die Energie der Zukunft 2 Das Forschungsprogramm Aufgabe der rund 1100 Mitarbeiter des Max-Planck-Instituts für Plasmaphysik (IPP) in Garching und Greifswald ist es, die Grundlagen für ein

Mehr

Kernfusion die Energiequelle der Sonne auf der Erde nutzen Sibylle Günter

Kernfusion die Energiequelle der Sonne auf der Erde nutzen Sibylle Günter Kernfusion die Energiequelle der Sonne auf der Erde nutzen Sibylle Günter Wissenschaftliche Direktorin Max-Planck-Institut für Plasmaphysik, Garching/Greifswald Energie erzeugen wie die Sonne Wie gewinnt

Mehr

Über Arbeiten zur Hydromagnetik elektrisch leitender Flüssigkeiten, über Verdichtungsstöße und aus der Hochtemperaturplasmaphysik

Über Arbeiten zur Hydromagnetik elektrisch leitender Flüssigkeiten, über Verdichtungsstöße und aus der Hochtemperaturplasmaphysik WILHELM FUCKS Über Arbeiten zur Hydromagnetik elektrisch leitender Flüssigkeiten, über Verdichtungsstöße und aus der Hochtemperaturplasmaphysik HERMANN L. JORDAN Erzeugung von Plasma hoher Temperatur durch

Mehr

Die Inbetriebnahme von Wendelstein 7 X: der Beitrag des Stellarators zur Fusionsforschung

Die Inbetriebnahme von Wendelstein 7 X: der Beitrag des Stellarators zur Fusionsforschung Die Inbetriebnahme von Wendelstein 7 X: der Beitrag des Stellarators zur Fusionsforschung Robert Wolf und das W7-X Team *) robert.wolf@ipp.mpg.de *) siehe Autorenliste Bosch et al. Nucl. Fusion 53 (2013)

Mehr

wird montiert: Die verwundenen Magnetfeldspulen werden zusammen mit Abstützkeilen in die äußere Stützschale eingepaßt.

wird montiert: Die verwundenen Magnetfeldspulen werden zusammen mit Abstützkeilen in die äußere Stützschale eingepaßt. PI 4/87 10. Dezember 1987 VON DER PLASMATHEORIE ZUM EXPERIMENT Das Fusionsexperiment WENDELSTEIN VII-AS wird aufgebaut Gege nwärtig wird ein neues Fusionsexperiment - WENDELSTEIN VII-AS - im Max-Planck-Institut

Mehr

Von Wendelstein 1-A zu Wendelstein 7-X

Von Wendelstein 1-A zu Wendelstein 7-X 3 Stellaratoren Von Wendelstein 1-A zu Wendelstein 7-X Thomas Klinger Der erste Stellarator des IPP, Wendelstein 1-A, ging 1960, noch im Gründungsjahr des Instituts in Betrieb, war jedoch im Münchner Max-Planck-Institut

Mehr

Kernfusionsforschung in Mecklenburg-Vorpommern

Kernfusionsforschung in Mecklenburg-Vorpommern Member of the Helmholtz Association Öffentliche Anhörung im Landtag Mecklenburg-Vorpommern Kernfusionsforschung in Mecklenburg-Vorpommern Sachverständiger Ulrich Samm, Forschungszentrum Jülich Schwerin,

Mehr

Fusionsforschung Auf dem Weg zu einer neuen Primärenergiequelle Robert Wolf robert.wolf@ipp.mpg.de

Fusionsforschung Auf dem Weg zu einer neuen Primärenergiequelle Robert Wolf robert.wolf@ipp.mpg.de Max-Planck-Institut für Plasmaphysik Fusionsforschung Auf dem Weg zu einer neuen Primärenergiequelle Robert Wolf robert.wolf@ipp.mpg.de Max-Planck-Institut für Plasmaphysik Energie Kernfusion Fusionsforschung

Mehr

Energieforschung für die Zukunft Auf dem Weg zu einem Fusionskraftwerk

Energieforschung für die Zukunft Auf dem Weg zu einem Fusionskraftwerk Energieforschung für die Zukunft Auf dem Weg zu einem Fusionskraftwerk Dipl. Ing. (FH) Bernadett Gmeiner MPI Dank an: Dr. Rudolf Neu Dr. Hans Meister 85748 Garching, Boltzmannstr.2 Bernadett.Gmeiner@ipp.mpg.de

Mehr

Ein neues Betriebsszenario für das Fusionskraftwerk A new operation scenario for a fusion power plant

Ein neues Betriebsszenario für das Fusionskraftwerk A new operation scenario for a fusion power plant Ein neues Betriebsszenario für das Fusionskraftwerk A new operation scenario for a fusion power plant Zohm, Hartmut Max-Planck-Institut für Plasmaphysik, Garching Korrespondierender Autor E-Mail: hartmut.zohm@ipp.mpg.de

Mehr

forschung IPP Fusionsim

forschung IPP Fusionsim forschung IPP Fusionsim Tokamaks Fusionsexperimente vom Typ Tokamak, Anfang der 50er Jahre in der Sowjetunion entwickelt, wurden bald weltweit zum führenden Experimenttyp der Fusionsforschung. Schwerpunkt

Mehr

Pulsator, ASDEX und ASDEX Upgrade

Pulsator, ASDEX und ASDEX Upgrade 5 Tokamaks Pulsator, ASDEX und ASDEX Upgrade Friedrich Wagner, Hartmut Zohm Zehn Jahre nach Beginn der Stellaratorforschung wandte sich das IPP 1970 mit der Anlage Pulsator auch der Tokamak-Linie zu. Von

Mehr

Fusionsexperiment WEGA geht in den Ruhestand WEGA fusion experiment goes into retirement

Fusionsexperiment WEGA geht in den Ruhestand WEGA fusion experiment goes into retirement Fusionsexperiment WEGA geht in den Ruhestand WEGA fusion experiment goes into retirement Wagner, Friedrich Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Greifswald Korrespondierender Autor

Mehr

Der Stellarator - Ein alternatives Einschlusskonzept für ein Fusionskraftwerk (vorgetragen von R. Wolf)

Der Stellarator - Ein alternatives Einschlusskonzept für ein Fusionskraftwerk (vorgetragen von R. Wolf) Der Stellarator - Ein alternatives Einschlusskonzept für ein Fusionskraftwerk (vorgetragen von R. Wolf) Robert Wolf, Max Planck Institut für Plasmaphysik, EURATOM Assoziation, Teilinstitut Greifswald Kernfusion

Mehr

Unser Stern die Sonne

Unser Stern die Sonne Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrinos from the Sun Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Unser Stern die Sonne Max Camenzind Würzburg 2018/2019

Mehr

Die Physik schneller Teilchen in Fusionsplasmen Physics of fast particles in fusion plasmas

Die Physik schneller Teilchen in Fusionsplasmen Physics of fast particles in fusion plasmas Die Physik schneller Teilchen in Physics of fast particles in fusion plasmas Guenter, Sibylle; Lauber, Philipp; Strumberger, Erika Max-Planck-Institut für Plasmaphysik, Garching Korrespondierender Autor

Mehr

Unterwegs zum numerischen Tokamak

Unterwegs zum numerischen Tokamak 6 Tokamak-Theorie Unterwegs zum numerischen Tokamak Sibylle Günter, Karl Lackner Die modernen Konzepte, ein Plasma magnetisch einzuschließen, sind das Ergebnis eines langen Auswahlprozesses. Am Beginn

Mehr

Quantitative Bestimmung der massenaufgelösten Ionenflüsse aus Wasserstoff-Argon-Plasmen

Quantitative Bestimmung der massenaufgelösten Ionenflüsse aus Wasserstoff-Argon-Plasmen Quantitative Bestimmung der massenaufgelösten Ionenflüsse aus Wasserstoff-Argon-Plasmen Maik Sode, Th. Schwarz-Selinger, W. Jacob, D. Wünderlich, U. Fantz Arbeitsgruppe Reaktive Plasmaprozesse, Bereich

Mehr

Vortrag: Prof. Dr. Hartmut Zohm, Direktor des Max-Planck-Instituts für Plasmaforschung, 2015.

Vortrag: Prof. Dr. Hartmut Zohm, Direktor des Max-Planck-Instituts für Plasmaforschung, 2015. Kernfusion Es geht um die Verschmelzung leichter Atomkerne zu schwereren Atomkernen. Dabei wird Energie frei. Die Kernfusion ist eine Energiequelle, sie ist die Energiequelle der Sterne. Unsere Sonne verbrennt

Mehr

ELISE Negative Wasserstoffionen für die Neutralteilchenheizung an ITER ELISE Negative hydrogen ions for the ITER neutral beam injection systems

ELISE Negative Wasserstoffionen für die Neutralteilchenheizung an ITER ELISE Negative hydrogen ions for the ITER neutral beam injection systems ELISE Negative Wasserstoffionen für die Neutralteilchenheizung an ITER ELISE Negative hydrogen ions for the ITER neutral beam injection systems Fantz, Ursel; Franzen, Peter; Heinemann, Bernd Max-Planck-Institut

Mehr

Ortung einer Leckage mit dem Ultra-Schnüffler-Testgasverfahren für das Fusionsexperiment Wendelstein 7-X (W7-X)

Ortung einer Leckage mit dem Ultra-Schnüffler-Testgasverfahren für das Fusionsexperiment Wendelstein 7-X (W7-X) Ortung einer Leckage mit dem Ultra-Schnüffler-Testgasverfahren für das Fusionsexperiment Wendelstein 7-X (W7-X) DGZfP-Jahrestagung 2014 Dipl.-Ing. (FH) Robert Brockmann 1 Deutschlands größtes Fusionsexperiment,

Mehr

Tokamak-Betrieb mit Wolfram als Wandmaterial Tokamak operation with a tungsten wall

Tokamak-Betrieb mit Wolfram als Wandmaterial Tokamak operation with a tungsten wall Tokamak-Betrieb mit Wolfram als Wandmaterial Tokamak operation with a tungsten wall Kallenbach, Arne Max-Planck-Institut für Plasmaphysik, Garching Korrespondierender Autor E-Mail: info@ipp.mpg.de Zusammenfassung

Mehr

Instabilitäten und Turbulenz im Plasma von Wendelstein 7-X

Instabilitäten und Turbulenz im Plasma von Wendelstein 7-X Kleiber, Ralf Instabilitäten und Turbulenz im Plasma von Wendelstein 7-X Tätigkeitsbericht 2006 Hochenergie- und Plasmaphysik/Quantenoptik Instabilitäten und Turbulenz im Plasma von Wendelstein 7-X Kleiber,

Mehr

Projektpräsentation Praktikumssemester am Max-Planck-Institut für Plasmaphysik

Projektpräsentation Praktikumssemester am Max-Planck-Institut für Plasmaphysik Projektpräsentation Praktikumssemester am Max-Planck-Institut für Plasmaphysik Raphael Höp;l Hochschule München, FK06 Studiengang: Physikalische Technik Schwerpunkt: Angewandte Physik Studiengruppe: PHB5P

Mehr

Vom Sternenfeuer zum Fusionskraftwerk Günther Hasinger

Vom Sternenfeuer zum Fusionskraftwerk Günther Hasinger Standort Greifswald EURATOM Max-Planck-Institut für Plasmaphysik Vom Sternenfeuer zum Fusionskraftwerk Günther Hasinger Standort Garching Tag der Unternehmerschaft 2010 Düsseldorf 10. Juni 2010 Hotel NIKKO

Mehr

SÜDWESTRUNDFUNK SWR2 WISSEN - Manuskriptdienst. ITER oder Der Weg ist das Ziel - Hat die Kernfusion als Energiequelle eine Zukunft?

SÜDWESTRUNDFUNK SWR2 WISSEN - Manuskriptdienst. ITER oder Der Weg ist das Ziel - Hat die Kernfusion als Energiequelle eine Zukunft? SÜDWESTRUNDFUNK SWR2 WISSEN - Manuskriptdienst ITER oder Der Weg ist das Ziel - Hat die Kernfusion als Energiequelle eine Zukunft? Autor und Sprecher: Markus Bohn Redaktion: Markus Bohn Sendung: Mittwoch,

Mehr

Kapitel 5: Kernfusion

Kapitel 5: Kernfusion Kapitel 5: Kernfusion 330 5 Die Kernfusion und ihre Anwendung Der Unterschied der Bindungsenergie zwischen Deuterium D und Helium He ist pro Nukleon wesentlich größer als bei der Kernspaltung. Kernfusion

Mehr

Kohlenstoff und die Plasma-Wand-Wechselwirkung

Kohlenstoff und die Plasma-Wand-Wechselwirkung Hochenergie- und Plasmaphysik/Quantenoptik Kohlenstoff und die Plasma-Wand-Wechselwirkung Jacob, Wolfgang Max-Planck-Institut für Plasmaphysik, Garching Arbeitsbereich - Materialforschung Korrespondierender

Mehr

Einführung Fusions- forschung. indie

Einführung Fusions- forschung. indie Einführung Fusions- forschung indie Grundlagen der Kernfusion Die Kernbausteine sind von einer Atomsorte zur anderen verschieden stark aneinander gebunden. Durch Umordnung der Kernbausteine in fester verbundene

Mehr

Energieversorgung 2100 - Kernfusion oder doch Windräder?

Energieversorgung 2100 - Kernfusion oder doch Windräder? Max-Planck-Institut für Plasmaphysik Energieversorgg - Kernfusion oder doch Windräder? Ralph Dux MPI für Plasmaphysik 85748 Garching, Boltzmannstr. 2 Ralph.Dux@ipp.mpg.de http://www.ipp.mpg.de Prolog Windräder

Mehr

Wie bändigt man heißes Plasma?

Wie bändigt man heißes Plasma? ((Phy1125)) HEISSES PLASMA FUSIONSFORSCHUNG Plasmaeinschluss in Tokamak und Stellarator Wie bändigt man heißes Plasma? Mit ITER wird in Cadarache in Frankreich das erste Fusionsexperiment gebaut, das einen

Mehr

Neutralteilchen- und Hochfrequenz-Heizungen

Neutralteilchen- und Hochfrequenz-Heizungen 7 Plasmaheizung Neutralteilchen- und Hochfrequenz-Heizungen Eckehardt Speth, Jean-Marie Noterdaeme, Volker Erckmann Heinrich Laqua, Fritz Leuterer Die Fortschritte der Fusionsforschung sind nicht zuletzt

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 426 - Physik B3 9.3 Kernenergie Kernenergie ist eine interessante Möglichkeit, nutzbare Energie zu gewinnen. Das kann man sehen wenn man vergleicht, wie viel Energie in 1 kg unterschiedlicher

Mehr

Fusionsenergie. Fusionsenergie 1

Fusionsenergie. Fusionsenergie 1 1 von 11 Fusionsenergie Fusionsenergie 1 Einleitung 2 Was ist Fusionsenergie? 3 Tokamak-Anordnung 5 Stellarator-Anordnung 6 Geschichte der Fusionsenergie 7 Wie Funktioniert Fusionsenergie? 8 Wie entsteht

Mehr

Fusion- eine neue Primärenergiequelle der Zukunft

Fusion- eine neue Primärenergiequelle der Zukunft Mitglied der Helmholtz-Gemeinschaft Fusion- eine neue Primärenergiequelle der Zukunft IHK im Dialog Workshop 5: Forschung und Entwicklung Jülich, 14.10.2008 Detlev Reiter Entwurf: Impulsreferat, 14.10.08,

Mehr

Stand der Fusionstechnik

Stand der Fusionstechnik StandderFusionstechnik GüntherHasinger WissenschaftlicherDirektor Max Planck InstitutfürPlasmaphysik 1.Einleitung:DasEnergie Dilemma DermittlerePro Kopf VerbrauchderWeltliegtderzeitbeietwa2200Watt(W)Primärenergie

Mehr

Kernfusion und Neutronik am Beispiel des Stellarator Leistungsreaktors HELIAS

Kernfusion und Neutronik am Beispiel des Stellarator Leistungsreaktors HELIAS Kernfusion und Neutronik am Beispiel des Stellarator André Häußler andre.haeussler@kit.edu KIT The Research University in the Helmholtz Association www.kit.edu Weltweiter Primärenergieverbrauch Anstieg

Mehr

Mit Quanten kann gerechnet werden

Mit Quanten kann gerechnet werden Christina KRAUS Max-Planck-Institut für Quantentechnik 1 Einleitung Quantenmechanik ist ein Meilenstein der modernen Physik. Die Theorie, die in den letzten hundert Jahren unter anderem von Dirac und Heisenberg

Mehr

Laserfusion. Georg Hofmann. 05. Juni Uni Osnabrück. Georg Hofmann (Uni Osnabrück) Laserfusion 05. Juni / 43

Laserfusion. Georg Hofmann. 05. Juni Uni Osnabrück. Georg Hofmann (Uni Osnabrück) Laserfusion 05. Juni / 43 Laserfusion Georg Hofmann Uni Osnabrück 05. Juni 2007 Georg Hofmann (Uni Osnabrück) Laserfusion 05. Juni 2007 1 / 43 1 Einführung Fusion 2 Laserfusion 3 Ausblick 4 Zusammenfassung Georg Hofmann (Uni Osnabrück)

Mehr

Sonnenaktivität und Klimawandel

Sonnenaktivität und Klimawandel Sonnenaktivität und Klimawandel Sami K. Solanki Max-Planck-Institut für Sonnensystemforschung Die Sonne, ein normaler Stern Unsere Sonne ist nur ein Stern von 100 Milliarden in unserer Galaxie, der Milchstrasse

Mehr

Carbon and plasma wall interaction

Carbon and plasma wall interaction Kohlenstoff und die Plasma-Wand-Wechselwirkung Carbon and plasma wall interaction Jacob, Wolfgang Max-Planck-Institut für Plasmaphysik, Garching Korrespondierender Autor E-Mail: wolfgang.jacob@ipp.mpg.de

Mehr

5. Welche erneuerbaren Energieträger gibt es und welche Bedeutung haben sie für die Zukunft?

5. Welche erneuerbaren Energieträger gibt es und welche Bedeutung haben sie für die Zukunft? Gliederung zum Referat Energie 1. Definition des Energiebegriffs 2. Welche Energiearten gibt es? 3. Die heutige Energieproblematik 4. Kernenergie: Segen oder Fluch? a) Katastrophe von Tschernobyl b) Aufbau

Mehr

EINFÜHRUNG IN DIE PLASMAPHYSIK UND IHRE TECHNISCHE ANWENDUNG

EINFÜHRUNG IN DIE PLASMAPHYSIK UND IHRE TECHNISCHE ANWENDUNG EINFÜHRUNG IN DIE PLASMAPHYSIK UND IHRE TECHNISCHE ANWENDUNG Herausgegeben von GUSTAV HERTZ und ROBERT ROMPE 2., erweiterte Auflage Mit 145 Abbildungen und 10 Tabellen AKADEMIE-VERLAG BERLIN 1968 INHALTSVERZEICHNIS

Mehr

Forschungsausschuss des Deutschen Bundestages hört Experten zur Fusionsforschung

Forschungsausschuss des Deutschen Bundestages hört Experten zur Fusionsforschung I Presseinformation Max -P I anck-i nstitut für Plasmaphysik PI 5/01 27.3.2001 Anhörung zur Fusionsforschung Forschungsausschuss des Deutschen Bundestages hört Experten zur Fusionsforschung Am 28. März

Mehr

Stellaratoren. Fusionsexperimente vom Typ Stellarator

Stellaratoren. Fusionsexperimente vom Typ Stellarator Stellaratoren Fusionsexperimente vom Typ Stellarator haben sich in den letzten Jahren als aussichtsreiche Alternative zu Tokamaks entwickelt. Stellaratoren schließen das Plasma durch Magnetfelder ein,

Mehr

Diplom- und Doktorarbeiten

Diplom- und Doktorarbeiten Multi-Photon-Ionisation von Lithium in einer Magneto-Optischen Falle (MOT) Im Jahr 2000 ist es weltweit zwei Gruppen, eine davon unsere am MPI-K, erstmals gelungen, die Multi-Photon Ionisation, vorhergesagt

Mehr

Numerisches Verfahren für Eigenwert-Probleme aus der Instabilitätstheorie der Plasma-Rand-Wechselwirkung

Numerisches Verfahren für Eigenwert-Probleme aus der Instabilitätstheorie der Plasma-Rand-Wechselwirkung Numerisches Verfahren für Eigenwert-Probleme aus der Instabilitätstheorie der Plasma-Rand-Wechselwirkung D. Löchel Betreuer: M. Hochbruck und M. Tokar Mathematisches Institut Heinrich-Heine-Universität

Mehr

Fachhochschule Südwestfalen Wir geben Impulse

Fachhochschule Südwestfalen Wir geben Impulse Fachhochschule Südwestfalen Wir geben Impulse Folie 2 (06/2015) Inhalt Grundidee Grundlagen der Kernfusion Projekt ITER Energiegewinnung Gefahren Wirtschaftlichkeit Zukunftsfähigkeit Quellen Folie 3 (06/2015)

Mehr

Kernfusion- Energiequelle der Zukunft?

Kernfusion- Energiequelle der Zukunft? Kernfusion- Energiequelle der Zukunft? Facharbeit zum Thema: Naturwissenschaftliche Entdeckungen Gymnasium am Markt Achim Am Marktplatz 18 28832 Achim Abgabetermin 29.03.2017 Von Niklas Purnhagen Grundkurs

Mehr

Aufgabe I: Fusionsreaktor und Sonne

Aufgabe I: Fusionsreaktor und Sonne Europa-Gymnasium Wörth Abiturprüfung 2012 Leistungskurs Physik LK2 Aufgabe I: Fusionsreaktor und Sonne Leistungsfachanforderungen Hilfsmittel Formelsammlung (war im Unterricht erstellt worden) Tabelle

Mehr

λ = c f . c ist die Es gilt die Formel

λ = c f . c ist die Es gilt die Formel Elektromagnetische Wellen, deren Wellenlänge viel größer als der Durchmesser der Gitterlöcher ist (z.b. die Mikrowellen), können das Metallgitter nicht passieren. Ist die Wellenlänge wie bei Licht dagegen

Mehr

Chemische Erosion und amorphe Kohlenwasserstoffschichten Chemical erosion and amorphous hydrocarbon layers on the walls of ITER

Chemische Erosion und amorphe Kohlenwasserstoffschichten Chemical erosion and amorphous hydrocarbon layers on the walls of ITER Chemische Erosion und amorphe Chemical erosion and amorphous hydrocarbon layers on the walls of ITER Fussmann, Gerd; Bohmeyer, Werner Max-Planck-Institut für Plasmaphysik, Garching Korrespondierender Autor

Mehr

Wieviele Dimensionen hat die Welt?

Wieviele Dimensionen hat die Welt? Wieviele Dimensionen hat die Welt? Prof. Carlo Ewerz ExtreMe Matter Institute EMMI, GSI & Universität Heidelberg Weltmaschine Darmstadt, 3. September 2011 by D. Samtleben by D. Samtleben by D. Samtleben

Mehr

Tokamak-Konfiguration und. Martin Droba

Tokamak-Konfiguration und. Martin Droba Tokamak-Konfiguration und ITER Martin Droba Inhalt Fusion Magnetischer Einschluss Stellarator Tokamaks ITER 13.01.2006 Frankfurt am Main 2 Fusion 13.01.2006 Frankfurt am Main 3 Reaktionen D + T He 4 (3.5MeV)

Mehr

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007 Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,

Mehr

Fragen und Antworten zu unserem

Fragen und Antworten zu unserem Fragen und Antworten zu unserem Plus-Energie-Haus Die konsequente Weiterentwicklung unseres Passivhauses. WIE EIN PLUSENERGIEHAUS FUNKTIONIERT 1. Was ist ein Plusenergiehaus? Unser PlusEnergieHaus ist

Mehr

Physik VI Plasmaphysik

Physik VI Plasmaphysik Physik VI Plasmaphysik Physik VI Plasmaphysik Inhaltsübersicht 1. Charakteristik des Plasmazustandes 2. Experimentelle Grundlagen der Plasmaphysik 3. Thermodynamische Gleichgewichtsplasmen 4. Plasmen im

Mehr

Hochspannungsterminal der Frankfurter Neutronenquelle

Hochspannungsterminal der Frankfurter Neutronenquelle Hochspannungsterminal der Frankfurter Neutronenquelle (FRANZ) am Stern-Gerlach-Zentrum Betrieb einer Ionenquelle, die einen Protonenstrahl auf eine Energie von 120 000 ev beschleunigt. Geschwindigkeit

Mehr

Vom Atomkern zur Supernova Die Synthese der Elemente

Vom Atomkern zur Supernova Die Synthese der Elemente Vom Atomkern zur Supernova Die Synthese der Elemente Prof. Dr. Dr. h.c. Norbert Pietralla, TU Darmstadt Saturday Morning Physics, 16.11.2013 16.11.2013 TU Darmstadt Saturday Morning Physics Prof. Dr. Dr.

Mehr

Und es werde Licht. Die kosmische Hintergrundstrahlung

Und es werde Licht. Die kosmische Hintergrundstrahlung Und es werde Licht Die kosmische Hintergrundstrahlung Vermessung der Hintergrundstrahlung WMAP COBE Planck Planck Foto des Urknalls COBE Foto des Urknalls WMAP Foto des Urknalls Planck Was sehen wir? Zustand

Mehr

Fusion bedeutet das Verschmelzen leichter Atome (z.b. Wasserstoff) zu schweren (z.b. Helium).

Fusion bedeutet das Verschmelzen leichter Atome (z.b. Wasserstoff) zu schweren (z.b. Helium). Kernfusion Kernfusion ist das Gegenteil der Kernspaltung. Fusion bedeutet das Verschmelzen leichter Atome (z.b. Wasserstoff) zu schweren (z.b. Helium). Sie findet immer im inneren der Sterne statt, wobei

Mehr

Wissenswert. Auf dem Weg zur Kernfusion? Spitzenforschung in Greifswald. von Frank Grotelüschen. Sendung: , hr-info

Wissenswert. Auf dem Weg zur Kernfusion? Spitzenforschung in Greifswald. von Frank Grotelüschen. Sendung: , hr-info Hessischer Rundfunk hr-info Redaktion: Dr. Karl-Heinz Wellmann Wissenswert Auf dem Weg zur Kernfusion? Spitzenforschung in Greifswald von Frank Grotelüschen Sprecher: Frank Grotelüschen Sendung: 04.12.2016,

Mehr

1 Physikalische Grundbegriffe

1 Physikalische Grundbegriffe 1 Physikalische Grundbegriffe Um die Voraussetzungen der physikalischen Kenntnisse in den nächsten Kapiteln zu erfüllen, werden hier die dafür notwendigen Grundbegriffe 1 wie das Atom, das Proton, das

Mehr