Kernfusion durch magnetischen Einschluss

Größe: px
Ab Seite anzeigen:

Download "Kernfusion durch magnetischen Einschluss"

Transkript

1 Bachelor Seminar SoSe Juli 2012

2 Gliederung Grundlagen der Kernfusion 1 Grundlagen der Kernfusion 2 Grundprinzip des magnetischen Einschlusses Der Tokamak Der Stellarator 3

3 Die Deuterium-Tritium-Reaktion Tritium p n n Helium p n n p n p n n p 3.5 MeV p n Deuterium Neutron n 14 MeV

4 Woher kommt die Fusionsenergie?

5 Fusion dank Kernkraft und Tunneleffekt Energie Kernkraft Coulomb- Barriere Klassisch Quantenmechanisch Abstand der Kerne Coloumb-Barriere hat endliche Höhe Tunneleffekt macht Fusion bei niedrigeren Energien möglich Deuterium-Tritium-Fusion Barrierehöhe: ca. 400 kev ( = K) Praxis: ab 10 kev ( = 10 8 K)

6 Wann zündet das Plasma? Wichtige Plasmaeigenschaften: Temperatur T Dichte n Energieeinschlusszeit τ E Fusionsprodukt muss eine Mindestgröße haben: Lawson-Kriterium 21 kev s n τ E T > 3 10 m 3 Zündbedingung für ein D-T-Plasma Temperatur: 10 8 Kbis K Dichte: cm 3 Einschlusszeit: 1s bis 2s

7 Grundprinzip des magnetischen Einschlusses Der Tokamak Der Stellarator Grundprinzip des magnetischen Einschlusses ohne Magnetfeld F L = q v B mit Magnetfeld Teilchen durch Spiralbahnen an Magnetfeld gebunden Minimierung Plasma-Wand-Kontakt

8 Der Tokamak Grundlagen der Kernfusion Grundprinzip des magnetischen Einschlusses Der Tokamak Der Stellarator Toroidalnaya Kamera s Magnitnymi Katushkami russ.: toroidale Kammer mit Magnetfeldspule 1952 in Russland entwickelt Igor E. Tamm und Andrej D. Sacharov Einschluss durch Spulensystem und Plasmastrom

9 Tokamak-Prinzip Grundlagen der Kernfusion Grundprinzip des magnetischen Einschlusses Der Tokamak Der Stellarator Vertikalfeldspule Transformatorspule Toroidalfeldspule Plasmastrom Plasma Magnetfeldlinie

10 Grundprinzip des magnetischen Einschlusses Der Tokamak Der Stellarator Poloidalfeld Plasmastrom Toroidalfeld resultierendes Helikalfeld

11 Der Stellarator Grundlagen der Kernfusion Grundprinzip des magnetischen Einschlusses Der Tokamak Der Stellarator lat.: stella - der Stern 1951 in Princeton/USA entwickelt älteste Konzept Einschluss allein durch Spulensystem Lyman Spitzer

12 Grundprinzip des magnetischen Einschlusses Der Tokamak Der Stellarator Magnetfeld und Spulensystem des Wendelstein 7-X Abnahme der magnetischen Flussdichte

13 Grundprinzip des magnetischen Einschlusses Der Tokamak Der Stellarator Vorteile und Nachteile der Experimenttypen Tokamak: Vorteile Heizung durch Plasmastrom fortgeschrittenste Konzept Nachteile ohne Zusatzmaßnahmen nur gepulster Betrieb Stellarator: Vorteile Dauerstrichbetrieb Keine strombedingten Instabilitäten Nachteile in der Entwicklung zurück

14 Verlauf der Fusionsexperimente

15 Verdoppelung des Fusionsprodukts alle 1,8 Jahre (Taktrate von PC-Prozessoren Verdoppelung alle 2 Jahre) JET: Um Faktor sechs von der Zündbedingung entfernt ITER: Nachweis der Machbarkeit eines länger brennenden Plasmas DEMO: Soll erstmals Strom aus Kernfusion erzeugen

16 Verdoppelung des Fusionsprodukts alle 1,8 Jahre (Taktrate von PC-Prozessoren Verdoppelung alle 2 Jahre) JET: Um Faktor sechs von der Zündbedingung entfernt ITER: Nachweis der Machbarkeit eines länger brennenden Plasmas DEMO: Soll erstmals Strom aus Kernfusion erzeugen Fusionsenergie könnte etwa ab 2050 wirtschaftlich nutzbar sein!

17 Vielen Dank für die Aufmerksamkeit!

18 Quellen Grundlagen der Kernfusion DPG : grundlagen_fusion.html Broschüre der Helmholtz-Gemeinschaft: Kernfusion Demtröder: Experimentalphysik, Band 4: Kern-, Teilchen- und Astrophysik http: //

19 Reservefolien

20 Plasmaheizung beim Tokamak Ohm sche Heizung Hochfrequenz-Heizung (Ionen: MHz, Elektronen: GHz) Neutralteilcheninjektion

21 Instabilitäten Grundlagen der Kernfusion Stromrichtung Stromrichtung Druck Druck Magnetfeldlinie Magnetfeldlinie Anzahl Instabilitäten sehr groß Hauptarbeitsfeld in den Anfängen der Fusionsforschung

22 Verunreinigungen 10 0 Maximal zulässige Verunreinigungskonzentration Mio Grad C O 200 Mio Grad Fe W durch Plasma-Wand-Kontakt gebundene Elektronen strahlen Energie ab keine Zündung ab gewisser Konzentration große Aufgabe der Forschung Ni Mo Ordnungszahl

Physik VI Plasmaphysik

Physik VI Plasmaphysik Physik VI Plasmaphysik Physik VI Plasmaphysik Inhaltsübersicht 1. Charakteristik des Plasmazustandes 2. Experimentelle Grundlagen der Plasmaphysik 3. Thermodynamische Gleichgewichtsplasmen 4. Plasmen im

Mehr

Ferienakademie Kernfusion. von Matthias Dodenhöft

Ferienakademie Kernfusion. von Matthias Dodenhöft Ferienakademie 18.09.11-30.09.11 Kernfusion von Matthias Dodenhöft 1 Inhalt 1. Geschichte der Kernfusion 2. Physikalische Grundlagen 3. Kernfusion auf der Sonne 4. Kernfusion auf der Erde 4.1 Umsetzung

Mehr

Fusionsexperiment Wendelstein 7-X

Fusionsexperiment Wendelstein 7-X Fusionsexperiment Wendelstein 7-X Garching - Greifswald Wendelstein 7-X, die weltweit größte und modernste Fusionsforschungsanlage ihrer Bauart, wird gegenwärtig im Teilinstitut Greifswald des Max-Planck-Instituts

Mehr

Kernfusion und Wendelstein 7-X

Kernfusion und Wendelstein 7-X Kernfusion und Wendelstein 7-X Dirk Hartmann Max-Planck Institut für Plasmaphysik EURATOM Association Wendelsteinstr. 1 Greifswald Dirk Hartmann 1 Kernfusion Pro Sekunde werden in der Sonne 675.000.000

Mehr

Energieerzeugung durch Kernfusion

Energieerzeugung durch Kernfusion red Institute for Nuclear Physics Mainz, D 55099 Mainz, Germany E-mail: magentadiefenba@kph.uni-mainz.de Vorgestellt werden die Grundprinzipien der Kernfusion, welche Probleme sich bei der technischen

Mehr

Kapitel 5: Kernfusion

Kapitel 5: Kernfusion Kapitel 5: Kernfusion 330 5 Die Kernfusion und ihre Anwendung Der Unterschied der Bindungsenergie zwischen Deuterium D und Helium He ist pro Nukleon wesentlich größer als bei der Kernspaltung. Kernfusion

Mehr

Die Inbetriebnahme von Wendelstein 7 X: der Beitrag des Stellarators zur Fusionsforschung

Die Inbetriebnahme von Wendelstein 7 X: der Beitrag des Stellarators zur Fusionsforschung Die Inbetriebnahme von Wendelstein 7 X: der Beitrag des Stellarators zur Fusionsforschung Robert Wolf und das W7-X Team *) robert.wolf@ipp.mpg.de *) siehe Autorenliste Bosch et al. Nucl. Fusion 53 (2013)

Mehr

Laserfusion. Georg Hofmann. 05. Juni Uni Osnabrück. Georg Hofmann (Uni Osnabrück) Laserfusion 05. Juni / 43

Laserfusion. Georg Hofmann. 05. Juni Uni Osnabrück. Georg Hofmann (Uni Osnabrück) Laserfusion 05. Juni / 43 Laserfusion Georg Hofmann Uni Osnabrück 05. Juni 2007 Georg Hofmann (Uni Osnabrück) Laserfusion 05. Juni 2007 1 / 43 1 Einführung Fusion 2 Laserfusion 3 Ausblick 4 Zusammenfassung Georg Hofmann (Uni Osnabrück)

Mehr

Fusionsforschung auf dem Weg zu einem energieliefernden Plasma

Fusionsforschung auf dem Weg zu einem energieliefernden Plasma Zum Gedenken an Lise Meitner, Ehrendoktorin der FU Ringvorlesung Wintersemester 2018/2019 Fusionsforschung auf dem Weg zu einem energieliefernden Plasma Robert Wolf robert.wolf@ipp.mpg.de Fakultät II Zentrum

Mehr

Fusionsforschung Auf dem Weg zu einer neuen Primärenergiequelle Robert Wolf robert.wolf@ipp.mpg.de

Fusionsforschung Auf dem Weg zu einer neuen Primärenergiequelle Robert Wolf robert.wolf@ipp.mpg.de Max-Planck-Institut für Plasmaphysik Fusionsforschung Auf dem Weg zu einer neuen Primärenergiequelle Robert Wolf robert.wolf@ipp.mpg.de Max-Planck-Institut für Plasmaphysik Energie Kernfusion Fusionsforschung

Mehr

Fusion von Wasserstoff

Fusion von Wasserstoff Fusion von Wasserstoff Die neue Energie? Thomas Klinger Max-Planck-Institut für Plasmaphysik, Greifswald Frage 1 Die Energiefrage ist absolut fundamental. Wohin geht die Entwicklung in diesem Jahrhundert?

Mehr

Einführung Fusions- forschung. indie

Einführung Fusions- forschung. indie Einführung Fusions- forschung indie Grundlagen der Kernfusion Die Kernbausteine sind von einer Atomsorte zur anderen verschieden stark aneinander gebunden. Durch Umordnung der Kernbausteine in fester verbundene

Mehr

Hauptseminar. Experimentalphysik / Angewandte Physik Wintersemester 2005/06. Thema: Plasmafusion. von. Bernhard Krumme

Hauptseminar. Experimentalphysik / Angewandte Physik Wintersemester 2005/06. Thema: Plasmafusion. von. Bernhard Krumme Hauptseminar Experimentalphysik / Angewandte Physik Wintersemester 005/06 Thema: Plasmafusion von Bernhard Krumme 1 Inhalt 1. Vorwort. Physikalische Grundlagen 3. Reaktorkomponenten und Teilchenbewegung

Mehr

Unser Stern die Sonne

Unser Stern die Sonne Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrinos from the Sun Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Unser Stern die Sonne Max Camenzind Würzburg 2018/2019

Mehr

Kernfusion die Energiequelle der Sonne auf der Erde nutzen Sibylle Günter

Kernfusion die Energiequelle der Sonne auf der Erde nutzen Sibylle Günter Kernfusion die Energiequelle der Sonne auf der Erde nutzen Sibylle Günter Wissenschaftliche Direktorin Max-Planck-Institut für Plasmaphysik, Garching/Greifswald Energie erzeugen wie die Sonne Wie gewinnt

Mehr

1. Was ist Kernfusion? 2. Fusionsreaktionen auf der Erde

1. Was ist Kernfusion? 2. Fusionsreaktionen auf der Erde Kernfusion Johannes-Gutenberg-Universität Mainz Fortgeschrittenen-Praktikum Physik - Seminar (SoSe10) Referent: Tobias Macha Betreuer: Dr. Harald Merkel 26. April 2010 1. Was ist Kernfusion? Während dem

Mehr

Projekt Wendelstein 7-X Feinwerktechnik in der Fusionsforschung

Projekt Wendelstein 7-X Feinwerktechnik in der Fusionsforschung Projekt Wendelstein 7-X Feinwerktechnik in der Fusionsforschung 11. Tagung "Feinwerktechnische Konstruktion" 22.09.2017, Dresden Martin Banduch für das W7-X Team This work has been carried out within the

Mehr

Energieversorgung 2100 - Kernfusion oder doch Windräder?

Energieversorgung 2100 - Kernfusion oder doch Windräder? Max-Planck-Institut für Plasmaphysik Energieversorgg - Kernfusion oder doch Windräder? Ralph Dux MPI für Plasmaphysik 85748 Garching, Boltzmannstr. 2 Ralph.Dux@ipp.mpg.de http://www.ipp.mpg.de Prolog Windräder

Mehr

Ein (Tokamak-) Fusionsreaktor. Wolfgang Suttrop, Max-Planck-Institut fu r Plasmaphysik, Garching

Ein (Tokamak-) Fusionsreaktor. Wolfgang Suttrop, Max-Planck-Institut fu r Plasmaphysik, Garching Einfu hrung in die Fusionsforschung Ein (Tokamak-) Fusionsreaktor Ein (Tokamak-) Fusionsreaktor Wolfgang Suttrop, Max-Planck-Institut fu r Plasmaphysik, Garching 1 Einführung in die Fusionsforschung Ein

Mehr

Bei dieser Reaktion fusionieren Deuterium und Tritium zu einem Heliumkern und einem Neutron: 2 H +

Bei dieser Reaktion fusionieren Deuterium und Tritium zu einem Heliumkern und einem Neutron: 2 H + Kernfusion Die ungeheuren Energiemengen, die bei der Kernfusion in der Sonne freiwerden, möchte der Mensch auch nutzen können. Doch das gestaltet sich schwieriger, als in den Anfängen der Fusionsforschung

Mehr

Energieforschung für die Zukunft Auf dem Weg zu einem Fusionskraftwerk

Energieforschung für die Zukunft Auf dem Weg zu einem Fusionskraftwerk Energieforschung für die Zukunft Auf dem Weg zu einem Fusionskraftwerk Dipl. Ing. (FH) Bernadett Gmeiner MPI Dank an: Dr. Rudolf Neu Dr. Hans Meister 85748 Garching, Boltzmannstr.2 Bernadett.Gmeiner@ipp.mpg.de

Mehr

Plasmaphysik und Kernfusion

Plasmaphysik und Kernfusion Patrick Fahner Seminarvortrag vom 22. Juni 2012 1 Einleitung Wir kennen Materie in drei Zuständen: fest, flüssig und gasförmig. Wir erreichen diese Zustände in der eben genannten Reihenfolge, indem wir

Mehr

Primärproblem: Bevölkerungswachstum

Primärproblem: Bevölkerungswachstum Möglchkeiten der Energieversorgung aus der Kernfusion F. Wagner, Max-Planck Institut für Plasmaphysik, Greifswald Primärproblem: Bevölkerungswachstum Billion 20 18 16 14 12 10 8 6 4 2 0 1900 1950 2000

Mehr

Der Weg zu einem Fusionskraftwerk

Der Weg zu einem Fusionskraftwerk EURATOM Max-Planck-Institut für Plasmaphysik Standort Greifswald Der Weg zu einem Fusionskraftwerk Standort Garching G. Hasinger, IPP Garching TU München Ringvorlesung Umwelt 3. Juni 2009, TU München Das

Mehr

Fachhochschule Südwestfalen Wir geben Impulse

Fachhochschule Südwestfalen Wir geben Impulse Fachhochschule Südwestfalen Wir geben Impulse Folie 2 (06/2015) Inhalt Grundidee Grundlagen der Kernfusion Projekt ITER Energiegewinnung Gefahren Wirtschaftlichkeit Zukunftsfähigkeit Quellen Folie 3 (06/2015)

Mehr

BULLETIN Nr. 70 April 2014

BULLETIN Nr. 70 April 2014 AVES Pfannenstil Aktion für vernünftige Energiepolitik Schweiz (AVES) Regionalgruppe Pfannenstil c/o Dr. Hans R. Moning AG, Gotthardstrasse 10, 8800 Thalwil Postkonto 80-10120-3 www.aves-zh.ch BULLETIN

Mehr

Kernfusion und Neutronik am Beispiel des Stellarator Leistungsreaktors HELIAS

Kernfusion und Neutronik am Beispiel des Stellarator Leistungsreaktors HELIAS Kernfusion und Neutronik am Beispiel des Stellarator André Häußler andre.haeussler@kit.edu KIT The Research University in the Helmholtz Association www.kit.edu Weltweiter Primärenergieverbrauch Anstieg

Mehr

Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI)

Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI) Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI) Günter Quast, Roger Wolf, Pablo Goldenzweig 08. Juni 2017 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT University

Mehr

Abstand der Deuteronen: R. Abbildung 2.22: Energie von 2 Deuteronen als Funktion des Abstandes

Abstand der Deuteronen: R. Abbildung 2.22: Energie von 2 Deuteronen als Funktion des Abstandes 2.8. KERNFUSION 109 2.8 Kernfusion Aus der Diskussion der Bindungsenergien pro Nukleon im vorhergehenden Abschnitt wissen wir, dass man im Bereich der leichten Atomkerne Energie dadurch gewinnen kann,

Mehr

ITER Die Kernfusionsforschung tritt in eine neue Ära Ulrich Samm, Forschungszentrum Jülich

ITER Die Kernfusionsforschung tritt in eine neue Ära Ulrich Samm, Forschungszentrum Jülich ITER Die Kernfusionsforschung tritt in eine neue Ära Ulrich Samm, Forschungszentrum Jülich Graduiertenseminar Teilchenphysik, RWTH Aachen, Physikalische Institute I, III, TPE, Bad Honnef, 25.8.2005 ITER

Mehr

Fusion- eine neue Primärenergiequelle der Zukunft

Fusion- eine neue Primärenergiequelle der Zukunft Mitglied der Helmholtz-Gemeinschaft Fusion- eine neue Primärenergiequelle der Zukunft IHK im Dialog Workshop 5: Forschung und Entwicklung Jülich, 14.10.2008 Detlev Reiter Entwurf: Impulsreferat, 14.10.08,

Mehr

FWU Schule und Unterricht. FWU-Klassiker Kernfusion. FWU das Medieninstitut der Länder

FWU Schule und Unterricht. FWU-Klassiker Kernfusion. FWU das Medieninstitut der Länder FWU Schule und Unterricht DVD 46 02527 18 min, Farbe FWU-Klassiker Kernfusion FWU das Medieninstitut der Länder 00 Lernziele nach Lehrplänen und Schulbüchern Die Schüler lernen, dass bestimmte Atomkerne

Mehr

Kernfusionsforschung in Mecklenburg-Vorpommern

Kernfusionsforschung in Mecklenburg-Vorpommern Member of the Helmholtz Association Öffentliche Anhörung im Landtag Mecklenburg-Vorpommern Kernfusionsforschung in Mecklenburg-Vorpommern Sachverständiger Ulrich Samm, Forschungszentrum Jülich Schwerin,

Mehr

Energieerzeugung durch Fusion

Energieerzeugung durch Fusion Energieerzeugung durch Fusion von Simon Friederich Institut für Kernphysik Johannes Guttenberg Universität Betreuer: Dr. Harald Merkel 5. Dezember 2011 1 Kernfusion 1.1 Energieerzeugung durch Kernfusion

Mehr

Einführung in die Kern- und Teilchenphysik I Vorlesung 14 13.12.2013. Kernfusion: Energieerzeugung Funktionsweise von Fusionsreaktoren

Einführung in die Kern- und Teilchenphysik I Vorlesung 14 13.12.2013. Kernfusion: Energieerzeugung Funktionsweise von Fusionsreaktoren Einführung in die Kern- und Teilchenphysik I Vorlesung 14 13.12.2013 Kernfusion: Energieerzeugung Funktionsweise von Fusionsreaktoren Kernfusion: Grundlagen Vorteile der Kernfusion Praktisch unbegrenzte

Mehr

KERNFUSION ITER. Max-Planck-Institut für Plasmaphysik, Forschungszentrum Karlsruhe GmbH, Forschungszentrum Jülich GmbH

KERNFUSION ITER. Max-Planck-Institut für Plasmaphysik, Forschungszentrum Karlsruhe GmbH, Forschungszentrum Jülich GmbH KERNFUSION ITER Max-Planck-Institut für Plasmaphysik, Forschungszentrum Karlsruhe GmbH, Forschungszentrum Jülich GmbH Impressum Kernfusion Herausgeber: Redaktion: Layout und Gesamtherstellung: Copyright

Mehr

Handout zum Seminarvortrag Kernfusion

Handout zum Seminarvortrag Kernfusion Handout zum Seminarvortrag Kernfusion Christoph Rosner 1 Grundlagen Unter Kernfusion verstehen wir die Verschmelzung zweier leichter Kerne zu einem schwereren. Die allgemeine Reaktionsgleichung hierfür

Mehr

Die Welt von morgen - die Sicht eines Energieforschers

Die Welt von morgen - die Sicht eines Energieforschers DHV Symposium Die Welt von morgen Die Welt von morgen - die Sicht eines Energieforschers Thomas Klinger Max Planck-Institut für Plasmaphysik Garching und Greifswald DHV Symposium, Bonn 2. November 2016

Mehr

Tokamak-Konfiguration und. Martin Droba

Tokamak-Konfiguration und. Martin Droba Tokamak-Konfiguration und ITER Martin Droba Inhalt Fusion Magnetischer Einschluss Stellarator Tokamaks ITER 13.01.2006 Frankfurt am Main 2 Fusion 13.01.2006 Frankfurt am Main 3 Reaktionen D + T He 4 (3.5MeV)

Mehr

Plasmaphysik und Kernfusion

Plasmaphysik und Kernfusion Plasmaphysik und Kernfusion Julian Butscher 29.05.2015 Zusammenfassung Dieses Handout wurde im Rahmen des theoretisch-physikalischen Seminars zur Elektrodynamik an der Universität Heidelberg unter der

Mehr

Kernfusion- Energiequelle der Zukunft?

Kernfusion- Energiequelle der Zukunft? Kernfusion- Energiequelle der Zukunft? Facharbeit zum Thema: Naturwissenschaftliche Entdeckungen Gymnasium am Markt Achim Am Marktplatz 18 28832 Achim Abgabetermin 29.03.2017 Von Niklas Purnhagen Grundkurs

Mehr

6. Energiegewinnung aus Kernreaktionen

6. Energiegewinnung aus Kernreaktionen 6. Energiegewinnung aus Kernreaktionen 6. Kernspaltung und Kernkraftwerke (KKW) Nützlich: M. Volkmer, Basiswissen Kernphysik (web) http://www.kernenergie.net/ Motivation Bei der Spaltung von kg Uran wird

Mehr

Kernfusion die Energiequelle der Zukunft?

Kernfusion die Energiequelle der Zukunft? 1 Friderico-Francisceum-Gymnasium Schuljahr 2003/2004 Bad Doberan Facharbeit des Schülers Martin Knorr im Fach Physik Klasse 10e Thema: Kernfusion die Energiequelle der Zukunft? 2 Inhaltsverzeichnis 1.

Mehr

Ziel nuklearer Zündbereich/Vorarbeiten für NET/ Die neuen Fusionsapparate des IPP

Ziel nuklearer Zündbereich/Vorarbeiten für NET/ Die neuen Fusionsapparate des IPP V..--:----;" "..- " \U, IV, 4/83 [=~ ~. ~ v I ±l~ i FU"O",","C","E JET '" ''''RIEB GENO. ~~-j "j"--"'[-"""-' '''''1=' Ziel nuklearer Zündbereich/Vorarbeiten für NET/ Die neuen Fusionsapparate des IPP Der

Mehr

Der Stellarator - Ein alternatives Einschlusskonzept für ein Fusionskraftwerk (vorgetragen von R. Wolf)

Der Stellarator - Ein alternatives Einschlusskonzept für ein Fusionskraftwerk (vorgetragen von R. Wolf) Der Stellarator - Ein alternatives Einschlusskonzept für ein Fusionskraftwerk (vorgetragen von R. Wolf) Robert Wolf, Max Planck Institut für Plasmaphysik, EURATOM Assoziation, Teilinstitut Greifswald Kernfusion

Mehr

Am 26. Juli 2010 feiert das Max-Planck-Institut für Plasmaphysik (IPP) sein 50-jähriges Bestehen,

Am 26. Juli 2010 feiert das Max-Planck-Institut für Plasmaphysik (IPP) sein 50-jähriges Bestehen, Max-Planck-Institut für Plasmaphysik Forschung für die Energie der Zukunft Am 26. Juli 2010 feiert das Max-Planck-Institut für Plasmaphysik (IPP) sein 50-jähriges Bestehen, ein Anlass, die große, auf dem

Mehr

Forschung für die Energie der Zukunft

Forschung für die Energie der Zukunft Forschung für die Energie der Zukunft Die Sonne, ein gewaltiger Plasmaball. Seit Jahrmillionen verströmt sie Licht und Wärme. Fusion eine neue Energiequelle Kernverschmelzungen sind wichtige Natur prozesse:

Mehr

ITER kommt - aber ist seine Plasmaphysik verstanden?

ITER kommt - aber ist seine Plasmaphysik verstanden? ITER kommt - aber ist seine Plasmaphysik verstanden? York Schröder (Univ Bielefeld) Vortrag im Rahmen des Habilitationsverfahrens Bielefeld, 10 Jul 2006 1 Motivation: steigender E-Bedarf Energiebedarf

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 426 - Physik B3 9.3 Kernenergie Kernenergie ist eine interessante Möglichkeit, nutzbare Energie zu gewinnen. Das kann man sehen wenn man vergleicht, wie viel Energie in 1 kg unterschiedlicher

Mehr

Fusion bedeutet das Verschmelzen leichter Atome (z.b. Wasserstoff) zu schweren (z.b. Helium).

Fusion bedeutet das Verschmelzen leichter Atome (z.b. Wasserstoff) zu schweren (z.b. Helium). Kernfusion Kernfusion ist das Gegenteil der Kernspaltung. Fusion bedeutet das Verschmelzen leichter Atome (z.b. Wasserstoff) zu schweren (z.b. Helium). Sie findet immer im inneren der Sterne statt, wobei

Mehr

In rund 25 Jahren wenn das geplante internationale. Kernfusion als Energiequelle der Zukunft

In rund 25 Jahren wenn das geplante internationale. Kernfusion als Energiequelle der Zukunft Energie Kernfusion als Energiequelle der Zukunft Der International Thermonuclear Experimental Reactor ITER ist der nächste Schritt auf dem Weg zum Fusionskraftwerk Hans-Stephan Bosch und Alexander Bradshaw

Mehr

Energie für die Zukunft - MPI für Plasmaphysik feiert Jubiläumsreigen

Energie für die Zukunft - MPI für Plasmaphysik feiert Jubiläumsreigen Pressemitteilung Max-Planck-Institut für Plasmaphysik Isabella Milch 30.10.2001 http://idw-online.de/de/news40708 Buntes aus der Wissenschaft, Forschungsergebnisse Elektrotechnik, Energie, Mathematik,

Mehr

Sonnenfeuer im Labor. Wo steht die Fusionsforschung? 44 02/2007 Magazin

Sonnenfeuer im Labor. Wo steht die Fusionsforschung? 44 02/2007 Magazin Sonnenfeuer im Labor Wo steht die Fusionsforschung? Ein energielieferndes Fusionsfeuer soll der internationale Experimentalreaktor ITER erzeugen. Die Großanlage, die demnächst im französischen Cadarache

Mehr

Wie bändigt man heißes Plasma?

Wie bändigt man heißes Plasma? ((Phy1125)) HEISSES PLASMA FUSIONSFORSCHUNG Plasmaeinschluss in Tokamak und Stellarator Wie bändigt man heißes Plasma? Mit ITER wird in Cadarache in Frankreich das erste Fusionsexperiment gebaut, das einen

Mehr

Pro und Contra Kernfusionsforschung

Pro und Contra Kernfusionsforschung 1 Pro und Contra Kernfusionsforschung SPD BEZIRK BRAUNSCHWEIG 20. MAI 2015 Prof. Dr. Bruno Thomauske RWTH Aachen Institut für Nukleare Entsorgung und Techniktransfer (NET) 2 INHALT 1. Kernfusion Kernspaltung

Mehr

MAX-PLANCK-INSTITUT FOR PLASMAPHYSIK. Wie man mit Radiowellen Fusionsplasmen auf 100 Millionen Grad aufheizt / Neue Heizmethode im Einsatz

MAX-PLANCK-INSTITUT FOR PLASMAPHYSIK. Wie man mit Radiowellen Fusionsplasmen auf 100 Millionen Grad aufheizt / Neue Heizmethode im Einsatz MAX-PLANCK-INSTITUT FOR PLASMAPHYSIK 8046 GARCHING B. MüNCHEN r~. t= ;, VA~/83 t[---i 7D : D7 i, 17. November 1983 STÄRKER ALS JEDER RADIOSENDER Wie man mit Radiowellen Fusionsplasmen auf 100 Millionen

Mehr

Fusionsenergie. Fusionsenergie 1

Fusionsenergie. Fusionsenergie 1 1 von 11 Fusionsenergie Fusionsenergie 1 Einleitung 2 Was ist Fusionsenergie? 3 Tokamak-Anordnung 5 Stellarator-Anordnung 6 Geschichte der Fusionsenergie 7 Wie Funktioniert Fusionsenergie? 8 Wie entsteht

Mehr

30 Minuten für den ersten Teil und weitere 30 Minuten für den fakultativen zweiten Teil.

30 Minuten für den ersten Teil und weitere 30 Minuten für den fakultativen zweiten Teil. Posten 7 Kernfusion Sozialform: Bearbeitungszeit: Voraussetzung: Partnerarbeit 30 Minuten für den ersten Teil und weitere 30 Minuten für den fakultativen zweiten Teil. Posten 1 Einsteins Postulate Posten

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin Zerfallsgesetz radioaktiver Kerne 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität ität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 1553K 15.5.3 Kettenreaktion 15. Kernphysik

Mehr

Vortrag: Prof. Dr. Hartmut Zohm, Direktor des Max-Planck-Instituts für Plasmaforschung, 2015.

Vortrag: Prof. Dr. Hartmut Zohm, Direktor des Max-Planck-Instituts für Plasmaforschung, 2015. Kernfusion Es geht um die Verschmelzung leichter Atomkerne zu schwereren Atomkernen. Dabei wird Energie frei. Die Kernfusion ist eine Energiequelle, sie ist die Energiequelle der Sterne. Unsere Sonne verbrennt

Mehr

Thema heute: Aufbau der Materie, Atommodelle Teil 2

Thema heute: Aufbau der Materie, Atommodelle Teil 2 Wiederholung der letzten Vorlesungsstunde: Atomistischer Aufbau der Materie, historische Entwicklung des Atombegriffes Atome Thema heute: Aufbau der Materie, Atommodelle Teil 2 Vorlesung Allgemeine Chemie,

Mehr

Kernfusion. Berichte aus der Forschung. Folge 2

Kernfusion. Berichte aus der Forschung. Folge 2 Kernfusion Berichte aus der Forschung Folge 2 Zum Titelbild (von oben nach unten): Plasmagefäß der Fusionsanlage ASDEX Upgrade, Arbeiten für WENDELSTEIN 7-AS, Computerstudie für WENDELSTEIN 7-X, Testkryostat

Mehr

Testanlage ITER Fusionsforschung in globaler Zusammenarbeit Alexander M. Bradshaw, Max-Planck-Institut für Plasmaphysik (IPP), Garching, Greifswald

Testanlage ITER Fusionsforschung in globaler Zusammenarbeit Alexander M. Bradshaw, Max-Planck-Institut für Plasmaphysik (IPP), Garching, Greifswald Testanlage ITER Fusionsforschung in globaler Zusammenarbeit Alexander M. Bradshaw, Max-Planck-Institut für Plasmaphysik (IPP), Garching, Greifswald Die Entscheidung für den Bau der internationalen Fusionstestanlage

Mehr

MAX-PLANCK-INSTITUT FOR PLASMAPHYSIK

MAX-PLANCK-INSTITUT FOR PLASMAPHYSIK MAX-PLANCK-INSTITUT FOR PLASMAPHYSIK 8046 GARCHING B. MüNCHEN PI 4/88 12. Oktober 1988 Fusionsexperiment WENDELSTEIN VII-AS in Betrieb Das erste Plasma in einem "Advanced Stellarator"/Stellaratoren im

Mehr

Aufgabe I: Fusionsreaktor und Sonne

Aufgabe I: Fusionsreaktor und Sonne Europa-Gymnasium Wörth Abiturprüfung 2012 Leistungskurs Physik LK2 Aufgabe I: Fusionsreaktor und Sonne Leistungsfachanforderungen Hilfsmittel Formelsammlung (war im Unterricht erstellt worden) Tabelle

Mehr

Sitzungsberichte der Leibniz-Sozietät 82(2005), 105 110

Sitzungsberichte der Leibniz-Sozietät 82(2005), 105 110 Sitzungsberichte der Leibniz-Sozietät 82(2005), 105 110 Johann Lingertat Gesteuerte Kernfusion Kurzfassung eines Vortrages, der im Arbeitskreis Energie-Rohstoff-Versorgung der Leibniz-Sozietät am 4. März

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne Inhalt 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion Der Atomkern

Mehr

15 Kernphysik Physik für E-Techniker. 15 Kernphysik

15 Kernphysik Physik für E-Techniker. 15 Kernphysik 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.

Mehr

Was ist ein Plasma? Max Camenzind Akademie HD 2018

Was ist ein Plasma? Max Camenzind Akademie HD 2018 Was ist ein Plasma? Max Camenzind Akademie HD 2018 Vortragszyklus Das Dunkle Universum 19.9. / 17.10. / 21.11. / 12.12.2018 10:40-12:10 Uhr in E06 Max Camenzind Heidelberg 2018 Lagrange-Punkte / effektives

Mehr

Hans-Stephan Bosch. Max-Planck-Institut fur Plasmaphysik. Assoziation EURATOM{IPP

Hans-Stephan Bosch. Max-Planck-Institut fur Plasmaphysik. Assoziation EURATOM{IPP Die Physik der Alpha-Teilchen in einem Fusionsreaktor mit Deuterium-Tritium-Plasmen Hans-Stephan Bosch Max-Planck-Institut fur Plasmaphysik D{85748 Garching b. Munchen Assoziation EURATOM{IPP Inhaltsverzeichnis

Mehr

Energiegewinnung nach dem Vorbild der Sonne

Energiegewinnung nach dem Vorbild der Sonne Energiegewinnung nach dem Vorbild der Sonne Vakuumtechnik ermöglicht die Herstellung von Fusionsbedingungen Auf der Suche nach alternativen und sauberen Energiequellen gewinnt die Energieerzeugung durch

Mehr

Foto: Axel Griesch. Brücken für die Fusion

Foto: Axel Griesch. Brücken für die Fusion Foto: Axel Griesch Brücken für die Fusion Die wissenschaftliche Basis für einen Fusionsreaktor zu festigen mit diesem Ziel ist Sibylle Günter als Wissenschaftliche Direktorin am Max-Planck-Institut für

Mehr

Physik 4: Skalen und Strukturen

Physik 4: Skalen und Strukturen Physik 4: Skalen und Strukturen Kapitel : Kernphysik.1 Grundlagen.2 Kerneigenschaften. Bindungsenergien.4 Kernzerfälle.5 Kernreaktionen.6 Anwendungen Geometrischer Wirkungsquerschnitt Gesamtfläche A, n

Mehr

Physikreferat über Kernfusion, techn. Probleme der Kernfusion, Wasserstoffbombe und Vorgänge in Fixsternen

Physikreferat über Kernfusion, techn. Probleme der Kernfusion, Wasserstoffbombe und Vorgänge in Fixsternen Physikreferat über Kernfusion, techn. Probleme der Kernfusion, Wasserstoffbombe und Vorgänge in Fixsternen Kernfusion: (Stefan) - Kernfusion ist das Gegenteil der Kernspaltung - Fusion bedeutet das verschmelzen

Mehr

Stand der Fusionstechnik

Stand der Fusionstechnik StandderFusionstechnik GüntherHasinger WissenschaftlicherDirektor Max Planck InstitutfürPlasmaphysik 1.Einleitung:DasEnergie Dilemma DermittlerePro Kopf VerbrauchderWeltliegtderzeitbeietwa2200Watt(W)Primärenergie

Mehr

Vom Sternenfeuer zum Fusionskraftwerk Günther Hasinger

Vom Sternenfeuer zum Fusionskraftwerk Günther Hasinger Standort Greifswald EURATOM Max-Planck-Institut für Plasmaphysik Vom Sternenfeuer zum Fusionskraftwerk Günther Hasinger Standort Garching Tag der Unternehmerschaft 2010 Düsseldorf 10. Juni 2010 Hotel NIKKO

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

Die Entwicklung des Universums vom Urknall bis heute. Gisela Anton Erlangen, 23. Februar, 2011

Die Entwicklung des Universums vom Urknall bis heute. Gisela Anton Erlangen, 23. Februar, 2011 Die Entwicklung des Universums vom Urknall bis heute Gisela Anton Erlangen, 23. Februar, 2011 Inhalt des Vortrags Beschreibung des heutigen Universums Die Vergangenheit des Universums Ausblick: die Zukunft

Mehr

(U2) Der in weltweiter Zusammenarbeit geplante Experimentalreaktor ITER (International Thermonuclear Experimental

(U2) Der in weltweiter Zusammenarbeit geplante Experimentalreaktor ITER (International Thermonuclear Experimental (U2) Im Inhaltsverzeichnis verwendete Abkürzungen: FUSION ITP HVT IHM IMF IRS IKET Programm Kernfusion Institut für Technische Physik Hauptabteilung Versuchstechnik Institut für Hochleistungsimpulsund

Mehr

2. Kontrollierte Kernfusion

2. Kontrollierte Kernfusion 203 2. Kontrollierte Kernfusion a) Einleitung Das Ziel der Forschung zur kontrollierten Kernfusion ist der Bau eines Reaktors, in dem durch Fusion der Wasserstoffisotope zu Helium Energie gewonnen wird.

Mehr

Kraft. Sonne. der. Mit der FUSIONSENERGIE

Kraft. Sonne. der. Mit der FUSIONSENERGIE FEUERBALL: Die Sonne ist ein riesiger Ball aus glühenden Gasen. Pro Jahr strahlt sie eine Energiemenge auf die Erde ab, die 15.000-mal größer ist als der Energieverbrauch aller Menschen auf der Welt in

Mehr

forschung IPP Fusionsim

forschung IPP Fusionsim forschung IPP Fusionsim Tokamaks Fusionsexperimente vom Typ Tokamak, Anfang der 50er Jahre in der Sowjetunion entwickelt, wurden bald weltweit zum führenden Experimenttyp der Fusionsforschung. Schwerpunkt

Mehr

5. Fusionsforschung. 5.1 Fusionsreaktionen

5. Fusionsforschung. 5.1 Fusionsreaktionen Neue Technologien bei 5.1 elektrischen Energiewandlern 5. Fusionsforschung Über 90% des Weltenergiebedarfs wird z. Zt. aus fossilen Energiequellen (Kohle, Erdöl, Erdgas) gedeckt. Begrenzte Brennstoffvorräte,

Mehr

: 50 Jahre Fusionsforschung für den Frieden

: 50 Jahre Fusionsforschung für den Frieden an der Universität Innsbruck 81 4.1 1958-2008: 50 Jahre Fusionsforschung für den Frieden Hon.-Prof. Dr. Karl Lackner Max-Planck Institut für Plasmaphysik, EURATOM-Assoziation, D-85748 Garching Die Idee,

Mehr

ELMs unter Kontrolle

ELMs unter Kontrolle ELMs unter Kontrolle PD Dr. Wolfgang Suttrop Max-Planck-Institut für Plasmaphysik, D-85740 Garching e-mail: suttrop@ipp.mpg.de Neue Experimente an Fusions-Plasmen in Tokamaks demonstrieren die Kontrolle

Mehr

Numerisches Verfahren für Eigenwert-Probleme aus der Instabilitätstheorie der Plasma-Rand-Wechselwirkung

Numerisches Verfahren für Eigenwert-Probleme aus der Instabilitätstheorie der Plasma-Rand-Wechselwirkung Numerisches Verfahren für Eigenwert-Probleme aus der Instabilitätstheorie der Plasma-Rand-Wechselwirkung D. Löchel Betreuer: M. Hochbruck und M. Tokar Mathematisches Institut Heinrich-Heine-Universität

Mehr

Neutralteilchen- und Hochfrequenz-Heizungen

Neutralteilchen- und Hochfrequenz-Heizungen 7 Plasmaheizung Neutralteilchen- und Hochfrequenz-Heizungen Eckehardt Speth, Jean-Marie Noterdaeme, Volker Erckmann Heinrich Laqua, Fritz Leuterer Die Fortschritte der Fusionsforschung sind nicht zuletzt

Mehr

Praktikumsarbeit. zum Thema. Bestimmung und Verbesserung der Frequenzeigenschaften von Mirnovspulen. Verfasser:...Alexander Haak

Praktikumsarbeit. zum Thema. Bestimmung und Verbesserung der Frequenzeigenschaften von Mirnovspulen. Verfasser:...Alexander Haak Praktikumsarbeit zum Thema Bestimmung und Verbesserung der Frequenzeigenschaften von Mirnovspulen Verfasser:...Alexander Haak Studiengang:...Physikalische Technik und Informationsverarbeitung Durchgeführt

Mehr

Pulsator, ASDEX und ASDEX Upgrade

Pulsator, ASDEX und ASDEX Upgrade 5 Tokamaks Pulsator, ASDEX und ASDEX Upgrade Friedrich Wagner, Hartmut Zohm Zehn Jahre nach Beginn der Stellaratorforschung wandte sich das IPP 1970 mit der Anlage Pulsator auch der Tokamak-Linie zu. Von

Mehr

des Ausschusses für Bildung, Forschung und Technikfolgenabschätzung (19. Ausschuss) gemäß 56a der Geschäftsordnung

des Ausschusses für Bildung, Forschung und Technikfolgenabschätzung (19. Ausschuss) gemäß 56a der Geschäftsordnung Deutscher Bundestag Drucksache 14/8959 14. Wahlperiode 02. 05. 2002 Bericht des Ausschusses für Bildung, Forschung und Technikfolgenabschätzung (19. Ausschuss) gemäß 56a der Geschäftsordnung Technikfolgenabschätzung

Mehr

Hauptseminar Quantenmechanisches Tunneln WS 2010/2011. Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall

Hauptseminar Quantenmechanisches Tunneln WS 2010/2011. Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall Hauptseminar Quantenmechanisches Tunneln WS 2010/2011 Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall Torben Kloss, Manuel Heinzmann Gliederung Was ist tunneln? Tunneln durch ein beliebiges

Mehr

umwandlungen Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen,

umwandlungen Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen, Wiederholung der letzten Vorlesungsstunde: Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen, Neutronen, Element, Ordnungszahl Thema heute: Aufbau von Atomkernen, Kern- umwandlungen

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 10 Kernphysik Universität Leipzig, Fakultät für Physik und Geowissenschaften Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 29. Juni 2009 Nachdem in den vorangegangenen Kapiteln die Moleküle

Mehr

Designstudien für die Thomson-Streuung von Wendelstein 7-X

Designstudien für die Thomson-Streuung von Wendelstein 7-X Designstudien für die Thomson-Streuung von Wendelstein 7-X Diplomarbeit von Stefan Schmuck Institut für Physik Ernst-Moritz-Arndt-Universität Greifswald 19. Dezember 2007 Diese Arbeit wurde angefertigt

Mehr

Gymnasium Penzberg Kollegstufenjahrgang 2007/2009. Facharbeit. aus dem Fach. Chemie

Gymnasium Penzberg Kollegstufenjahrgang 2007/2009. Facharbeit. aus dem Fach. Chemie Gymnasium Penzberg Kollegstufenjahrgang 2007/2009 Facharbeit aus dem Fach Chemie Thema: Methoden der Kernfusion Die Spektroskopie als Diagnostik der Kernfusionsforschung Verfasser: Leistungskurs: Kursleiter:

Mehr

Kernfusion. Ein Referat von Sebastian Titze und Florian Wetzel. Einleitung Nachwort... 9

Kernfusion. Ein Referat von Sebastian Titze und Florian Wetzel. Einleitung Nachwort... 9 Kernfusion Ein Referat von Sebastian Titze und Florian Wetzel Einleitung... 2 Grundlagen der Kernverschmelzung (Kernfusion)... 2 Der Massendefekt... 2 Andere Fusionsvorgänge... 3 Die Coulomb schen Abstoßungskräfte...

Mehr

Profile der Plasmaparameter und Dichte negativer Wasserstoffionen mittels Laserdetachmentmessungen in HF-angeregten Ionenquellen

Profile der Plasmaparameter und Dichte negativer Wasserstoffionen mittels Laserdetachmentmessungen in HF-angeregten Ionenquellen Profile der Plasmaparameter und Dichte negativer Wasserstoffionen mittels Laserdetachmentmessungen in HF-angeregten Ionenquellen Dissertation zur Erlangung des Doktorgrades an der Mathematisch Naturwissenschaftlichen

Mehr

Versuch: Lorentzkraft

Versuch: Lorentzkraft Versuch: Lorentzkraft Das Fadenstrahlrohr gestattet in Verbindung mit den Helmholtzspulen die Darstellung eines Elektronenstrahls im homogenen Magnetfeld. Nimmt man einen starken Magneten zu Hilfe, der

Mehr