Living Lab Big Data Konzeption einer Experimentierplattform

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Living Lab Big Data Konzeption einer Experimentierplattform"

Transkript

1 Living Lab Big Data Konzeption einer Experimentierplattform Dr. Michael May Berlin, Fraunhofer-Institut für Intelligente Analyseund Informationssysteme IAIS

2 Agenda n Ziele des Living Lab Big Data n Living Lab Big Data Architektur n Living Lab Big Data Anwendungen n Ausblick

3 Ausgangslage n Viele Anwenderunternehmen sind in der Orientierungsphase n Vorstellungen von Big Data in Unternehmen oft diffus, sowohl zu n Einsatzmöglichkeiten als auch zu n vorhandenen Techniken n Ergebnisse Befragung und Zukunftsworkshops: n Hoher Bedarf an Best Practices, Training, Schulung (95% der Befragten) n Infrastruktur und Datenmanagement sind für sich genommen zu abstrakt, Lösungspotentiale zu bewerten

4 Im Kontext von Big Data sind bereits viele Open-Source Projekte verfügbar (eine Auswahl)

5 Big Data Anwendungen setzen auf eine Kombination von Tools aus verschiedenen Technologiekategorien

6 NoSQL Datenbanken Verteilte nichtrelationale und schemafreie Datenbanken Key/Value Graph BigTable/Columnar Document

7 Im Kontext von Big Data sind bereits viele Anbieter am Markt (eine Auswahl)

8 Barrieren n Die Auswahl der richtigen Technologie ist eine Herausforderung n keine Standardisierung n unterschiedlicher Entwicklungsstand n unzureichende Dokumentation n uneinheitliche Terminologie, n Kaum Vergleichsmöglichkeiten, Benchmarks n Kaum Personal mit Erfahrung vorhanden n Anbieter reagieren mit Out of the Box -Lösungen (z.b. Appliance) n Hohe Kosten als Einstiegshürde

9 Ziele des Living Labs n Lern- und Experimentierumgebung für Unternehmen n Technik anfassbar machen, Einstiegshürden herabsetzen n Teil eines Schulungskonzeptes Data Science n Präsentation von Big-Data-Problemlösungen am Beispiel einer durchgängigen Anwendung des gesamten Technologie-Stacks n Verschiedene öffentlich verfügbare Big-Data-Datenbestände werden eingespielt und stehen zum Testen zur Verfügung. n Analyseverfahren für Big Data, die im Rahmen des THESEUS-Programms zum Thema Smart Semantics (Quote und Eat&Drink) entwickelt wurden n Hardwareinfrastruktur steht nicht im Fokus n Vorwettbewerblich, herstellerneutral, erweiterbar

10 Agenda n Ziele des Living Lab Big Data n Living Lab Big Data Architektur n Living Lab Big Data Anwendungen n Ausblick

11 Design Living Lab n Nicht eine einzelne Technologie (z.b. Hadoop, NoSQL), sondern eine Big Data Architektur, die flexibel genug ist, n verschiedenste Einsatzzwecke in verschiedensten Branchen abzudecken n es in den einzelnen Komponenten erlaubt, Technologien gegeneinander auszutauschen und z.b. auch eine individuelle Entscheidung zwischen OpenSource und kommerziellen Angeboten zu treffen n Erst wenn man in Architekturen denkt, erschließen sich Stärken und Schwächen existierender Technologien

12 «Lambda Architecture» Quelle: Nathan Marz. Big Data: Principles and Best Practices of Scalable Realtime Data Systems. 2013

13 Living Lab - Architektur Serving Layer

14 Agenda n Ziele des Living Lab Big Data n Living Lab Big Data Architektur n Living Lab Big Data Anwendungen n Ausblick

15 Big Data Experimentierplattform Technologie zum Anfassen im Rahmen des Schulungsmoduls Data Scientist Big Data Batch-Anwendung Analyse von Kundenfeedback Realtime-Anwendung Big Data Themenmonitor 6 Milliarden Webseiten (Q1/2012) ~ 20TB nur Text Ausgewählte Technologien Anwendungsfälle Big Data Datensatz

16 Anwendungsfall: Monitoring von Themen

17 Batch Layer - Zyklus von Stunden oder Tagen Hadoop HDFS Map Reduce - Cascading Smart Semantic Components mime-type detection mime-type filter text + title extraction hash duplicate detection { "name" : "Leibniz Rechenzentrum", "kind" : "F +E", "language" : "de,en", "url" : "http://www.lrz.de/", "lat" : , "lon" : , "keywords" : [ { "key" : "Big Data", "count" : 2 }, { "key" : "Hadoop", "count" : 2 } ], "time" : " T11: " }.. Voldemort language detection lang. filter ('de','en') keyword extraction geo-location

18 Speed Layer Streaming Storm Bolt Sequence Smart Semantic Components mime-type detection mime-type filter text + title extraction language detection Lang. filter ('de', 'en') keyword extraction geo-location { "name" : "Fraunhofer IAIS", "language" : "de,en", "url" : "http://www.iais.fraunhofer.de/", "lat" : , "lon" , "keywords" : [ {"key" : "MapReduce", "count" : 7 }, {"key" : "Big Data", "count" : 64}, {"key" : "Hadoop", "count" : 6 } ], "time" : " T11: ", "kind" : "F+E" } ,{ "url" : "http://www.iais.fraunhofer.de/ sitemap.html", "keywords" : [ "Big Data" ], "institutionurl" : "www.iais.fraunhofer.de", "title" : "Sitemap", "lang" : "de" }, { "url" : "http://www.iais.fraunhofer.de/ 4858.html", "keywords" : [ "MapReduce", "Big Data" ], "institutionurl" : "www.iais.fraunhofer.de", "title" : "Integrated Data Mining", "lang" : "de },

19 Anwendungsfall: Kundenfeedbackanalyse App Eat&Drink

20 Living Lab Use Case 2 Workflow

21 Living Lab Technologiealternativen Oracle Exadata

22 Living Lab Technologiealternativen ParStream

23 Living Lab Technologiealternativen Teradata Aster

24 Living Lab Technologiealternativen DB2 IBM Infosphere Stream

25 Living Lab Technologiealternativen MapR Filesystem MapR MapReduce

26 Living Lab Technologiealternativen Cloudera HDFS Cloudera MapReduce

27 Living Lab Technologiealternativen Apache Drill

28 Agenda n Ziele des Living Lab Big Data n Living Lab Big Data Architektur n Living Lab Big Data Anwendungen n Ausblick

29 Wie kann das Living Lab genutzt werden? n Zielgruppe: Data Scientists, Analysten, Entwickler n Teil des Schulungskonzeptes Data Scientist Big Data Management n Schulungsmodul n Individuelle Workshops n Bring your own Data n In-House-Installation möglich

30 Geplante Data Scientist Schulungen von Fraunhofer IAIS Big Data Management Data Scientist Natural Language Processing (NLP) Data Scientist Big Data Analytics Basics Data Scientist Visual Analytics 2-3 Tage 2 Tage 2 Tage Ab März 2013 Ab Oktober 2012 Ab Februar Tage Ab Februar 2013

31 Nächste Schritte n Diskussion von Referenzarchitekturen im Arbeitskreis Big Data der BITKOM n Gespräche mit Anbietern n Public-Private-Partnership n Living Lab Big 2013

32 Zusammenfassung n Das Living Lab macht Big Data anfassbar n Ziel: Orientierung, Best Practices, Schulung n Zentrales Architekturkonzept: Lambda Architektur n Basiert auf Open-Source-Komponenten n Durch kommerzielle Komponenten teilweise substituierbar n Erlaubt Exploration von Alternativen n Herstellerunabhängig, vorwettbewerblich

Big Data Informationen neu gelebt

Big Data Informationen neu gelebt Seminarunterlage Version: 1.01 Copyright Version 1.01 vom 21. Mai 2015 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

Trends im Markt für Business Intelligence. Patrick Keller, Senior Analyst & Prokurist CeBIT 2016

Trends im Markt für Business Intelligence. Patrick Keller, Senior Analyst & Prokurist CeBIT 2016 Trends im Markt für Business Intelligence Patrick Keller, Senior Analyst & Prokurist CeBIT 2016 18.03.2016 BARC 2016 2 IT Meta-Trends 2016 Digitalisierung Consumerization Agilität Sicherheit und Datenschutz

Mehr

Big Data Vorsprung durch Wissen Chancen erkennen und nutzen

Big Data Vorsprung durch Wissen Chancen erkennen und nutzen Big Data Vorsprung durch Wissen Chancen erkennen und nutzen Prof. Dr. Stefan Wrobel Fraunhofer-Institut für Intelligente Analyseund Informationssysteme IAIS www.iais.fraunhofer.de Prof. Dr. Stefan Wrobel

Mehr

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

Big Data Hype und Wirklichkeit Bringtmehrauchmehr?

Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Günther Stürner, Vice President Sales Consulting 1 Copyright 2011, Oracle and/or its affiliates. All rights Überschrift 2 Copyright 2011, Oracle and/or

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden Jens Kaminski ERP Strategy Executive IBM Deutschland Ungebremstes Datenwachstum > 4,6 Millarden

Mehr

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Oracle DWH-Konferenz 21. März 2012 Dr. Carsten Bange Gründer & Geschäftsführer BARC Big Data bietet Methoden und Technologien

Mehr

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration June 2015 Automic Hadoop Agent Data Automation - Hadoop Integration + Aufbau der Hadoop Anbindung + Was ist eigentlich ist MapReduce? + Welches sind die Stärken von Hadoop + Welches sind die Schwächen

Mehr

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh SQL on Hadoop für praktikables BI auf Big Data! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh War nicht BigData das gleiche NoSQL? 2 Wie viele SQL Lösungen für Hadoop gibt es mittlerweile? 3 ! No SQL!?

Mehr

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden

Mehr

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS AGENDA VISUAL ANALYTICS 9:00 09:30 Das datengetriebene Unternehmen: Big Data Analytics mit SAS die digitale Transformation: Handlungsfelder für IT

Mehr

Step 0: Bestehende Analyse-Plattform

Step 0: Bestehende Analyse-Plattform Die Themen 09:30-09:45 Einführung in das Thema (Oracle) 09:45-10:15 Hadoop in a Nutshell (metafinanz) 10:15-10:45 Hadoop Ecosystem (metafinanz) 10:45-11:00 Pause 11:00-11:30 BigData Architektur-Szenarien

Mehr

TRACK II Datenmanagement Strategien & Big Data Speicherkonzepte. TRACK I Big Data Analytics & Self Service BI

TRACK II Datenmanagement Strategien & Big Data Speicherkonzepte. TRACK I Big Data Analytics & Self Service BI 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

Hadoop Eine Erweiterung für die Oracle DB?

Hadoop Eine Erweiterung für die Oracle DB? Hadoop Eine Erweiterung für die Oracle DB? Nürnberg, 18.11.2015, Matthias Fuchs Sensitive Über mich 10+ Jahre Erfahrung mit Oracle Oracle Certified Professional Exadata Certified Oracle Engineered Systems

Mehr

Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch

Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch In dieser Session wird IDAREF, ein Framework, dass auf logischer Ebene eine analytische

Mehr

Big Data in Marketing und IT

Big Data in Marketing und IT Big Data in Marketing und IT Chancen erkennen, Strategien entwickeln und Projekte erfolgreich umsetzen T-Systems Hacker Day 30. September 2015 Prof. Dr. Alexander Rossmann Reutlingen University Big Data

Mehr

Big Data Analytics: Herausforderungen und Systemansätze. Prof. Dr. Erhard Rahm. http://dbs.uni-leipzig.de

Big Data Analytics: Herausforderungen und Systemansätze. Prof. Dr. Erhard Rahm. http://dbs.uni-leipzig.de Big Data Analytics: Herausforderungen und Systemansätze Prof. Dr. Erhard Rahm http://dbs.uni-leipzig.de 2 Massives Wachstum an Daten Gartner: pro Tag werden 2.5 Exabytes an Daten generiert 90% aller Daten

Mehr

DIGITALE TRANSFORMATION MITTELSTAND POTENTIALE FÜR PROZESS-, PRODUKT- UND DIENSTLEISTUNGSINNOVATION

DIGITALE TRANSFORMATION MITTELSTAND POTENTIALE FÜR PROZESS-, PRODUKT- UND DIENSTLEISTUNGSINNOVATION DIGITALE TRANSFORMATION MITTELSTAND POTENTIALE FÜR PROZESS-, PRODUKT- UND DIENSTLEISTUNGSINNOVATION Dr. Daniel Jeffrey Koch Fraunhofer IAIS 19. Oktober 2015 1 Die Fraunhofer-Gesellschaft Forschen für die

Mehr

Apache Hadoop. Distribute your data and your application. Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.

Apache Hadoop. Distribute your data and your application. Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache. Apache Hadoop Distribute your data and your application Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org Apache The Apache Software Foundation Community und

Mehr

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP AGENDA HADOOP 9:00 09:15 Das datengetriebene Unternehmen: Big Data Analytics mit SAS die digitale Transformation: Handlungsfelder für IT und Fachbereiche Big

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Jürgen Vester Oracle Deutschland B.V. & Co KG Um was geht es bei Big Data? Bei Big Data sprechen wir eine Klasse von Daten an, die in der

Mehr

Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer. NoSQL. Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER

Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer. NoSQL. Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer NoSQL Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER Geleitwort 1 Vorwort 1 1 Einführung 1 1.1 Historie 1 1.2 Definition und

Mehr

Textanalyse mit UIMA und Hadoop.!! Hans-Peter Zorn data2day, Karlsruhe, 27.11.2014

Textanalyse mit UIMA und Hadoop.!! Hans-Peter Zorn data2day, Karlsruhe, 27.11.2014 Textanalyse mit UIMA und Hadoop Hans-Peter Zorn data2day, Karlsruhe, 27.11.2014 Über mich seit 2014: Big Data Scientist @ Inovex 2011-2013: TU Darmstadt, UKP Lab Etablierung der Hadoop-Infrastruktur Unterstützung

Mehr

Hans-Peter Zorn Inovex GmbH. Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke?

Hans-Peter Zorn Inovex GmbH. Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke? Hans-Peter Zorn Inovex GmbH Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke? War nicht BigData das gleiche NoSQL? Data Lake = Keine Struktur? flickr/matthewthecoolguy Oder gar ein Hadump? flickr/autohistorian

Mehr

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" HANS-JOACHIM EDERT

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN? HANS-JOACHIM EDERT WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" Copyr i g ht 2012, SAS Ins titut e Inc. All rights res er ve d. HANS-JOACHIM EDERT EBINAR@LUNCHTIME

Mehr

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting Beratung Results, no Excuses. Consulting Lösungen Grown from Experience. Ventum Consulting SQL auf Hadoop Oliver Gehlert 1 Ventum Consulting Daten und Fakten Results, no excuses Fachwissen Branchenkenntnis

Mehr

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik ARFA ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik Ralf Leipner Domain Architect Analytics, Risk Management & Finance 33. Berner Architekten

Mehr

Neue Trends und neue Möglichkeiten der datengetriebenen Versorgungsforschung

Neue Trends und neue Möglichkeiten der datengetriebenen Versorgungsforschung Neue Trends und neue Möglichkeiten der datengetriebenen Versorgungsforschung Hamburg 16.11.2016 Nmedia Fotolia Fraunhofer-Institut für Intelligente Analyseund Informationssysteme Fraunhofer IAIS - Wir

Mehr

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zettabyte CeBIT 2011 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zetabyte: analytische Datenbanken Die Datenflut. Analytische Datenbanken: Was ist neu? Analytische Datenbanken:

Mehr

Big Data Mythen und Fakten

Big Data Mythen und Fakten Big Data Mythen und Fakten Mario Meir-Huber Research Analyst, IDC Copyright IDC. Reproduction is forbidden unless authorized. All rights reserved. About me Research Analyst @ IDC Author verschiedener IT-Fachbücher

Mehr

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen Frank Irnich SAP Deutschland SAP ist ein globales Unternehmen... unser Fokusgebiet... IT Security für... 1 globales Netzwerk > 70 Länder, >

Mehr

Big Data. Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover

Big Data. Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover Big Data Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover Agenda Was ist Big Data? Parallele Programmierung Map/Reduce Der Big Data Zoo 2 3Vs oder: Was ist Big Data? Deutsche Telekom:

Mehr

Big Data und Oracle bringen die Logistik in Bewegung

Big Data und Oracle bringen die Logistik in Bewegung OPITZ CONSULTING Deutschland GmbH Dortmund, 07.05.2014 Bild-Quelle: Web-Seite von Pasta ZARA, Big Artikel Data So und entstehen Oracle bringen unsere die Nudeln Logistik in Bewegung http://de.pastazara.com/so-entstehen-unsere-nudeln

Mehr

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

Masterstudiengang Business Intelligence & Analytics

Masterstudiengang Business Intelligence & Analytics Fakultät für Wirtschaftswissenschaften Professuren für Wirtschaftsinformatik Masterstudiengang Business Intelligence & Analytics Wirtschaftsinformatik an der TU Chemnitz Professur Wirtschaftsinformatik

Mehr

Stratosphere. Next-Generation Big Data Analytics Made in Germany

Stratosphere. Next-Generation Big Data Analytics Made in Germany Stratosphere Next-Generation Big Data Analytics Made in Germany Robert Metzger Stratosphere Core Developer Technische Universität Berlin Ronald Fromm Head of Big Data Science Telekom Innovation Laboratories

Mehr

Big Data Anwendungen Chancen und Risiken

Big Data Anwendungen Chancen und Risiken Big Data Anwendungen Chancen und Risiken Dr. Kurt Stockinger Studienleiter Data Science, Dozent für Informatik Zürcher Hochschule für Angewandte Wissenschaften Big Data Workshop Squeezing more out of Data

Mehr

Oracle EngineeredSystems

Oracle EngineeredSystems Oracle EngineeredSystems Überblick was es alles gibt Themenübersicht Überblick über die Engineered Systems von Oracle Was gibt es und was ist der Einsatzzweck? Wann machen diese Systeme Sinn? Limitationen

Mehr

Datenintegration, -qualität und Data Governance. Hannover, 14.03.2014

Datenintegration, -qualität und Data Governance. Hannover, 14.03.2014 Datenintegration, -qualität und Data Governance Hannover, 14.03.2014 Business Application Research Center Führendes europäisches Analystenhaus für Business Software mit Le CXP (F) objektiv und unabhängig

Mehr

Interoperabilität und Informationssicherheit mit SGAM 2. LIESA Kongress, Saarbrücken, 30. September 2015

Interoperabilität und Informationssicherheit mit SGAM 2. LIESA Kongress, Saarbrücken, 30. September 2015 Interoperabilität und Informationssicherheit mit SGAM 2. LIESA Kongress, Saarbrücken, 30. September 2015 Inhalt Motivation für Smart Grid Architecture Model (SGAM) Einführung in SGAM Anwendungsbereiche

Mehr

SOA im Zeitalter von Industrie 4.0

SOA im Zeitalter von Industrie 4.0 Neue Unterstützung von IT Prozessen Dominik Bial, Consultant OPITZ CONSULTING Deutschland GmbH Standort Essen München, 11.11.2014 OPITZ CONSULTING Deutschland GmbH 2014 Seite 1 1 Was ist IoT? OPITZ CONSULTING

Mehr

Prozess- und Datenmanagement Kein Prozess ohne Daten

Prozess- und Datenmanagement Kein Prozess ohne Daten Prozess- und Datenmanagement Kein Prozess ohne Daten Frankfurt, Juni 2013 Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust Prozess- und Datenmanagement Erfolgreiche Unternehmen sind Prozessorientiert.

Mehr

IMPULS AM VORMITTAG. Smart Grids 2.0, Österreich als Leitmarkt und Leitanbieter 27. Februar 2014

IMPULS AM VORMITTAG. Smart Grids 2.0, Österreich als Leitmarkt und Leitanbieter 27. Februar 2014 IMPULS AM VORMITTAG Smart Grids 2.0, Österreich als Leitmarkt und Leitanbieter 27. Februar 2014 INHALTE Teradata? Wer sind denn die überhaupt? Big Data? Wirklich? Wo? Die vorgegebenen Impulsfragen: 1.

Mehr

B1 - Big Data Science: Tornado oder laues Lüftchen? Uetliberg, 15.09.2015 www.boak.ch

B1 - Big Data Science: Tornado oder laues Lüftchen? Uetliberg, 15.09.2015 www.boak.ch B1 - Big Data Science: Tornado oder laues Lüftchen? Uetliberg, 15.09.2015 www.boak.ch WANN REDEN WIR VON BIG DATA SCIENCE? Big Data ist der technische Teil von Big Data Science. Mehr Daten! Mehr Datenquellen(-änderungen)!

Mehr

Apache HBase. A BigTable Column Store on top of Hadoop

Apache HBase. A BigTable Column Store on top of Hadoop Apache HBase A BigTable Column Store on top of Hadoop Ich bin... Mitch Köhler Selbstständig seit 2010 Tätig als Softwareentwickler Softwarearchitekt Student an der OVGU seit Oktober 2011 Schwerpunkte Client/Server,

Mehr

WORKSHOPREIHE»ARBEITSWELTEN DER ZUKUNFT«

WORKSHOPREIHE»ARBEITSWELTEN DER ZUKUNFT« WORKSHOPREIHE»ARBEITSWELTEN DER ZUKUNFT«Ziele, Ergebnisse und Teilnehmer der Workshopreihe im Rahmen der Strategischen Partnerschaft»Fit für InnovationInventing Future Services«2014 Bild: BoschRexroth

Mehr

MapReduce und Datenbanken Thema 15: Strom bzw. Onlineverarbeitung mit MapReduce

MapReduce und Datenbanken Thema 15: Strom bzw. Onlineverarbeitung mit MapReduce MapReduce Jan Kristof Nidzwetzki MapReduce 1 / 17 Übersicht 1 Begriffe 2 Verschiedene Arbeiten 3 Ziele 4 DEDUCE: at the intersection of MapReduce and stream processing Beispiel 5 Beyond online aggregation:

Mehr

NoSQL HANSER. Einstieg in die Web 2.0 Datenbanken. Stefan Edlich Achim Friedland Jens Hampe Benjamin Brauer Markus Brückner

NoSQL HANSER. Einstieg in die Web 2.0 Datenbanken. Stefan Edlich Achim Friedland Jens Hampe Benjamin Brauer Markus Brückner Stefan Edlich Achim Friedland Jens Hampe Benjamin Brauer Markus Brückner NoSQL Einstieg in die Web 2.0 Datenbanken 2., akutalisierte und erweiterte Auflage HANSER Geleitwort Vorwort Vorwort zur 2. Auflage

Mehr

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data Herausforderungen und Chancen für Controller ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC BARC: Expertise für datengetriebene Organisationen Beratung Strategie

Mehr

Hadoop Projekte Besonderheiten & Vorgehensweise. Oracle/metafinanz Roadshow Februar 2014

Hadoop Projekte Besonderheiten & Vorgehensweise. Oracle/metafinanz Roadshow Februar 2014 Hadoop Projekte Besonderheiten & Vorgehensweise Oracle/metafinanz Roadshow Februar 2014 Head of Data Warehousing DWH Principal Consultant DWH Senior Consultant Wir fokussieren mit unseren Services die

Mehr

Symbiose hybrider Architekturen im Zeitalter digitaler Transformation. Hannover, 18.03.2015

Symbiose hybrider Architekturen im Zeitalter digitaler Transformation. Hannover, 18.03.2015 Symbiose hybrider Architekturen im Zeitalter digitaler Transformation Hannover, 18.03.2015 Business Application Research Center (BARC) B (Analystengruppe Europas führendes IT-Analysten- und -Beratungshaus

Mehr

!"#$"%&'()*$+()',!-+.'/',

!#$%&'()*$+()',!-+.'/', Soziotechnische Informationssysteme 5. Facebook, Google+ u.ä. Inhalte Historisches Relevanz Relevante Technologien Anwendungsarchitekturen 4(5,12316,7'.'0,!.80/6,9*$:'0+$.;.,&0$'0, 3, Historisches Facebook

Mehr

In-Memory Datenbanken im Kontext komplexer Analytics Pojekte am Beispiel der Otto Group BI

In-Memory Datenbanken im Kontext komplexer Analytics Pojekte am Beispiel der Otto Group BI In-Memory Datenbanken im Kontext komplexer Analytics Pojekte am Beispiel der Otto Group BI Hanau, 25.02.2015 1 Titel der Präsentation, Name, Abteilung, Ort, xx. Monat 2014 Der Aufbau der Group BI Plattform

Mehr

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller Was ist? Hannover, CeBIT 2014 Patrick Keller Business Application Research Center Historie 1994: Beginn der Untersuchung von Business-Intelligence-Software am Lehrstuhl Wirtschaftsinformatik der Universität

Mehr

Review Freelancer-Workshop: Fit für Big Data. Mittwoch, 29.04.2015 in Hamburg

Review Freelancer-Workshop: Fit für Big Data. Mittwoch, 29.04.2015 in Hamburg Review Freelancer-Workshop: Fit für Big Data Mittwoch, 29.04.2015 in Hamburg Am Mittwoch, den 29.04.2015, hatten wir von productive-data in Zusammenarbeit mit unserem langjährigen Partner Informatica zu

Mehr

Big Data Vom Hype zum Geschäftsnutzen

Big Data Vom Hype zum Geschäftsnutzen Big Data Vom Hype zum Geschäftsnutzen IBM IM Forum, Berlin, 16.04.2013 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Hype 15.04.2013 BARC 2013 2 1 Interesse an Big Data Nature 09-2008 Economist 03-2010

Mehr

Raluca Pahontu Gerd Schneider. Zentrum für Informations- und Medizintechnik (ZIM)

Raluca Pahontu Gerd Schneider. Zentrum für Informations- und Medizintechnik (ZIM) Data Science, Analytics und Big Data: Vision, Architektur und erste prototypische Umsetzung am Beispiel des vernetzten Operationssaals Archivtage 03.12.2015, Heidelberg Raluca Pahontu Gerd Schneider Zentrum

Mehr

WELCOME. Twitter Storm: Ereignisverarbeitung in Echtzeit. Guido Schmutz. Java Forum Stuttgart 2013 4.7.2013

WELCOME. Twitter Storm: Ereignisverarbeitung in Echtzeit. Guido Schmutz. Java Forum Stuttgart 2013 4.7.2013 WELCOME Twitter Storm: Ereignisverarbeitung in Echtzeit Guido Schmutz Java Forum Stuttgart 2013 BASEL BERN LAUSANNE ZÜRICH DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. HAMBURG MÜNCHEN STUTTGART WIEN 1 Unser

Mehr

Big Data für die Internet Sicherheit

Big Data für die Internet Sicherheit Big Data für die Internet Sicherheit Ralph Kemperdick Hans Wieser Microsoft 1 Mobile-first Data-driven Cloud-first 2 2 3 Messenger Wi nd ow s Liv e 4 5 Anwendung: Das Microsoft Cybercrime Center 6 Betrug

Mehr

Einführung in Hadoop

Einführung in Hadoop Einführung in Hadoop Inhalt / Lern-Ziele Übersicht: Basis-Architektur von Hadoop Einführung in HDFS Einführung in MapReduce Ausblick: Hadoop Ökosystem Optimierungen Versionen 10.02.2012 Prof. Dr. Christian

Mehr

Big Data: Solaranlagen reparieren Waschmaschinen? 2014 IBM Corporation

Big Data: Solaranlagen reparieren Waschmaschinen? 2014 IBM Corporation Big Data: Solaranlagen reparieren Waschmaschinen? Agenda Kurze Vorstellung Der Kunde und der ursprüngliche Ansatz Bisherige Architektur Vorgeschlagene Architektur Neue Aspekte der vorgeschlagenen Architektur

Mehr

Datenbanktechnologien für Big Data

Datenbanktechnologien für Big Data Datenbanktechnologien für Big Data Oktober 2013 Prof. Dr. Uta Störl Hochschule Darmstadt Big Data Technologien Motivation Big Data Technologien NoSQL-Datenbanksysteme Spaltenorientierte Datenbanksysteme

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Ralf Lange Global ISV & OEM Sales NoSQL: Eine kurze Geschichte Internet-Boom: Erste Ansätze selbstgebauter "Datenbanken" Google stellt "MapReduce"

Mehr

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung 2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung Reporting, Analyse und Data Mining André Henkel, initions AG 22. und 23. Oktober 2013 in Hamburg

Mehr

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Konrad Linner, solvistas GmbH Nürnberg, 20.November 2012 Inhaltsverzeichnis Vorstellung solvistas

Mehr

Komplexität der Information - Ausgangslage

Komplexität der Information - Ausgangslage Intuition, verlässliche Information, intelligente Entscheidung ein Reisebericht Stephan Wietheger Sales InfoSphere/Information Management Komplexität der Information - Ausgangslage Liefern von verlässlicher

Mehr

Big Data im Bereich Information Security

Big Data im Bereich Information Security Der IT-Sicherheitsverband. TeleTrusT-interner Workshop Bochum, 27./28.06.2013 Big Data im Bereich Information Security Axel Daum RSA The Security Division of EMC Agenda Ausgangslage Die Angreifer kommen

Mehr

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Adam Stambulski Project Manager Viessmann R&D Center Wroclaw Dr. Moritz Gomm Business Development Manager Zühlke Engineering

Mehr

Herausforderungen des Enterprise Endpoint Managements

Herausforderungen des Enterprise Endpoint Managements Herausforderungen des Enterprise Endpoint Managements PPPvorlage_sxUKMvo-05.00.potx santix AG Mies-van-der-Rohe-Straße 4 80807 München www.santix.de santix AG Herausforderungen 09.10.2013 Herausforderungen

Mehr

Next Generation CMS. API zu ihrem Content

Next Generation CMS. API zu ihrem Content Next Generation CMS API zu ihrem Content Ing. Clemens Prerovsky, MSc Gentics Software GmbH Gentics - wer wir sind Österreichischer Content Management und Portalsoftware Hersteller 150 Kunden 70.000 Benutzer

Mehr

Institut für angewandte Informationstechnologie (InIT)

Institut für angewandte Informationstechnologie (InIT) School of Engineering Institut für angewandte Informationstechnologie (InIT) We ride the information wave Zürcher Fachhochschule www.init.zhaw.ch Forschung & Entwicklung Institut für angewandte Informationstechnologie

Mehr

Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Big Data Use Case Demos Real Life Examples Bernd Mussmann Strategist & Senior Principal Analytics & Data Management, HP Enterprise Services May 5 th, 2015 Abstract (in German) Big Data Anwendungsfälle

Mehr

Neue Technologien für die Polizei 17. Europäischer Polizeikongress 2014, Berlin, 19. Februar 2014

Neue Technologien für die Polizei 17. Europäischer Polizeikongress 2014, Berlin, 19. Februar 2014 Neue Technologien für die Polizei 17. Europäischer Polizeikongress 2014, Berlin, 19. Februar 2014 Oliver Röniger Account Manager Safe Harbour Statement The following is intended to outline our general

Mehr

Detecting Near Duplicates for Web Crawling

Detecting Near Duplicates for Web Crawling Detecting Near Duplicates for Web Crawling Gurmeet Singh Manku et al., WWW 2007* * 16th international conference on World Wide Web Detecting Near Duplicates for Web Crawling Finde near duplicates in großen

Mehr

vinsight BIG DATA Solution

vinsight BIG DATA Solution vinsight BIG DATA Solution München, November 2014 BIG DATA LÖSUNG VINSIGHT Datensilos erschweren eine einheitliche Sicht auf die Daten...... und machen diese teilweise unmöglich einzelne individuelle Konnektoren,

Mehr

#Big Data in #Austria

#Big Data in #Austria Mario Meir-Huber und Martin Köhler #Big Data in #Austria Big Data Herausforderungen und Potenziale 23.6.2014 Vorstellung Studie Studie #BigData in #Austria Start: 1.11.2013 30.04.2014 Projektpartner: IDC

Mehr

Big Data. Mit DVD. Was ist wichtig im Hadoop-Ökosystem? Hadoop 2 als universelle Data Processing Platform

Big Data. Mit DVD. Was ist wichtig im Hadoop-Ökosystem? Hadoop 2 als universelle Data Processing Platform Mit DVD Jobs im Wandel: Was für Informatiker bedeutet 2/2015 Auf der Heft-DVD Über 8 GByte Software für Entwickler Multimedia: 5 Videos zur Hoch leistungsdatenbank EXASolution Hadoop: Cloudera s Distribution

Mehr

Arbeitskreis Sichere Smart Grids Kick-off

Arbeitskreis Sichere Smart Grids Kick-off Arbeitskreis Sichere Smart Grids Kick-off 30. Juli 2013, 16.30 bis 18.30 Uhr secunet Security Networks AG, Konrad-Zuse-Platz 2, 81829 München Leitung: Steffen Heyde, secunet Agenda: 16.30 Uhr Begrüßung

Mehr

Phänomen Digitalisierung Pflicht oder Kür erfolgreicher Unternehmen. Hannover, Timm Grosser, Senior Analyst

Phänomen Digitalisierung Pflicht oder Kür erfolgreicher Unternehmen. Hannover, Timm Grosser, Senior Analyst Phänomen Digitalisierung Pflicht oder Kür erfolgreicher Unternehmen Hannover, 15.03.2016 Timm Grosser, Senior Analyst 18.03.2016 BARC 2016 2 BARC: Expertise für datengetriebene Unternehmen 18.03.2016 BARC

Mehr

Prof. Dr.-Ing. Rainer Schmidt 1

Prof. Dr.-Ing. Rainer Schmidt 1 Prof. Dr.-Ing. Rainer Schmidt 1 Business Analytics und Big Data sind Thema vieler Veröffentlichungen. Big Data wird immer häufiger bei Google als Suchbegriff verwendet. Prof. Dr.-Ing. Rainer Schmidt 2

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

Visual Studio 2010 Neues für Architekten

Visual Studio 2010 Neues für Architekten 1 conplement AG 2009. All rights reserved. NIK Technologieseminar Visual Studio 2010 und.net 4.0 inside Visual Studio 2010 Neues für Architekten 16. November 2009 Thomas Hemmer Daniel Meixner conplement

Mehr

1. IBM Big Data Summit 2012

1. IBM Big Data Summit 2012 1. IBM Big Data Summit 2012 IBM Big Data Summit 2012 Sven Löffler, Solution & Business Development Leader Big Data, SWG IM IBM Analytics Solution Center Berlin 23.10.2012 3 IBM Analytics Solution Center

Mehr

MHP Real-Time Business Solution Ihre Lösung zur Harmonisierung und Analyse polytechnischer Messdaten

MHP Real-Time Business Solution Ihre Lösung zur Harmonisierung und Analyse polytechnischer Messdaten MHP Real-Time Business Solution Ihre Lösung zur Harmonisierung und Analyse polytechnischer Messdaten Christian Hartmann Präsentation Business Solutions 2014 Mieschke Hofmann und Partner Gesellschaft für

Mehr

Copyright 2014, Oracle and/or its affiliates. All rights reserved.

Copyright 2014, Oracle and/or its affiliates. All rights reserved. 1 Integrierte Systeme für SIs und VARs Matthias Weiss Direktor Mittelstand Technologie ORACLE Deutschland B.V. & Co. KG 2 Agenda Engineered Systems Oracle s Strategie Engineered Systems Big Data einmal

Mehr

Oracle R zum Anfassen

Oracle R zum Anfassen Oracle R zum Anfassen Alfred Schlaucher Oracle Deutschland (Data Warehouse) Oliver Bracht Andreas Prawitt Oracle Partner eoda Oracle R zum Anfassen: Die Themen 09:30 Begrüßung 09:45 R Zum Anfassen Einführung

Mehr

Das Potenzial von Multikanal- Recommendations nutzen Chancen und Grenzen der Personalisierung

Das Potenzial von Multikanal- Recommendations nutzen Chancen und Grenzen der Personalisierung Das Potenzial von Multikanal- Recommendations nutzen Chancen und Grenzen der Personalisierung Dr. Philipp Sorg (Senior Data Scientist) Peter Stahl (Senior Business Development Manager) 24. März 2015, Internet

Mehr

Big Data: Nutzen und Anwendungsszenarien. CeBIT 2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC

Big Data: Nutzen und Anwendungsszenarien. CeBIT 2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data: Nutzen und Anwendungsszenarien CeBIT 2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data steht für den unaufhaltsamen Trend, dass immer mehr Daten in Unternehmen anfallen und von

Mehr

Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel. Carsten Herbe metafinanz Informationssysteme GmbH

Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel. Carsten Herbe metafinanz Informationssysteme GmbH Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel Carsten Herbe metafinanz Informationssysteme GmbH In unserer Business Line Business Intelligence & Risk gibt es fünf Bereiche: Risk,

Mehr

Die IBM Netezza Architektur für fortgeschrittene Analysen

Die IBM Netezza Architektur für fortgeschrittene Analysen Michael Sebald IT Architect Netezza Die IBM Netezza Architektur für fortgeschrittene Analysen 2011 IBM Corporation Was ist das Problem aller Data Warehouse Lösungen? I / O Transaktionaler und analytischer

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden Neue Beziehungen finden...

Mehr

Oracle Health Check. Enable extreme Performance. www.ise-informatik.de. zusammen mit seinem Oracle Service Partner

Oracle Health Check. Enable extreme Performance. www.ise-informatik.de. zusammen mit seinem Oracle Service Partner Oracle Health Check Oracle Health Check zusammen mit seinem Oracle Service Partner Copyright (C) ISE GmbH - All Rights Reserved 1 Übersicht Oracle Health Check Architektur und Software Oracle Lizenzierung

Mehr

Teamprojekt & Projekt

Teamprojekt & Projekt 18. Oktober 2010 Teamprojekt & Projekt Veranstalter: Betreuer: Prof. Dr. Georg Lausen Thomas Hordnung, Alexander Schätzle, Martin Przjyaciel-Zablocki dbis Studienordnung Master: 16 ECTS 480 Semesterstunden

Mehr

BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA

BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA AUFSTELLUNG OPTIMIEREN. ENTWICKELN SIE IHRE SYSTEMLANDSCHAFT WEITER UND VERKAUFEN SIE DIE CHANCEN IHREN ANWENDERN Yu Chen, Thorsten Stossmeister

Mehr

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen DATA WAREHOUSE Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen Alfred Schlaucher, Detlef Schroeder DATA WAREHOUSE Themen Big Data Buzz Word oder eine neue Dimension

Mehr

Seminar WS 2012/13. S. Chaudhuri et al, CACM, Aug. 2011. Parallel DBS vs. Open Platforms for Big Data, e.g. HaDoop Near-Realtime OLAP

Seminar WS 2012/13. S. Chaudhuri et al, CACM, Aug. 2011. Parallel DBS vs. Open Platforms for Big Data, e.g. HaDoop Near-Realtime OLAP Seminar WS 2012/13 S. Chaudhuri et al, CACM, Aug. 2011 Parallel DBS vs. Open Platforms for Big Data, e.g. HaDoop Near-Realtime OLAP 2 Vorkonfigurierte, komplette Data Warehouse-Installation Mehrere Server,

Mehr