Die Temperaturentwicklung des Universums

Größe: px
Ab Seite anzeigen:

Download "Die Temperaturentwicklung des Universums"

Transkript

1 Die Temperaturentwicklung des Universums Temperature development of the universe Bachelorarbeit von Alexander Jürgen Bett An der Fakultät für Physik Institut für Experimentelle Kernphysik (EKP) Gutachter: Prof. Dr. W. de Boer Februar 2012 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum der Helmholtz-Gesellschaft

2

3 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einleitung Gründe für die Untersuchung der Temperaturentwicklung Überblick Grundlagen Das kosmologische Prinzip Rotverschiebung und Expansion Die Friedmanngleichungen Kritische Dichte Schwarzkörperstrahlung Temperaturproportionalitäten Temperaturabhängigkeiten im strahlungsdominierten Universum Energiedichte Größe Zeit Temperaturabhängigkeiten im materiedominierten Universum Größe Energiedichte Zeit Zusammenfassung Die Phasen des Universums Planck-Ära GUT-Ära Inflation Baryogenese Quark-Ära Hadronen-Ära Leptonen-Ära Nukleosynthese Ende der Strahlungsdominanz Rekombination / Entkopplung der Strahlung Zukunft Literatur 33 Abbildungsverzeichnis 35 3

4

5 1 EINLEITUNG 1 Einleitung Diese Bachelorarbeit beschäftigt sich mit der Temperaturentwicklung des Universums. In diesem ersten Kapitel soll zunächst kurz begründet werden, warum es interessant ist, sich mit der Temperaturentwicklung des Universums auseinander zu setzen. Weiterhin soll ein kurzer Überblick über die Geschichte des Universums gegeben werden. In Kapitel 2 werden dann einige Grundlagen der Kosmologie vorgestellt, die für spätere Berechnungen benötigt werden. Anschließend werden in Kapitel 3 Zusammenhänge zwischen der Temperatur und anderen Größen hergeleitet. Auf die einzelnen Entwicklungsphasen des Universums wird schließlich in Kapitel 4 näher eingegangen. 1.1 Gründe für die Untersuchung der Temperaturentwicklung Schon immer haben sich Menschen über die Geschichte des Universums Gedanken gemacht und sich gefragt, wie sich das Universum, in dem wir heute leben, gebildet hat. Die Temperaturentwicklung des Universums spielt bei der Beantwortung dieser Frage eine wichtige Rolle. Dafür gibt es mehrere Gründe. Zunächst einmal ist die Temperatur ein direktes Maß für die Energie. Über die Gleichung E = k B T (1) sind die beiden Größen verknüpft. Die Temperaturentwicklung beschreibt also ebenfalls die Energieentwicklung. Ist die Energie bekannt, so lässt sich bestimmen, wann sich Quarks zu Hadronen, Hadronen zu Kernen und Kerne zu Atomen zusammensetzen. Es lassen sich aber auch recht einfach Beziehungen zwischen der Temperatur und weiteren Größen finden. In Kapitel 3 werden so Proportionalitäten zwischen Temperatur und Energiedichte, Größe des Universums und Alter des Universums hergeleitet. 1.2 Überblick Abbildung 1 gibt einen Überblick über die Entwicklung des Universums. Das Universum beginnt mit dem Urknall, einer Singularität, über die man wenig aussagen kann. Nach einer kurzen Phase, in der alle fundamentalen Wechselwirkungen außer der Gravitation vereint sind, setzt die Inflation ein, während der das Universum sehr stark expandiert. Danach kühlt es sich ab und dehnt sich weiter aus. Zu Beginn ist die Energiedichte so hoch, dass freie Quarks und Gluonen existieren können. Bald jedoch reicht die Energie hierfür nicht mehr aus, sodass sich diese Teilchen zu Hadronen zusammensetzen, woraus sich später die ersten Kerne der leichten Elemente bilden. Noch trägt die Strahlung den größten Teil zur Gesamtenergiedichte des Universums bei. Bald aber beginnt die Materie zu dominieren, da die Energiedichte der Strahlung mit zunehmender Expansion schneller abfällt als die Energiedichte der Materie. Schließlich setzten 5

6 1 EINLEITUNG sich Kerne und Elektronen zu Atomen zusammen. Dadurch wird das Universum für die Strahlung durchsichtig, da die Photonen keine geladenen Stoßpartner mehr vorfinden. Man spricht von der Entkopplung der Strahlung. Dies ist die Entstehung der kosmischen Hintergrundstrahlung, die heute noch beobachtet werden kann. Aus Dichtefluktuationen entstehen dann später Sterne und Galaxien. Abbildung 1: Die Entwicklung des Universums [5] Diese Graphik fasst die Entwicklung des Universums zusammen. Beginnend mit dem Urknall dehnt sich das Universums aus. Zunächst besteht es aus Strahlung und Elementarteilchen, die miteinander im Gleichgewicht sind. Die Elementarteilchen setzen sich zu Kernen und diese wiederum zu Atomen zusammen. Da die Photonen nun keine Wechselwirkungspartner mehr haben, breiten sie sich ungehindert im Hintergrund aus. Die Materie bildet im Laufe der Zeit Sterne und Galaxien. 6

7 2 GRUNDLAGEN 2 Grundlagen In diesem Kapitel soll kurz auf einige kosmologische Grundlagen eingegangen werden, die später benötigt werden. 2.1 Das kosmologische Prinzip Eine wichtige Grundlage der Kosmologie ist das sogenannte kosmologische Prinzip. Dieses besagt, dass das Universum homogen und isotrop ist. Homogenität bedeutet hierbei, dass das Universum von jedem Punkt aus gleich aussieht; Isotropie ist gegeben, wenn das Universum in allen Richtungen gleich aussieht. Es gibt also keinen Mittelpunkt des Universums und keine ausgezeichneten Punkte. [2] Das kosmologische Prinzip gilt natürlich nur auf sehr großen Skalen. Sterne häufen sich in Galaxien an, während außerhalb davon kaum Materie vorhanden ist. Ebenso sammeln sich Galaxien in Galaxienhaufen. Damit man Homogenität und Isotropie vorfinden kann, muss man also Gebiete betrachten, die mehrere Galaxienhaufen umfassen. Dies ist erst bei Größenordnungen von mehr als 100Mpc der Fall. Das Parsec (pc) ist hierbei eine in der Astronomie gebräuchliche Längeneinheit. 1pc entspricht einer Entfernung von 3, m. [2] 2.2 Rotverschiebung und Expansion Eine weitere wichtige Eigenschaft des Universums ist die Tatsache, dass es expandiert. Diese Erkenntnis lässt sich aus Beobachtungen gewinnen. Die Spektren entfernter Objekte sind im Vergleich zu nahen Objekten ins Rote verschoben. Dies lässt sich damit erklären, dass sich die Objekte voneinander entfernen. Bewegt sich ein Körper, der Licht einer bestimmten Wellenlänge aussendet von uns weg, so wird die Wellenlänge auseinander gezogen, das Licht scheint ins Rote verschoben zu sein. Umgekehrt verhält es sich, wenn sich der Körper auf uns zu bewegt. Die Wellenlänge wird hierbei gestaucht und das Licht erscheint uns ins Blaue verschoben. [2] Abbildung 2 zeigt die Spektren der Sonne (oben) und des Galaxienhaufens BAS11 (unten). Bei BAS11 sind die Spektrallinien im Vergleich zur Sonne zu längeren Wellenlängen, also ins Rote, verschoben. 7

8 2 GRUNDLAGEN Abbildung 2: Rotverschiebung [6] Oben ist das Spektrum der Sonne zu sehen. Die Spektrallinien sind bei einem weit entfernten Galaxienhaufen (BAS11) ins Rote verschoben. Dies ist im unteren Teil der Graphik zu sehen. Man kann daraus schließen, dass sich die Sonne und BAS11 voneinander entfernen. Edwin Hubble untersuchte die Rotverschiebung von zahlreichen Galaxien und stellte fest, dass fast alle eine Rotverschiebung aufweisen. Diese Rotverschiebung ist umso größer, desto weiter die Objekte entfernt sind. Dies bedeutet, dass die Galaxien sich mit umso größerer Geschwindigkeit von uns entfernen, je weiter sie von uns weg sind. Hubble trug die Fluchtgeschwindigkeit v über die Entfernung der Galaxien von uns r auf. Es ergab sich ein linearer Zusammenhang, das sogenannte Hubblesche Gesetz [2]: v = H (t) r (2) Der Proportionalitätsfaktor H (t) wird als Hubbleparameter bezeichnet und meistens in der Einheit kms 1 Mpc 1 angegeben. Der heute gültige Hubble-Parameter wird mit H 0 bezeichnet. Präzise Messungen dieses Parameters sind sehr schwierig. Deshalb wird er oft in folgender Form angegeben [2]: H 0 = 100 hkms 1 Mpc 1 (3) Der Wert von h beträgt ungefähr 0,7. Unterschiedliche Messverfahren liefern jedoch leicht verschiedene Werte. [7] Da die Größe des Universums nicht bekannt ist, wird sie mit Hilfe eines Skalenfaktors S (t) angegeben. Man definiert S (t 0 ) = 1, wobei t 0 = 13, 7 Milliarden Jahre das Alter des Universums ist. Mit dem Skalenfaktor wird also die Größe des Universums in Einheiten der momentanen Größe angegeben. Das Hubblesche Gesetz lässt sich dann schreiben als [2] Ṡ (t) Ṡ (t) = H (t) S (t) bzw. = H (t) (4) S (t) 2.3 Die Friedmanngleichungen Das Universum lässt sich mit Hilfe der Friedmanngleichungen beschreiben. Mit diesen Gleichungen lässt sich die Entwicklung des Universums berechnen. Man erhält sie aus den 8

9 2 GRUNDLAGEN Feldgleichungen der Allgemeinen Relativitätstheorie unter Voraussetzung der Gültigkeit des Kosmologischen Prinzips, also der Homogenität und Isotropie des Universums. Die beiden Gleichungen lauten Ṡ 2 + kc 2 S 2 = 8π 3 Gρ (5) 2 S S + Ṡ2 + kc 2 S 2 = 8π Gp (6) c2 Hierbei ist S der Skalenfaktor, ρ die Massendichte und p der Druck. G bezeichnet die universelle Gravitationskonstante und c die Lichtgeschwindigkeit. k ist ein Krümmungsparameter, der eine Krümmung des Raumes berücksichtigt. [8] 2.4 Kritische Dichte Wir beobachten momentan ein expandierendes Universum. Der Expansion wirkt die Gravitation entgegen. Welche dieser beiden Effekte in Zukunft überwiegen wird, hängt von der Dichte des Universums ab. Je nachdem ob die Gesamtdichte des Universums größer oder kleiner als eine gewisse kritische Dichte ist, wird sich das Universum irgendwann wieder zusammenziehen oder immer weiter ausdehnen. Auf die verschiedenen Möglichkeiten wird in Abschnitt 4.11 noch näher eingegangen. Die kritische Dichte lässt sich über die Gesamtenergie des Universums berechnen [9], die sich aus potentieller und kinetischer Energie zusammensetzt. Man betrachtet eine Kugelschale der Masse M mit Radius r und eine Probemasse m, die sich am Rand der Kugelschale befindet. Mit dem Hubbleschen Gesetz lässt sich die kinetische Energie schreiben als v = H 0 r (7) E kin = 1 2 mv2 = 1 2 mh2 0 r 2 (8) Die Masse M lässt sich als Produkt des Volumens V und der Dichte ρ der Kugelschale schreiben: M = V ρ = 4 3 πr3 ρ (9) Damit ergibt sich für die potentielle Energie E pot = GMm r Die Gesamtenergie ist also gegeben durch = 4 3 πgρmr2 (10) E ges = 1 2 mh2 0 r πgρmr2 (11) 9

10 2 GRUNDLAGEN Multipliziert man diese Gleichung mit 2 und teilt durch mr 2, so ergibt sich H πgρ = E ges mr 2 (12) Dies ist gerade die erste Friedmanngleichung (5) mit dem Krümmungsterm E ges mr 2 = kc2 S 2 (13) Eine negative Gesamtenergie entspricht also einer positiven Krümmung und eine positive Gesamtenergie einer negativen Krümmung. [3] Für die kritische Dichte ρ c ist die Gesamtenergie gerade null. Zur Berechnung von ρ c setzt man also in (11) E ges = 0. Es ergibt sich ρ c = 3H2 0 8πG (14) Man definiert nun den Dichteparameter Ω als Verhältnis der tatsächlichen Dichte zur kritischen Dichte [3]: Ω = ρ ρ c (15) 2.5 Schwarzkörperstrahlung Da die kosmische Hintergrundstrahlung ein Schwarzkörperspektrum aufweist, soll an dieser Stelle kurz auf die wichtigsten Eigenschaften eines schwarzen Körpers eingegangen werden. Ein schwarzer Körper absorbiert sämtliche Strahlung. Gleichzeitig emittiert er thermische Strahlung. Am einfachsten stellt man sich einen schwarzen Körper als einen Hohlraum mit einer sehr kleinen Öffnung vor. Tritt nun Wärmestrahlung in den Hohlraum ein, so wird sie von den Wänden absorbiert und wieder emittiert. Es stellt sich ein thermisches Gleichgewicht zwischen der Strahlung und den Wänden ein. Die durch die Öffnung wieder austretende Strahlung weist dann ein charakteristisches Schwarzkörperspektrum auf. [10] Dieses Emissionsspektrum wird durch die Planck-Formel beschrieben. Sie gibt die Verteilung der Energiedichte in Abhängigkeit der Wellenlänge an und lautet [11]: P (λ, T ) = 8πhc λ 5 1 exp ( hc λk B T ) 1 (16) Das Spektrum ist nur von der Temperatur abhängig. Man spricht daher auch von der Temperatur der Strahlung. Die kosmische Hintergrundstrahlung weist ein nahezu perfektes Schwarzkörperspektrum bei einer Temperatur von 2, 725K auf [2]. In Abbildung 3 ist die Planck-Funktion in Abhängigkeit der Wellenlänge für verschiedene Temperaturen dargestellt. 10

11 2 GRUNDLAGEN T=5000K T=4500K T=4000K T=3500K T=3000K T=2500K P [J/m 4 ] λ [nm] Abbildung 3: Schwarzkörperspektrum Hier ist das Schwarzkörperspektrum für verschiedene Temperaturen dargestellt. Mit abnehmender Temperatur sinkt die Intensität und das Maximum wird zu größeren Wellenlängen hin verschoben. Das Spektrum weist für eine bestimmte Wellenlänge λ max ein Maximum auf. Mit abnehmender Temperatur verschiebt sich dieses Maximum zu größeren Wellenlängen. Es gilt λ max T = const = 2, mk (17) Diese Beziehung wird als Wiensches Verschiebungsgesetz bezeichnet. [10] 11

12 3 TEMPERATURPROPORTIONALITÄTEN 3 Temperaturproportionalitäten In diesem Kapitel sollen Proportionalitäten hergeleitet werden, die zeigen, wie sich die Temperatur des Universums in Abhängigkeit seiner Energiedichte, seiner Größe, also des Skalenfaktors und der Zeit, beziehungsweise seines Alters, entwickelt. Da sich für Strahlung und Materie unterschiedliche Zusammenhänge ergeben, muss zwischen dem strahlungsdominierten und dem materiedominierten Universum unterschieden werden. 3.1 Temperaturabhängigkeiten im strahlungsdominierten Universum Zunächst soll ein strahlungsdominiertes Universum betrachtet werden, in dem also die Strahlung den größten Teil zur Gesamtenergiedichte beiträgt Energiedichte Da die kosmische Hintergrundstrahlung ein Schwarzkörperspektrum aufweist, kann man das Universum als einen schwarzen Körper betrachten. Die Energiedichte in Abhängigkeit der Wellenlänge ist gegeben durch die Planck-Formel (16). Um die Gesamtenergiedichte ɛ zu berechnen, muss diese Gleichung über alle möglichen Wellenlängen integriert werden [11]: Es ergibt sich also ɛ = ˆ ɛ = 8πhc 0 Das Ausführen dieser Integration liefert ˆ 0 1 λ 5 P (λ, T ) dλ (18) 1 exp ( hc k B T λ ) dλ (19) 1 ɛ = 8π5 k 4 B 15 (hc) 3 T 4 (20) Die Energiedichte ist also proportional zur vierten Potenz der Temperatur. Dieser Zusammenhang ist unter dem Namen Stefan-Boltzmann-Gesetz bekannt. [1] Größe Um einen Zusammenhang zwischen der Größe des Universums und seiner Temperatur zu finden, kann man von der Energiedichte ausgehen. Die Energiedichte ist die Energie, die in einem bestimmten Volumen enthalten ist. Für Strahlungsquanten ist die Energie gegeben durch E = h ν = h c (21) λ 12

13 3 TEMPERATURPROPORTIONALITÄTEN Durch die Expansion des Universums wird die Wellenlänge rotverschoben. Sie wird mit zunehmender Größe des Universums länger und ist proportional zum Skalenfaktor [2]. Das Volumen ist proportional zu S 3. Damit gilt für die Energiedichte der Photonen [8] ɛ = E V = h c V λ 1 S 4 (22) Weiterhin ist die Energiedichte nach dem Stefan-Boltzmann-Gesetz (20) proportional zu T 4. Daher gilt S 1 T Mit Hilfe dieses Zusammenhangs lässt sich beispielsweise berechnen, wie groß das Universum zum Zeitpunkt der Entkopplung der Strahlung, also der Entstehung der kosmischen Hintergrundstrahlung, war. Die Temperatur der Strahlung betrug zu diesem Zeitpunkt etwa 3000K [12]. Heute haben die Photonen der Hintergrundstrahlung eine Temperatur von knapp 3K. Mit (23) gilt also, dass das Produkt aus S und T konstant ist, das heißt man erhält den Zusammenhang (23) S Entkopplung T Entkopplung = S heute T heute (24) Per Definition gilt S heute = 1. Damit ergibt sich S Entkopplung = T heute T Entkopplung = 10 3 (25) Da das Volumen proportional zu S 3 ist, ist das Universum heute ungefähr 10 9 mal so groß, wie zum Zeitpunkt der Entkopplung der Strahlung Zeit Um einen Zusammenhang zwischen Temperatur und Alter des Universums herzuleiten, kann man von der ersten Friedmann-Gleichung (5) ausgehen [8]. Ersetzt man die Massendichte gemäß ɛ = ρc 2 (26) durch die Energiedichte, so lautet diese Gleichung Ṡ 2 + kc 2 S 2 = 8π Gɛ (27) 3c2 Der Krümmungsterm kc2 kann aus zwei Gründen vernachlässigt werden. Zum einen ist S 2 das Universum nur während der ersten Jahre nach dem Urknall strahlungsdominiert [3]. In dieser Zeit ist es deutlich kleiner als heute. Da der Skalenfaktor heute per Definition S 0 = 1 ist, gilt im frühen Universum also S 1. Da die Energiedichte für Strahlungsdominanz proportional zu S 4 ist, gilt damit: 8π 3c 2 Gɛ 1 S 4 kc2 S 2 (28) 13

14 3 TEMPERATURPROPORTIONALITÄTEN Weiterhin liegt die Dichte des Universums heute sehr nahe an der kritischen Dichte; das Universum ist also flach. [3] Dies ist gleichbedeutend mit k 0. Unter Vernachlässigung des Krümmungsterms kann die Friedmanngleichung geschrieben werden als Ṡ 2 ( ) 1 S 2 = ds 2 = 8π Gɛ (29) S dt 3c2 oder auch als ( ) 1 1 ds 8π S dt = 3c 2 Gɛ 2 Nun müssen die Energiedichte ɛ, der Skalenfaktor S sowie ds in Abhängigkeit der Temperatur ausgedrückt werden. Mit dem Stefan-Boltzmann-Gesetz (20) gilt (30) ɛ = a T 4 mit a = 8π5 k 4 B 15 (hc) 3 (31) Weiterhin ist der Skalenfaktor gemäß (23) antiproportional zur Temperatur. Es gibt also eine Konstante b, sodass gilt S = b 1 (32) T Leitet man diesen Ausdruck nach der Temperatur ab, so ergibt sich ds = b dt (33) T 2 Setzt man nun die Ausdrücke (31), (32) und (33) in Gleichung (30) ein, so erhält man nach Vereinfachung dt ( ) 1 8π T dt = 3c 2 Ga 2 T 4 (34) Diese Differentialgleichung kann durch Separation der Variablen gelöst werden: Integration liefert dt ( ) 1 8π T 3 = 3c 2 Ga 2 dt (35) ( ) 1 1 8π 2T 2 = 3c 2 Ga 2 t (36) Nach der Temperatur aufgelöst ergibt Gleichung (36) schließlich T = ( 3 5 h 3 2 c π 3 G 1 2 k 2 B ) t (37) 14

15 3 TEMPERATURPROPORTIONALITÄTEN Hierbei wurde der Parameter a wieder gemäß (31) ersetzt. Man erhält also, dass die Temperatur proportional zum Kehrwert der Wurzel aus der Zeit ist [12]. Da die Temperatur über E = k B T direkt mit der Energie verknüpft ist, gilt diese Proportionalität auch für die Strahlungsenergie. Setzt man Zahlenwerte ein so ergibt sich E [MeV ] = k B T = 1, 3MeV s 1 /2 1 t [s] (38) Hiermit kann man beispielsweise berechnen, zu welchem Zeitpunkt t p,n Protonen und Neutronen entstanden sind. Deren Energie liegt in der Größenordnung von 1GeV. Es ergibt sich ( ) 1, 3MeV s 1/2 2 t p,n = 10 6 s 1GeV 3.2 Temperaturabhängigkeiten im materiedominierten Universum Im folgenden sollen nun die Proportionalitäten für ein materiedominiertes Universum hergeleitet werden Größe Betrachtet man das Universum auf großen Skalen, auf denen es homogen ist, so kann man die Materie näherungsweise als ideales Gas annehmen, das adiabatisch expandiert [8]. Diese Näherung soll im folgenden verwendet werden, um einen Zusammenhang zwischen der Temperatur und dem Skalenfaktor in einem materiedominierten Universum herzuleiten. Es gelten dann die Gesetze der Thermodynamik für ein ideales Gas. Aus dessen Zustandsgleichung pv = Nk B T (39) und dem Ausdruck für die innere Energie U = 3 2 Nk BT (40) folgt für den Druck p = 2U 3V Man verwendet nun den ersten Hauptsatz der Thermodynamik (41) du = δw + δq (42) Bei einer adiabatischen Expansion wird keine Wärme ausgetauscht, es gilt also δq = 0. Daher erhält man unter Verwendung von (41) du = δw = pdv = 2U dv (43) 3V 15

16 3 TEMPERATURPROPORTIONALITÄTEN Setzt man (40) in (43) ein, so ergibt sich 3 2 k B (T dn + NdT ) = Nk BT dv (44) V Unter der Annahme, dass die Teilchenzahl konstant ist, gilt dn = 0. Der Ausdruck (44) lässt sich vereinfachen und in die folgende Differentialgleichung umformen: 3 dt 2 T = dv V Integration von T 0 bis T und von V 0 bis V liefert ( ) 3 ( ) T 2 V0 ln = ln T0 V (45) (46) Hieraus ergibt sich mit V S 3 T V 2 3 S 2 (47) Energiedichte Für die Energiedichte von Materie gilt [8] ɛ = E V = mc2 V 1 S 3 (48) Damit folgt mit der Proportionalität (47) sofort ein Zusammenhang zwischen Energiedichte und Temperatur im materiedominierten Universum: ɛ T 3 2 (49) Zeit Um die zeitliche Temperaturabhängigkeit im materiedominierten Universum herzuleiten, kann man analog zur Herleitung im strahlungsdominierten Universum vorgehen. Man geht wieder von der ersten Friedmanngleichung (5) aus. Da das Universum flach ist [3], gilt k 0. Zumindest für den Beginn der materiedominierten Ära gilt weiterhin S 1. Mit der Beziehung ɛ S 3 für Materie folgt dann 8π 3c 2 Gɛ 1 S 3 kc2 S 2 (50) Der Krümmungsterm wird also im Folgenden ebenfalls vernachlässigt. Damit ergibt sich wieder die vereinfachte Friedmanngleichung (30): ( ) 1 1 ds 8π S dt = 3c 2 Gɛ 2 (51) 16

17 3 TEMPERATURPROPORTIONALITÄTEN Wie im strahlungsdominierten Fall müssen nun auch hier ɛ, S und ds in Abhängigkeit der Temperatur ausgedrückt werden. Die Energiedichte ist bei Materiedominaz nach (49) proportional zu T 3 2, der Skalenfaktor ist gemäß (47) proportional zu T 1 2. Es gibt also zwei Konstanten α und β, sodass gilt: ɛ = α T 3 2 (52) S = β T 1 2 (53) Die Ableitung von (53) nach der Temperatur liefert einen Ausdruck für ds: ds = 1 2 βt 3 2 dt (54) Durch Einsetzen von (52), (53) und (54) in (51) ergibt sich nach Vereinfachung 1 ( ) 1 dt 8π 2 T dt = 3c 2 Gα 2 3 T 4 (55) Diese Differentialgleichung lässt sich wiederum durch Separation der Variablen lösen: Integration liefert: ( ) 1 T 7 8π 4 dt = 2 3c 2 Gα 2 dt (56) ( ) T 3 8π 4 = 2 3c 2 Gα 2 t (57) Damit ist die Proportionalität zwischen Temperatur und Zeit im materiedominierten Universum gegeben durch T t 4 3 (58) 3.3 Zusammenfassung Tabelle 1 enthält eine Zusammenfassung aller hergeleiteten Proportionalitäten. Strahlungsdominiertes Universum Materiedominiertes Universum Energiedichte ɛ T 4 T ɛ 1 4 ɛ T 3 2 T ɛ 2 3 Skalenfaktor S T 1 T S 1 S T 1 2 T S 2 Zeit t T 2 T t 1 2 t T 3 4 T t 4 3 Tabelle 1: Zusammenhänge zwischen Temperatur und anderen Größen 17

18 3 TEMPERATURPROPORTIONALITÄTEN Insbesondere können hieraus auch nochmals die Zusammenhänge zwischen Energiedichte und Skalenfaktor entnommen werden, aus denen ersichtlich wird, dass die Energiedichte der Strahlung im expandierenden Universum schneller abnimmt als die der Materie. Es gilt: ɛ Strahlung 1 S 4 (59) ɛ Materie 1 S 3 (60) 18

19 4 DIE PHASEN DES UNIVERSUMS 4 Die Phasen des Universums In diesem Abschnitt soll beginnend unmittelbar nach dem Urknall auf die wichtigsten Abschnitte, die das Universum bis heute durchlaufen hat, eingegangen werden. Zum Schluss wird ein kurzer Ausblick in die Zukunft gegeben. 4.1 Planck-Ära Es ist sehr schwierig über den eigentlichen Beginn des Universums, genauer über die ersten s nach dem Urknall, physikalisch sinnvolle Aussagen zu machen. Man spricht häufig von einer Anfangssingularität [2]. Temperatur und Energiedichte werden immer größer und gehen gegen unendlich, je näher man dem Urknall kommt. Solche Singularitäten werden durch die heute bekannten physikalischen Theorien nicht beschrieben. Man geht davon aus, dass in dieser Zeit alle vier Grundkräfte, Gravitation, elektromagnetische, starke und schwache Wechselwirkung, in einer einzigen Urkraft vereint waren. Um dies jedoch mathematisch zu erfassen, benötigt man eine Theorie, die sowohl die Gravitation als auch die Quantenmechanik beinhaltet, die Quantengravitation. Diese Theorie existiert bislang jedoch nicht. [3] Eine Grenze, bis zu der die bekannten physikalischen Gesetze gelten, ist durch die sogenannten Planckgrößen gegeben. Diese Größen lassen sich recht einfach herleiten [3]: Eine Masse M erzeugt ein Gravitationspotential. Um diesem Potential zu entkommen, muss eine Probemasse m im Abstand R von der Masse M sich mindestens mit einer bestimmten Geschwindigkeit bewegen. Diese Geschwindigkeit wird als Entweichgeschwindigkeit bezeichnet. Man erhält sie, indem man die potentielle Energie mit der kinetischen Energie der Probemasse gleichsetzt: Damit ergibt sich GMm R v = = mv2 2 2GM R Ist M so groß, dass die Entweichgeschwindigkeit größer als die Lichtgeschwindigkeit wäre, so ist die Masse M ein schwarzes Loch, aus dem nicht einmal mehr das Licht entweichen kann. Im Grenzfall, für v = c erhält man aus (62) den sogenannten Schwarzschildradius R SL. Dieser gibt an, welchen Radius ein Objekt der Masse M mindestens haben muss, um nicht zu einem schwarzen Loch zu kollabieren und ist gegeben durch (61) (62) R SL = 2GM c 2 (63) Man kann nun ein hypothetisches Elementarteilchen größtmöglicher Masse betrachten, das gerade noch nicht zu einem schwarzen Loch kollabiert. Die Ausdehnung eines solchen 19

20 4 DIE PHASEN DES UNIVERSUMS Teilchens ist durch seine Comptonwellenlänge λ C = h Mc (64) gegeben. Setzt man die Comptonwellenlänge dem Schwarzschildradius gleich, so erhält man eine Obergrenze für die Masse M P l eines Elementarteilchens, auf das sowohl die Quantenmechanik als auch die Gravitation angewandt werden kann. Diese Masse wird als Planckmasse bezeichnet. Man erhält M P l = hc 2G kg (65) Die Ausdehnung eines Elementarteilchens der Planckmasse ist dann die Plancklänge l P l. Mit (64) erhält man l P l = h M P l c m (66) Auf Strecken, die kürzer als die Placklänge sind, sind unsere physikalischen Gesetze nicht mehr gültig. Das Gleiche gilt für Zeitspannen, die kürzer als die Planckzeit sind. Die Planckzeit ist die Zeit, die das Licht benötigt um eine Strecke der Länge l P l zurückzulegen [13]. Es ist also t P l = l P l c s (67) Über die ersten s des Universums kann also nichts ausgesagt werden. Es ist sogar möglich, dass es auf derart kleinen Skalen gar keinen Sinn mehr macht, von Zeitspannen und Längen zu sprechen. Nach Ablauf dieser Zeit war jedoch die Dichte extrem hoch. Teilt man die Planckmasse durch das Planckvolumen (lp 3 l ), so ergibt sich eine Größenordnung von kgm GUT-Ära s nach dem Urknall beträgt die Temperatur etwa K [4], was sich gemäß E = k B T (68) in eine Energie von ungefähr T ev umrechnen lässt. In keinem Teilchenbeschleuniger lassen sich derartige Energien erreichen. Am LHC am CERN werden bei Teilchenstößen Energien von gerade einmal 14T ev erreicht [14]. Es beginnt nun die GUT-Ära, das Zeitalter der Großen Vereinheitlichten Theorien. (GUT steht für Grand Unified Theories.) Diese Theorien vereinen die elektromagnetische, die starke und die schwache Kraft zu einer einzigen GUT-Kraft. [15] Die Stärke der fundamentalen Wechselwirkungen sind nicht konstant, sondern abhängig von der Energie. Mit zunehmender Energie wird die elektromagnetische Kraft stärker, die beiden Kernkräfte dagegen schwächer. Bei genügend hoher Energie können diese drei Kräfte nicht 20

21 4 DIE PHASEN DES UNIVERSUMS mehr unterschieden werden. Lediglich die Gravitation konnte bis heute nicht in die Vereinheitlichung integriert werden. [4] Zwischen Teilchen, die der starken Wechselwirkung unterliegen, wie beispielsweise Quarks, und Teilchen, die der schwachen Wechselwirkung unterliegen, zum Beispiel Neutrinos, gibt es also während der GUT-Ära keinen Unterschied. Sie verhalten sich gleich. [3] Die Austauschteilchen der GUT-Kraft können Quarks in Leptonen umwandeln und umgekehrt. Sie werden daher als Leptoquarks bezeichnet und häufig mit X und Y abgekürzt. [15] Diese X- und Y-Bosonen sind sehr schwer und haben sowohl eine elektrische, als auch eine Farbladung. [4] Bei den hohen Energien während der GUT-Ära werden ständig Teilchen-Antiteilchenpaare erzeugt und wieder vernichtet. Es herrscht ein thermisches Gleichgewicht zwischen Teilchen und Strahlung. Die GUT-Ära endet mit einer spontanen Symmetriebrechung: Die GUT-Kraft spaltet auf in die starke und die elektroschwache Kraft. [4] Es gibt nun also drei Grundkräfte. Die Temperatur beträgt zu diesem Zeitpunkt, ca s nach dem Urknall, noch etwa K. [16] 4.3 Inflation Die Inflation setzt ungefähr s nach dem Urknall ein und dauert ca s. In dieser kurzen Zeit dehnt sich das Universum um einen Faktor von mindestens aus. [16] Diese extrem schnelle Expansion erfolgt mit einer Geschwindigkeit, die viel größer als die Lichtgeschwindigkeit ist. Dies ist dennoch kein Widerspruch zur Relativitätstheorie. Die Relativitätstheorie verbietet nämlich nur, dass sich Informationen innerhalb der Raumzeit mit Überlichtgeschwindigkeit bewegen. Im Fall der Inflation ist es jedoch die Raumzeit selbst, die sich ausdehnt. [17] Die Inflation gehörte ursprünglich nicht zur Urknalltheorie. Sie wurde jedoch hinzugefügt, da sie eine Erklärung für mehrere Probleme der ursprünglichen Urknalltheorie liefert. [17] Ein erstes Problem der ursprünglichen Urknalltheorie ist das sogenannte Horizontproblem. Die kosmische Hintergrundstrahlung, auf die in Abschnitt 4.10 noch näher eingegangen wird, ist extrem homogen und weist in allen Richtungen das gleiche Spektrum auf. Das bedeutet, dass alle Photonen, auch wenn sie aus unterschiedlichen Richtungen kommen, die gleiche Temperatur haben. Betrachtet man zwei Photonen, die seit dem Urknall unterwegs sind und aus entgegengesetzten Richtungen kommen, so können sie nach der Urknalltheorie ohne Inflation noch nie in kausalem Kontakt gewesen sein. Dennoch weisen sie exakt die gleichen Eigenschaften auf. Dies wäre ein sehr merkwürdiger und extrem unwahrscheinlicher Zufall. Die Inflation löst dieses Problem. Durch die Ausdehnung mit Überlichtgeschwindigkeit werden Gebiete, die zu Beginn in kausalem Kontakt waren, so schnell auseinander gezogen, dass sie hinterher so weit voneinander entfernt sind, dass keine Austauschmöglichkeit mehr zwischen ihnen besteht. Die Photonen der Hintergrundstrahlung, die uns heute aus unterschiedlichen Richtungen erreichen, waren daher einmal in Kontakt und es ist somit kein Zufall, dass die sie alle die gleichen Eigenschaften besitzen. [2] 21

22 4 DIE PHASEN DES UNIVERSUMS Wie stark die Inflation sein muss, lässt sich leicht berechnen. Für die Strahlung ist der Skalenfaktor gemäß (23) proportional zum Kehrwert der Temperatur. Es gilt also S GUT S 0 = T 0 T GUT (69) Der Index 0 bezieht sich hierbei auf die heutigen Größen. Die Temperatur der kosmischen Hintergrundstrahlung beträgt heute ungefähr 2, 7K. Die Größe des sichtbaren Universums ist heute, in einem Alter des Universums von t 0 = 13, Jahre, S 0 = ct m (70) Mit einer Temperatur am Ende der GUT-Ära von T GUT = K ergibt sich somit, dass das heute sichtbare Universum am Ende der GUT-Ära, also zum Zeitpunkt t GUT = s S GUT = T 0 S 0 2, 7cm (71) T GUT groß war. Die Strecke r, die ein Teilchen zu dieser Zeit seit dem Urknall zurückgelegt haben kann, ist jedoch nur r = ct GUT = cm (72) Ein Bereich, in dem verschiedene Photonen in kausalem Kontakt sein können ist also am Ende der GUT-Ära, vor der Inflation, nur cm groß, obwohl der heute sichtbare Bereich des Universum nach der ursprünglichen Urknalltheorie bereits knapp 3cm groß ist. Die Inflation muss also eine Ausdehnung um mindestens einen Faktor bewirkt haben. [16] Ein weiteres Problem der ursprünglichen Urknalltheorie ist das Flachheitsproblem. Das Universum, das wir heute sehen, ist flach. Auch dies könnte natürlich ein Zufall sein, was jedoch wiederum sehr unwahrscheinlich ist. Die Inflation liefert eine bessere Erklärung. Durch die extreme Ausdehnung wird die Raumzeit geglättet. Es kann also zu Beginn durchaus Krümmungen gegeben haben. Wird der Radius des Universums jedoch um einen Faktor größer, so werden auch die Krümmungen auseinander gezogen und abgeflacht. Lokal, also in Größenordnungen unseres sichtbaren Universums, ergibt sich somit ein flacher Raum. Die Inflation gibt damit eine Erklärung, wie aus unterschiedlichen Anfangsbedingungen, die nicht genau bekannt sein müssen, ein flaches Universum entstehen kann. [3] Die Inflation löst ebenfalls das Problem der Abwesenheit magnetischer Monopole. Elektrische Ladungen können isoliert werden, magnetische Pole jedoch nicht. Die Inflation könnte die magnetischen Monopole so stark ausgedünnt haben, dass wir heute keine mehr davon beobachten können. [16] Es stellt sich nun die Frage, warum die Inflation überhaupt einsetzt. Eine mögliche Erklärung hierfür ist die spontane Symmetriebrechung am Ende der GUT-Ära, bei der die GUT-Kraft in starke und elektroschwache Wechselwirkung aufspaltet. [3] Das Inflationspotential ist in der folgenden Abbildung schematisch dargestellt: 22

23 4 DIE PHASEN DES UNIVERSUMS Abbildung 4: Inflationspotential [18] Das Inflationspotential kann man sich wie abgebildet vorstellen. Während der Inflation geht das Universum von einem instabilen Zustand in den stabilen Zustand im Potentialminimum über. Wie eine Kugel, die eine parabelförmige Bahn herunterrollt, führt auch das Universum Schwingungen um den Gleichgewichtszustand aus, wodurch energiereiche Teilchen erzeugt werden. Zu Beginn befindet sich das Universum in einem metastabilen Zustand (links oben). Durch die Symmetriebrechung geht es in den stabilen Zustand im Potentialminimum über. Bei diesem Übergang findet die Inflation statt. Das Universum kühlt sich dabei stark ab. Es wird aber kurz darauf wieder aufgeheizt, da durch Oszillationen um den stabilen Zustand energiereiche Teilchen entstehen. [16] 4.4 Baryogenese Ungefähr zeitgleich zur Inflation findet die Baryogenese statt. Die Energie reicht nun nicht mehr aus, um Leptoquark-Antileptoquarkpaare zu erzeugen und die GUT-Kraft, deren Überträgerteilchen die Leptoquarks sind, existiert nicht mehr. Die X- und Y-Bosonen zerfallen also in Quarks und Leptonen. [3] Dabei gibt es unterschiedliche Zerfallsmöglichkeiten für Leptoquarks. Ein X beispielsweise kann folgendermaßen zerfallen [19]: Das Anti-X zerfällt entsprechend nach folgenden Reaktionen: X d + e + (73) X u + u (74) X d + e (75) X u + u (76) Wir leben heute in einem Universum, das aus Materie und nicht aus Antimaterie besteht. Dafür gibt es zwei mögliche Erklärungen. Es könnte Bereiche im Universum geben, die 23

24 4 DIE PHASEN DES UNIVERSUMS aus Antimaterie bestehen. Dann müsste an den Grenzen zwischen Materie- und Antimateriebereichen Annihilationsstrahlung entstehen. Eine derartige Strahlung wurde jedoch bis heute nicht gemessen. Die zweite Möglichkeit ist, dass schon im frühen Universum mehr Materie, als Antimaterie entstanden ist. Die Antimaterie wurde in diesem Fall durch Stöße mit Materieteilchen komplett vernichtet, während ein kleiner Überschuss an Materie übrig blieb, aus dem sich später sämtliche Galaxien und Sterne bildeten. Diese Asymmetrie könnte während der Baryogenese entstanden sein. [20] Damit eine Materie-Antimaterie-Asymmetrie entstehen kann, müssen drei Bedingungen, die Sacharow-Bedingungen, erfüllt sein. [2] Die erste Bedingung ist eine Verletzung der Baryonenzahlerhaltung. Die Baryonenzahl ist für Quarks, 1 3 für Antiquarks und 0 für Leptonen. In den heute bekannten und beobachteten Teilchenreaktionen ist die Baryonenzahl erhalten. In den großen vereinheitlichten Theorien ist dies jedoch nicht unbedingt der Fall, da die X- und Y-Bosonen Quarks und Leptonen ineinander umwandeln können. [20] Die zweite Bedingung ist die CP-Verletzung. Die C-Parität vertauscht Teilchen und Antiteilchen, der Paritätsoperator P führt ein Teilchen in sein Spiegelbild über ( r r; p p) [21]. Eine Verletzung der CP-Erhaltung wurde bereits experimentell beim Kaon- Zerfall nachgewiesen. [2] Es ist also durchaus möglich, dass sie auch beim Zerfall der Leptoquarks verletzt ist. Die Folge ist, dass die Zerfälle (73) und (74), bzw. (75) und (76) nicht genau gleich wahrscheinlich sind. [19] Schließlich muss als dritte Bedingung noch das thermische Gleichgewicht verletzt sein. Auch dies ist hier der Fall. Sobald die Temperatur unter einen bestimmten kritischen Wert gesunken ist, genügt die Energie nicht mehr, X- und Y-Bosonen zu erzeugen, sodass diese Teilchen nur noch zerfallen, jedoch nicht mehr erzeugt werden und daher nicht mehr im thermischen Gleichgewicht mit den anderen Teilchen sind. [2] Für den Zerfall der Leptoquarks sind also die Sacharow-Bedingungen erfüllt, was die Erzeugung eines Materie-Antimaterie-Gleichgewichts während der Baryogenese ermöglicht. 4.5 Quark-Ära Nachdem die Leptoquarks zerfallen sind, besteht das Universum nun aus Elektronen, Neutrinos, freien Quarks und deren Antiteilchen. Weiterhin sind Austauschteilchen der starken Wechselwirkung, Gluonen, vorhanden. Seit dem Urknall sind gerade einmal s vergangen. Die Temperatur beträgt ungefähr K, was einer Energie von 10 9 GeV entspricht. Bei derartigen Energien sind all die genannten Teilchen, auch die Neutrinos, im thermischen Gleichgewicht. Ständig werden Quark-Antiquark-Paare erzeugt und wieder vernichtet. [23] Man kann sich nun fragen, warum es heute keine freien Quarks mehr gibt. Dies liegt daran, dass die starke Kernkraft mit wachsendem Abstand zunimmt. Ähnlich wie bei der elektromagnetischen Wechselwirkung zwischen Punktladungen, kann man sich auch bei 24

25 4 DIE PHASEN DES UNIVERSUMS der starken Wechselwirkung vorstellen, dass sich ein Feld zwischen den Quarks ausbildet. Während das elektrische Feld jedoch mit wachsendem Abstand der Punktladungen schwächer wird, so wird das Feld der starken Wechselwirkung immer stärker, wenn man die Quarks voneinander entfernt. [22] Während der Quark-Ära ist das Universum noch so dicht, dass das Feld verhältnismäßig schwach ist. Mit zunehmender Expansion des Alls wird jedoch auch der mittlere Abstand zwischen den Teilchen größer, wodurch die Feldstärke zunimmt. Schließlich ist die Feldenergie so groß, dass ein Quark-Antiquark-Paar entstehen kann. Anstatt vier freier Quarks hat man dann zwei gebundene, farbneutrale Mesonen. [1] Bei einer Temperatur von etwa K, die nach einer Zeit von s erreicht wird, spaltet die elektroschwache Kraft auf in die elektromagnetische und die schwache Wechselwirkung. Ab diesem Zeitpunkt sind also alle vier Grundkräfte, wie sie uns heute bekannt sind, vorhanden. [24] 4.6 Hadronen-Ära Ungefähr 10 6 s nach dem Urknall, bei einer Temperatur von K können keine freien Quarks mehr existieren. Aufgrund der starken Wechselwirkung setzen sie sich zu Hadronen zusammen. Ab jetzt gibt es nur noch farbneutrale Teilchen. Zwischen den Hadronen und der Strahlung besteht zunächst ein thermisches Gleichgewicht. Mit abnehmender Energie zerfallen die schweren Hadronen in leichtere Hadronen. Schließlich bleiben hauptsächlich Protonen und Neutronen übrig. [25] Der Zerfall des Neutrons, das als freies Teilchen eine Lebensdauer von 881, 5s [26] besitzt, kann kann auf Zeitskalen im Bereich von unter einer Sekunde vernachlässigt werden. Protonen, Antiprotonen, Neutronen und Antineutronen werden ständig aus der energiereichen Strahlung erzeugt und vernichten sich durch Stöße wieder. Sinkt die Energie jedoch unter die Ruheenergie der Nukleonen, die knapp 1GeV beträgt, so können sie nicht mehr erzeugt werden. Fast alle Protonen und Neutronen werden durch Stöße mit ihren Antiteilchen vernichtet. Es bleibt nur ein winziger Materieüberschuss von ungefähr einem Teilchen auf etwas mehr als 10 9 Photonen [2], der seinen Ursprung bereits in der Baryogenese hatte. Dieses Verhältnis ändert sich nicht mehr. Protonen und Neutronen können sich zwar noch ineinander umwandeln, die Gesamtzahl der Nukleonen bleibt aber erhalten. Dieses Verhältnis lässt sich aus den Teilchendichten der Photonen und Nukleonen berechnen [2]. Die Energiedichte der Photonen ɛ γ der kosmischen Hintergrundstrahlung beträgt nach (20): ɛ γ = 8π5 k 4 B T 4 15h 3 c 3 (77) Die Teilchendichte der Photonen n γ ist dann gegeben durch die Energiedichte dividiert durch die Energie eines Photons, die im Bereich k B T liegt: n γ = 8π5 k 3 B T 3 15h 3 c 3 (78) 25

26 4 DIE PHASEN DES UNIVERSUMS Die Energiedichte der Baryonen ɛ B lässt sich mit Hilfe der kritischen Dichte und dem baryonischen Dichteparameter Ω B ausdrücken. Er ist gegeben durch [27] Damit ergibt sich Ω B = ρ B ρ c = 0, 044 (79) ɛ B = ρ B c 2 = Ω B ρ c c 2 = Ω B 3H 2 0 8πG c2 (80) Dies teilt man nun durch die Energie eines Nukleons, die durch m p c 2 gegeben ist. Da hier nur eine Größenordnung und kein exakter Wert berechnet werden soll, kann man annehmen, dass die Masse für Proton und Neutron gleich ist. Es ergibt sich eine Teilchendichte n B von n B = 3Ω BH 2 0 8πm p G Mit einer Temperatur der kosmischen Hintergrundstrahlung von 2, 725K und einem Hubbleparameter von H 0 = 70kms 1 Mpc 1 gilt dann für das Verhältnis der Anzahl der Photonen N γ zur Anzahl der Baryonen N B (81) N γ N B = n γ n B = 64π6 k 3 B T 3 Gm p 45Ω B H 2 0 h3 c (82) 4.7 Leptonen-Ära Nach der Vernichtung der Hadronen und deren Antiteilchen sind die häufigsten Teilchen im Universum Elektronen, Positronen, Neutrinos und Antineutrinos. Diese stoßen ständig miteinander und wechselwirken mit den Photonen. So werden beispielsweise permanent Elektron-Positron-Paare aus der Strahlung erzeugt und durch Annihilation wieder vernichtet. Die Dichte des Universums ist gerade noch hoch genug, dass die Neutrinos mit den Elektronen, Positronen und Photonen im thermischen Gleichgewicht sind. [1] Dies ist jedoch bald nicht mehr der Fall. Neutrinos wechselwirken nur sehr schwach. Um sie heute nachweisen zu können, werden riesige Detektoren benötigt. Bei Temperaturen im Bereich von K ist die Dichte des Universums soweit abgesunken, dass die Neutrinos nicht mehr im thermischen Gleichgewicht mit den anderen Teilchen sind. Sie entkoppeln und bilden ab jetzt einen Neutrinohintergund, der nicht mehr an den Wechselwirkungen teilnimmt. [1] Ungefähr eine Sekunde nach dem Urknall beträgt die Energie 1MeV. Dies ist die Energie, die benötigt wird, um Elektron-Positron-Paare zu erzeugen, da deren Ruhemasse jeweils ungefähr 0, 5MeV/c 2 beträgt. Mit weiterem Absinken der Temperatur, können also auch keine Leptonen mehr erzeugt werden. Elektronen und Positronen beginnen, sich zu vernichten. Schließlich bleibt auch hier aufgrund des in der Baryogenes entstandenen Materieüberschusses nur ein winziger Überschuss an Elektronen übrig. [25] 26

27 4 DIE PHASEN DES UNIVERSUMS Zusätzlich zu den Leptonen und Photonen gibt es während der Leptonen-Ära auch noch wenige Protonen und Neutronen, die am Ende der Hadronen-Ära aufgrund der Materie- Antimaterie-Asymmetrie nicht vernichtet wurden. Diese Teilchen können sich aufgrund der hohen Energie noch nicht zu Kernen zusammenfügen. Ein Kern würde sofort wieder zerfallen. Protonen und Neutronen wandeln sich nach folgenden Reaktionen ständig ineinander um [1]: ν + p e + + n (83) ν + n e + p (84) Zu Beginn der Leptonen-Ära sind die beiden Reaktionen ungefähr gleich häufig. Proton und Neutron sind jedoch nicht exakt gleich schwer. Das Neutron ist etwas schwerer als das Proton. Sobald die Energie auf die Größenordnung der Massendifferenz der beiden Kernteilchen abgesunken ist, wenn also gilt E (m n m p ) c 2 1, 3MeV (85) beginnt (84) gegenüber (83) zu dominieren. Es wandeln sich mehr Neutronen in Protonen um als umgekehrt. Die Energie von 1, 3M ev entspricht einer Temperatur von etwas mehr als K und wird etwa eine Sekunde nach dem Urknall erreicht. Mit weiter abnehmender Energie erfolgen die Umwandlungen jedoch immer langsamer. Schließlich ergibt sich ein Verhältnis von Neutronen zu Protonen von 1 : 7, 3, was 88% Protonen und 12% Neutronen entspricht. [2] 4.8 Nukleosynthese Einige Sekunden nach dem Urknall beginnen sich dann Protonen und Neutronen zu Kernen zusammenzufügen. Zunächst kann folgende Reaktion ablaufen [1]: p + n D + γ (86) Ein Proton und ein Neutron bilden einen Deuteriumkern. Hierbei wird ein Photon frei. Da die Temperatur immer noch ungefähr 10 9 K beträgt, liegt die Energie der Photonen im Bereich von 100MeV. Dies reicht aus, um Deuteriumkerne wieder zu spalten. Stößt also ein Photon auf einen Deuteriumkern, so läuft die Reaktion (86) rückwärts ab. Für eine gewisse Zeit herrscht so ein Gleichgewicht zwischen Protonen, Neutronen und Deuteriumkernen. Mit abnehmender Energie wird die Rückwärtsreaktion jedoch immer mehr unterdrückt, sodass Deuterium stabil wird. Sobald dies der Fall ist, können weitere Reaktionen ablaufen. Deuterium kann sich mit einem weiteren Proton oder Neutron verbinden [1]: D + p 3 He (87) D + n 3 H (88) 27

28 4 DIE PHASEN DES UNIVERSUMS So entstehen leichtes Helium ( 3 He) und Tritium ( 3 H), die durch Reaktion mit einem weiteren Neutron, bzw. Proton gewöhnliches Helium ( 4 He) bilden können [1]: 3 He + n 4 He (89) 3 H + p 4 He (90) 4 He ist ein sehr stabiler Kern, der nicht mehr zerfällt. Da es keine stabilen Kerne mit fünf Nukleonen gibt, verbindet sich das Helium auch nicht mehr mit weiteren Protonen oder Neutronen. Vereinzelt wird noch Lithium gebildet. [3] Schwerere Kerne entstehen erst viel später im Innern von Sternen. [4] Am Ende der Nukleosynthese etwa eine halbe Stunde nach dem Urknall und bei einer Temperatur von 10 8 K [1] sind somit (fast) alle Neutronen in 4 He gebunden. Die überschüssigen Protonen existieren weiter. Das Universum enthält also neben winzigen Spuren von Lithium, leichtem Helium und Deuterium im Wesentlichen Wasserstoff- und Heliumkerne. Da 88% der Kernteilchen als Protonen vorlagen und 12% als Neutronen, sind etwa 24% aller Nukleonen in Helium gebunden. Da Protonen und Neutronen ungefähr gleich schwer sind, macht die Masse des Heliums also ca. 24% aus, die des Wasserstoffs die restlichen 76%. [2] 4.9 Ende der Strahlungsdominanz Das Universum kühlt sich nun weiter ab. Dabei dehnt es sich aus. Mit zunehmender Größe wird die Energiedichte geringer. Allerdings nimmt sie für Strahlung und Materie nicht in gleichem Maße ab. Wie in Abschnitt 3.3 bereits erwähnt, gilt für die Strahlung ɛ Strahlung 1 S 4 (91) und für die Materie ɛ Materie 1 S 3 (92) Die Energiedichte der Strahlung nimmt also mit größer werdendem Skalenfaktor schneller ab, als die Energiedichte der Materie. Es muss also einen Zeitpunkt geben, an dem die Energiedichten gleich hoch sind. Dies ist ungefähr Jahre nach dem Urknall der Fall [3]. Davor war die Dichte der Strahlung größer als die der Materie. Man spricht daher vom strahlungsdominierten Universum. Ab diesem Zeitpunkt beginnt die materiedominierte Ära, in der die Energiedichte der Materie überwiegt. Der qualitative Verlauf der Energiedichten ist in Abbildung 5 dargestellt. 28

29 4 DIE PHASEN DES UNIVERSUMS Abbildung 5: Energiedichten in Abhängigkeit des Skalenfaktors In dieser Abbildung ist schematisch der Verlauf der Energiedichten von Strahlung und Materie in Abhängigkeit des Skalenfaktors zu sehen. Die Energiedichte der Strahlung nimmt schneller (ɛ Strahlung S 4 ) ab als die Energiedichte der Materie (ɛ Materie S 3 ), daher schneiden sich die beiden Kurven. Am Schnittpunkt endet die strahlungsdomonierte Ära und es beginnt die materiedominierte Ära Rekombination / Entkopplung der Strahlung Jahre nach dem Urknall beträgt die Temperatur noch ungefähr 3000 Kelvin. Die Energie liegt somit im Elektronenvoltbereich, etwas geringer als die Ionisierungsenergie von Atomen. Die bisher freien Elektronen und Kerne schließen sich nun zu neutralen Atomen zusammen. [3] Dies wird als Rekombination bezeichnet, was etwas irreführend ist, da es bis zu diesem Zeitpunkt noch keine Bindung zwischen Kernen und Elektronen gab. [2] Vor der Rekombination sind Elektronen, Kernteilchen und Photonen im thermischen Gleichgewicht. Photonen sind die Trägerteilchen der elektromagnetischen Wechselwirkung und wechselwirken sehr stark mit geladenen Teilchen, jedoch viel schwächer mit neutralen Atomen. So ist das Gleichgewicht nach der Rekombination gestört. [3] Strahlung und Materie entwickeln sich unabhängig voneinander weiter. Man spricht von der Entkopplung der Strahlung. Da es kaum noch zu Stößen zwischen den Photonen und Atomen kommt, wird das Universum durchsichtig. [1] Dies ist der Ursprung der noch heute beobachtbaren kosmischen Hintergrundstrahlung. Die Strahlung kann sich jetzt nämlich ungestört ausbreiten. Mit zunehmender Expansion des Universums wird die Wellenlänge der Photonen größer. Sie weist ein nahezu perfektes Schwarzkörperspektrum auf, das bei der Ausdehnung erhalten bleibt und dessen Temperatur heute 2,725 Kelvin beträgt. Die zugehörige Wellenlänge liegt gemäß k B T = hc λ (93) 29

30 4 DIE PHASEN DES UNIVERSUMS im Mikrowellenbereich. [2] Die kosmische Hintergrundstrahlung wurde 1964 zufällig entdeckt. Die Radioastronomen Arno Penzias und Robert Wilson untersuchten Strahlung im Radiowellenbereich, die aus unserer Galaxie, der Milchstraße, stammt. Hierzu benutzten sie eine Hornantenne, die von einem amerikanischen Telefonunternehmen zur Kommunikation mit Satelliten gebaut worden war. Bei ihren Untersuchungen stießen die beiden Forscher auf ein Rauschen im Mikrowellenbereich, das, egal in welche Richtung sie die Antenne ausrichteten, immer die gleiche Intensität hatte. Trotz ausführlicher Fehlersuche ließ sich dieser Mikrowellenhintergrund nicht eliminieren. Penzias und Wilson hatten also die von Theoretikern bereits vorhergesagte kosmische Hintergrundstrahlung entdeckt. [1] Die kosmische Hintergrundstrahlung gibt uns heute einen Einblick in die Vergangenheit. Ein Schwarzkörperspektrum ändert seine Form nicht bei Expansion. Es verschiebt sich lediglich aufgrund der Abkühlung hin zu größeren Wellenlängen (vgl. Abbildung 3). Somit kann man durch Beobachtungen der Hintergrundstrahlung Rückschlüsse auf das Universum zur Zeit der Rekombination ziehen. Abbildung 6 zeigt die kosmische Hintergrundstrahlung, aufgenommen von der WMPA- Sonde. Abbildung 6: Kosmische Hintergrundstrahlung [28] Die hier abgebildete, von der WMPA-Sonde stammende Aufnahme der kosmischen Hintergrundstrahlung zeigt, dass diese extrem homogen ist und nur leichte Fluktuationen aufweist. Wie in Abbildung 6 zu sehen ist, ist die kosmische Hintergrundstrahlung extrem homogen. Zwischen den roten und blauen Bereichen liegen gerade einmal 400µK. Man kann daraus schließen, dass auch das Universum Jahre nach dem Urknall sehr homogen gewesen ist. [3] 30

Temperaturentwicklung des Universums

Temperaturentwicklung des Universums Der Urknall und seine Teilchen Temperaturentwicklung des Universums Alexander Bett 20. Mai 2011 Inhaltsverzeichnis 1 Einleitung 2 2 Temperaturabhängigkeiten 3 2.1 Strahlungsdominiertes Universum.......................

Mehr

Standardmodell der Kosmologie

Standardmodell der Kosmologie ! "# $! "# # % & Standardmodell der Kosmologie Urknall und Entwicklung des Universums Inhalt Einleitung Experimentelle Hinweise auf einen Urknall Rotverschiebung der Galaxien kosmische Hintergrundstrahlung

Mehr

DIE THERMISCHE GESCHICHTE DES UNIVERSUMS & FREEZE-OUT. 14. Dezember Kim Susan Petersen. Proseminar Theoretische Physik & Astroteilchenphysik

DIE THERMISCHE GESCHICHTE DES UNIVERSUMS & FREEZE-OUT. 14. Dezember Kim Susan Petersen. Proseminar Theoretische Physik & Astroteilchenphysik DIE THERMISCHE GESCHICHTE DES UNIVERSUMS & FREEZE-OUT 14. Dezember 2010 Kim Susan Petersen Proseminar Theoretische Physik & Astroteilchenphysik INHALT 1. Das Standardmodell 2. Die Form des Universums 3.

Mehr

Hauptseminar Der Urknall und seine Teilchen im SS Die Temperaturentwicklung des Universums

Hauptseminar Der Urknall und seine Teilchen im SS Die Temperaturentwicklung des Universums Hauptseminar Der Urknall und seine Teilchen im SS 2005 Die Temperaturentwicklung des Universums Gliederung 1. Motivation 2. Säulen des Big-Bang-Modells 3. Herleitung der Temperaturentwicklung 4. Phasen

Mehr

Themen. 1. Experimentelle Beobachtungen und Hubble. 2. Die Kosmologischen Epochen. 3. Die Hintergrundstrahlung

Themen. 1. Experimentelle Beobachtungen und Hubble. 2. Die Kosmologischen Epochen. 3. Die Hintergrundstrahlung 1 Themen 1. Experimentelle Beobachtungen und Hubble 2. Die Kosmologischen Epochen 3. Die Hintergrundstrahlung 4. Dunkle Materie / Energie als notwendige Konsequenz 5. Schwächen der Urknalltheorie 2 Allgemeines

Mehr

Die Urknalltheorie. Hauptseminar von Tobias Buehler

Die Urknalltheorie. Hauptseminar von Tobias Buehler Die Urknalltheorie Hauptseminar von Tobias Buehler Inhaltsverzeichnis 1 Historische Entwicklung 3 Was man sich daraus herleitet 2 Was man Messen kann 3.1 Planck Ära 2.1 Rotverschiebung und Expansion 3.2

Mehr

Hauptseminar: Neuere Entwicklungen der Kosmologie

Hauptseminar: Neuere Entwicklungen der Kosmologie Hauptseminar: Neuere Entwicklungen der Kosmologie Das frühe Universum: Inflation und Strahlungsdominanz Thorsten Beck Universität Stuttgart Hauptseminar: Neuere Entwicklungen der Kosmologie p. 1/14 Die

Mehr

Die Urknalltheorie. KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft.

Die Urknalltheorie. KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft. Die Urknalltheorie KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Überblick 2 Allgemeine Relativitätstheorie Die Väter der Urknalltheorie

Mehr

Der Urknall und die Kosmische Hintergrundstrahlung

Der Urknall und die Kosmische Hintergrundstrahlung und die Kosmische Hintergrundstrahlung Seminar Astroteilchenphysik in der Theorie und Praxis Physik Department Technische Universität München 12.02.08 und die Kosmische Hintergrundstrahlung 1 Das Standardmodell

Mehr

Die ersten 3 Minuten - Elemententstehung im Urknall

Die ersten 3 Minuten - Elemententstehung im Urknall Die ersten 3 Minuten - Elemententstehung im Urknall Hauptseminar Astroteilchenphysik - Kosmische Strahlung Philipp Burger 1 ENERGIE- ZEITSKALEN 1 Energie- Zeitskalen Der Hubble-Parameter beschreibt die

Mehr

Das frühe Universum. Paul Angelike. 22. Juni 2017

Das frühe Universum. Paul Angelike. 22. Juni 2017 22. Juni 2017 Übersicht 1 Der Urknall Die Geschichte des Urknalls Das Versagen der Theorie an der Urknall-Singularität 2 Beobachtungen im heutigem Universum Strahlungs- und Massendominanz dunkle Materie,

Mehr

Standardmodell der Materie und Wechselwirkungen:

Standardmodell der Materie und Wechselwirkungen: Standardmodell der Materie und en: (Quelle: Wikipedia) 1.1. im Standardmodell: sind die kleinsten bekannten Bausteine der Materie. Die meisten Autoren bezeichnen die Teilchen des Standardmodells der Teilchenphysik

Mehr

Sterne, Galaxien und das Universum

Sterne, Galaxien und das Universum Sterne, Galaxien und das Universum Teil 9: Kosmologie Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 18. April 2017 1 / 38 Entfernte Galaxien 2 / 38 Übersicht

Mehr

2.2.2 Entwicklungsphasen des frühen Universums

2.2.2 Entwicklungsphasen des frühen Universums 2.2. DAS URKNALL-MODELL 23 Nachdem in den 1920er Jahren die Expansion des Weltalls beobachtet worden war, hatte Einstein die Einführung der kosmologischen Konstante als den größten Fehler seines Lebens

Mehr

v = z c (1) m M = 5 log

v = z c (1) m M = 5 log Hubble-Gesetz Das Hubble-Gesetz ist eines der wichtigsten Gesetze der Kosmologie. Gefunden wurde es 1929 von dem amerikanischen Astronom Edwin Hubble. Hubble maß zunächst die Rotverschiebung z naher Galaxien

Mehr

Kosmologie für die Schule

Kosmologie für die Schule Kosmologie für die Schule Matthias Bartelmann 1 & Tobias Kühnel 1 Max-Planck-Institut für Astrophysik Kosmologie für die Schule p.1/0 Ein symmetrisches Universum Die moderne Kosmologie beruht auf Einsteins

Mehr

Die Entwicklung des Universums

Die Entwicklung des Universums Die Entwicklung des Universums Thomas Hebbeker RWTH Aachen September 2003 Grundlegende Beobachtungen Das Big-Bang Modell Die Entwicklung des Universums 1.1 Blick ins Universum: Sterne und Galaxien Die

Mehr

Kosmologie. der Allgemeinen Relativitätstheorie. Das Standard-Modell der. Kosmologie

Kosmologie. der Allgemeinen Relativitätstheorie. Das Standard-Modell der. Kosmologie Kosmologie der Allgemeinen Relativitätstheorie Das Standard-Modell der Kosmologie Unbeantwortete Fragen der Kosmologie (Stand 1980) Warum beobachtet man keine magnetischen Monopole? Flachheitsproblem:

Mehr

Und es werde Licht. Die kosmische Hintergrundstrahlung

Und es werde Licht. Die kosmische Hintergrundstrahlung Und es werde Licht Die kosmische Hintergrundstrahlung Vermessung der Hintergrundstrahlung WMAP COBE Planck Planck Foto des Urknalls COBE Foto des Urknalls WMAP Foto des Urknalls Planck Was sehen wir? Zustand

Mehr

Standardmodell der Kosmologie

Standardmodell der Kosmologie ! "# $! "# # % & Standardmodell der Kosmologie Urknall und Entwicklung des Universums Inhalt Einleitung Experimentelle Hinweise auf einen Urknall Rotverschiebung der Galaxien kosmische Hintergrundstrahlung

Mehr

Kosmologie. Wintersemester 2014/15 Vorlesung # 4,

Kosmologie. Wintersemester 2014/15 Vorlesung # 4, Kosmologie Wintersemester 014/15 Vorlesung # 4, 10.11.015 Guido Drexlin, Institut für Experimentelle Kernphysik Expandierendes Universum - aktuelle Befunde für W V und W M Thermisches Universum - Temperaturen

Mehr

Kosmologie: Die Expansion des Universums

Kosmologie: Die Expansion des Universums Kosmologie: Die Expansion des Universums Didaktik der Astronomie SS 2008 Franz Embacher Fakultät für Physik Universität Wien 13 Aufgaben Kosmologisches Prinzip, Skalenfaktor, Rotverschiebung Kosmologisches

Mehr

Die Schöpfung aus physikalischer Sicht Das frühe Universum

Die Schöpfung aus physikalischer Sicht Das frühe Universum Die Schöpfung aus physikalischer Sicht Das frühe Universum Jutta Kunz Institut für Physik CvO Universität Oldenburg Tagung Urknall oder Schöpfung 4./5. November 2006 Jutta Kunz (Universität Oldenburg)

Mehr

Die thermische Entwicklung des Universums

Die thermische Entwicklung des Universums Die thermische Entwicklung des Universums Kim Susan Petersen 14. Dezember 2010 1 Die Zukunft unseres Universums Wie wir bereits gelernt haben, wird die Ausdehung des Universums durch die Friedmann-Gleichungen

Mehr

Kosmogonie. Das frühe Universum. Vom Urknall bis zur Rekombination

Kosmogonie. Das frühe Universum. Vom Urknall bis zur Rekombination Kosmogonie Das frühe Universum Vom Urknall bis zur Rekombination Hubble-Konstante und Weltalter Hubbles Wert für die Expansion: H 500kmsec Mpc 0 1 1 R(t) Weltalter bei gleichmäßiger Expansion: 1 9 Tu 2

Mehr

Die dunkle Seite der Kosmologie

Die dunkle Seite der Kosmologie Die dunkle Seite der Kosmologie Franz Embacher Workshop im Rahmen der 62. Fortbildungswoche Kuffner Sternwarte 27. 2. 2008 Fakultät für Physik Universität Wien 4 Aufgaben Aufgabe 1 Im Zentrum der Milchstraße

Mehr

Vom Urknall. bis heute Zeit. Kosmologie. Christian Stegmann Universität Erlangen-Nürnberg

Vom Urknall. bis heute Zeit. Kosmologie. Christian Stegmann Universität Erlangen-Nürnberg Vom Urknall bis heute Kosmologie Christian Stegmann Universität Erlangen-Nürnberg Die Erde Heute einer von acht Planeten Heute Sterne Heute Die Milchstrasse Heute Voller Sterne Heute Und Nebel Heute Unsere

Mehr

Urknalltheorie 1. Die Entdeckung des Urknalls

Urknalltheorie 1. Die Entdeckung des Urknalls Urknalltheorie Die Urknalltheorie beschäftigt sich mit den Geschehnissen unmittelbar nach dem Urknall einem unvorstellbarem, aber wissenschaftlich anerkanntem Ereignis welches, aus einer extrem heißen

Mehr

Dunkle Materie und dunkle Energie

Dunkle Materie und dunkle Energie Dunkle Materie und dunkle Energie Franz Embacher Fakultät für Physik der Universität Wien Vortrag am Vereinsabend von ANTARES NÖ Astronomen St. Pölten, 9. 9. 2011 Die Bestandteile Woraus besteht das Universum?

Mehr

Der Urknall. Wie unser Universum aus fast Nichts entstand

Der Urknall. Wie unser Universum aus fast Nichts entstand Der Urknall Wie unser Universum aus fast Nichts entstand Die großen Fragen Woraus besteht das Universum? Wie sah das Universum am Anfang aus? Plasma! und vorher? Woraus haben sich Strukturen entwickelt?

Mehr

2.2.2 Entwicklungsphasen des frühen Universums

2.2.2 Entwicklungsphasen des frühen Universums 2.2. DAS URKNALL-MODELL 23 2.2.2 Entwicklungsphasen des frühen Universums Mit der adiabatischen Expansion des Universums ist eine Abkühlung verbunden. Wie wir im vorigen Abschnitt gezeigt haben, sind im

Mehr

Peter Braun-Munzinger

Peter Braun-Munzinger Peter Braun-Munzinger Inhalt Urknall Expansion des Universums Temperaturentwicklung Frühe Urknall-Materie Urknall im Labor Ausblick Ultrarelativistische Schwerionenstösse Quark-Gluon Materie Resultate

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Universität Leipzig, Fakultät für Physik und Geowissenschaften Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 02. Juli 2009 11 Elementarteilchen und die Entstehung des Universums Nach

Mehr

Urknall und Entwicklung des Universums

Urknall und Entwicklung des Universums Urknall und Entwicklung des Universums Thomas Hebbeker RWTH Aachen University Dies Academicus 11.06.2008 Grundlegende Beobachtungen Das Big-Bang Modell Die Entwicklung des Universums 1.0 Blick ins Universum:

Mehr

7 Teilchenphysik und Kosmologie

7 Teilchenphysik und Kosmologie 7.1 Entwicklung des Universums 7 Teilchenphysik und Kosmologie 7.1 Entwicklung des Universums 64 Die Spektrallinien sehr entfernter Galaxien sind gegenüber denen in unserer Galaxie rot-verschoben, d.h.

Mehr

Hauptseminar Der Urknall und seine Teilchen KIT SS Die Urknalltheorie. Katharina Knott

Hauptseminar Der Urknall und seine Teilchen KIT SS Die Urknalltheorie. Katharina Knott Hauptseminar Der Urknall und seine Teilchen KIT SS 2014 Die Urknalltheorie Katharina Knott Die Urknalltheorie 1. Einführung Entwicklung unseres Weltbildes 2. Die Entwicklung des Universums ein Zeitstrahl

Mehr

Die Urknalltheorie. Katharina Knott 09. Mai Einführung - Die Entwicklung unseres Weltbildes. 2 Die Entwicklung des Universums - ein Zeitstrahl

Die Urknalltheorie. Katharina Knott 09. Mai Einführung - Die Entwicklung unseres Weltbildes. 2 Die Entwicklung des Universums - ein Zeitstrahl Die Urknalltheorie Katharina Knott 09. Mai 2014 1 Einführung - Die Entwicklung unseres Weltbildes Unsere Vorstellung von der Erde, dem Sonnensystem und unserem gesamten Universum hat sich im Laufe der

Mehr

Urknall und. Entwicklung des Universums. Grundlegende Beobachtungen Das Big-Bang Modell Die Entwicklung des Universums 1.1

Urknall und. Entwicklung des Universums. Grundlegende Beobachtungen Das Big-Bang Modell Die Entwicklung des Universums 1.1 Urknall und Entwicklung des Universums Thomas Hebbeker RWTH Aachen Dies Academicus 08.06.2005 Grundlegende Beobachtungen Das Big-Bang Modell Die Entwicklung des Universums 1.1 Blick ins Universum: Sterne

Mehr

CMB Echo des Urknalls. Max Camenzind Februar 2015

CMB Echo des Urknalls. Max Camenzind Februar 2015 CMB Echo des Urknalls Max Camenzind Februar 2015 Lemaître 1931: Big Bang des expandierenden Universums Big Bang : Photonenhintergrund + Neutrinohintergrund 3-Raum expandiert: dx a(t) dx ; Wellenlängen

Mehr

Urknalltheorie. Martin Babutzka Hauptseminar: Der Urknall und seine Teilchen - Urknalltheorie

Urknalltheorie. Martin Babutzka Hauptseminar: Der Urknall und seine Teilchen - Urknalltheorie Urknalltheorie Martin Babutzka 1 Übersicht Die Urknalltheorie beschäftigt sich mit den Geschehnissen unmittelbar nach dem Urknall einem unvorstellbarem, aber wissenschaftlich anerkanntem Ereignis welches,

Mehr

Kosmologische Konstante. kosmischer Mikrowellen-Hintergrund. Strukturbildung im frühen Universum

Kosmologische Konstante. kosmischer Mikrowellen-Hintergrund. Strukturbildung im frühen Universum Kosmologische Konstante kosmischer Mikrowellen-Hintergrund und Strukturbildung im frühen Universum Philip Schneider, Ludwig-Maximilians-Universität 31.05.005 Gliederung Geschichte: Die letzten 100 Jahre

Mehr

Raum, Zeit, Universum Die Rätsel des Beginns. Bild : pmmagazin

Raum, Zeit, Universum Die Rätsel des Beginns. Bild : pmmagazin Raum, Zeit, Universum Die Rätsel des Beginns Bild : pmmagazin Der Urknall Wie unser Universum aus fast Nichts entstand Inflationäres Universum Überall fast Nichts nur Fluktuationen Explosionsartige Expansion

Mehr

Ist das Universum ein 3-Torus?

Ist das Universum ein 3-Torus? 1 / 20 Ist das Universum ein 3-Torus? RHO-Sommercamp, Waren Martin Haufschild 19. August 2009 2 / 20 Krümmung Kosmologische Räume werden gewöhnlich nach ihrer (Gaußschen) Krümmung K unterschieden: positive

Mehr

Über die Vergangenheit und Zukunft des Universums

Über die Vergangenheit und Zukunft des Universums Über die Vergangenheit und Zukunft des Universums Jutta Kunz CvO Universität Oldenburg CvO Universität Oldenburg Physics in the City, 10. Dezember 2009 Jutta Kunz (Universität Oldenburg) Vergangenheit

Mehr

Das neue kosmologische Weltbild zum Angreifen!

Das neue kosmologische Weltbild zum Angreifen! Das neue kosmologische Weltbild zum Angreifen! Franz Embacher http://homepage.univie.ac.at/franz.embacher/ franz.embacher@univie.ac.at Fakultät für Physik Universität Wien Vortrag im Rahmen von physics:science@school

Mehr

1.3 Historischer Kurzüberblick

1.3 Historischer Kurzüberblick 1.3 Historischer Kurzüberblick (zur Motivation des Standard-Modells; unvollständig) Frühphase: 1897,,Entdeckung des Elektrons (J.J. Thomson) 1905 Photon als Teilchen (Einstein) 1911 Entdeckung des Atomkerns

Mehr

Kosmologie. Wintersemester 2015/16 Vorlesung # 2,

Kosmologie. Wintersemester 2015/16 Vorlesung # 2, DE k Kosmologie Wintersemester 2015/16 Vorlesung # 2, 27.10.2015 Strahlung Materie Guido Drexlin, Institut für Experimentelle Kernphysik Expandierendes Universum - Hubble-Expansion - Urknall: Grundlagen

Mehr

Neues aus Kosmologie und Astrophysik 1.0

Neues aus Kosmologie und Astrophysik 1.0 Neues aus Kosmologie und Astrophysik 1.0 Unser Universum Sterne und Galaxien Hintergrundstrahlung Elemententstehung Das Big-Bang-Modell Prozesse im frühen Universum Fragen und Antworten (?) Dunkle Materie

Mehr

Die Entwicklung der Urknalltheorie. Manuel Erdin Gymnasium Liestal, 2012

Die Entwicklung der Urknalltheorie. Manuel Erdin Gymnasium Liestal, 2012 Die Entwicklung der Urknalltheorie Manuel Erdin Gymnasium Liestal, 2012 William Herschel (1738 1822) Das statische Universum mit einer Galaxie Das Weltbild Herschels Die Position unseres Sonnensystems

Mehr

Kosmologie. Eine kurze Einführung. Sarah Aretz CERN

Kosmologie. Eine kurze Einführung. Sarah Aretz CERN Kosmologie Eine kurze Einführung Sarah Aretz CERN Worum geht es in der Kosmologie? Κοσμολογία = Lehre von der Welt Beschreibung des Universums durch physikalische Gesetze 2 Kosmologische Fragestellungen

Mehr

KOSMISCHE HINTERGRUNDSTRAHLUNG (CMB) Philipp Zilske Universität Bielefeld Physikalisches Proseminar

KOSMISCHE HINTERGRUNDSTRAHLUNG (CMB) Philipp Zilske Universität Bielefeld Physikalisches Proseminar KOSMISCHE HINTERGRUNDSTRAHLUNG (CMB) Philipp Zilske Universität Bielefeld Physikalisches Proseminar 26.06.2013 26.06.2013 Philipp Zilske - Kosmische Hintergrundstrahlung 2/23 Übersicht 1. Motivation 2.

Mehr

Kosmologie. Eine kurze Einführung. Sarah Aretz CERN

Kosmologie. Eine kurze Einführung. Sarah Aretz CERN Kosmologie Eine kurze Einführung Sarah Aretz CERN Worum geht es in der Kosmologie? Κοσμολογία = Lehre von der Welt Physikalische Kosmologie Beschreibung des Universums durch physikalische Gesetze Kosmologische

Mehr

Das dunkle Universum

Das dunkle Universum Das dunkle Universum Jutta Kunz Institut für Physik CvO Universität Oldenburg http://www.physik.uni-oldenburg.de/docs/ftheorie/kunz.html Oldenburger Landesverein, Oldenburg, 22. März 2007 Jutta Kunz (Universität

Mehr

Einheit 13 Subatomare Physik 2

Einheit 13 Subatomare Physik 2 Einheit 13 Subatomare Physik 2 26.01.2012 Markus Schweinberger Sebastian Miksch Markus Rockenbauer Subatomare Physik 2 Fundamentale Wechselwirkungen Das Standardmodell Elementarteilchen Erhaltungssätze

Mehr

FK Experimentalphysik 3, Lösung 4

FK Experimentalphysik 3, Lösung 4 1 Sterne als schwarze Strahler FK Experimentalphysik 3, 4 1 Sterne als schwarze Strahler Betrachten sie folgende Sterne: 1. Einen roten Stern mit einer Oberflächentemperatur von 3000 K 2. einen gelben

Mehr

Die beschleunigte Expansion

Die beschleunigte Expansion Die beschleunigte Expansion Franz Embacher Fakultät für Physik Universität Wien Vortrag im Rahmen von University Meets Public VHS Meidling, 12. 3. 2012 Nobelpreis 2011 an Saul Perlmutter, Brian P. Schmidt

Mehr

Die seltsame Rezeptur

Die seltsame Rezeptur Die seltsame Rezeptur Prof. Ch. Berger, RWTH Aachen Planetarium Erkrath, 16.2.06 Von Newton bis 1900 Einsteins neue Sicht Rotverschiebung und Urknall Materie im Weltall Die kosmische Hintergrundstrahlung

Mehr

Frühes Universum. Katharina Müller Universität Zürich

Frühes Universum. Katharina Müller Universität Zürich Frühes Universum Katharina Müller Universität Zürich kmueller@physik.unizh.ch 28. Juni 2002 Inhaltsverzeichnis 0.1 Bigbang Modell................................. 2 Katharina Müller 1 Frühes Universum

Mehr

Dunkle Materie: von Urknall, Galaxien und Elementarteilchen

Dunkle Materie: von Urknall, Galaxien und Elementarteilchen Dunkle Materie: von Urknall, Galaxien und Elementarteilchen KIT, 30. Okt. 2017 Prof. Thomas Schwetz-Mangold Institut für Kernphysik Theoretische Astroteilchenphysik KIT-Zentrum Elementarteilchenund Astroteilchenphysik

Mehr

Aus was besteht unser Universum?

Aus was besteht unser Universum? Aus was besteht unser Universum? Inhalt der Vorlesung Moderne Kosmologie. 1. Von Aristoteles zu Kopernikus 2. Die beobachtbaren Fakten: Kosmologisches Prinzip; Hintergrundstrahlung; Rotverschiebung; dunkle

Mehr

Institut für Strahlenphysik Dr. Daniel Bemmerer Mitglied der Leibniz-Gemeinschaft. Altes und Neues zum Standardmodell

Institut für Strahlenphysik Dr. Daniel Bemmerer  Mitglied der Leibniz-Gemeinschaft. Altes und Neues zum Standardmodell Institut für Strahlenphysik Dr. Daniel Bemmerer www.fzd.de Mitglied der Leibniz-Gemeinschaft Altes und Neues zum Standardmodell Von den Quarks zum Universum QuickTime and a TIFF (Uncompressed) decompressor

Mehr

Die Entstehung des Universums - was wir wissen und wo wir rätseln

Die Entstehung des Universums - was wir wissen und wo wir rätseln Die Entstehung des Universums - was wir wissen und wo wir rätseln vor 8 Minuten vor vielen Tausenden von Jahren vor vielen Millionen von Jahren Galaxien Hubble deep field vor Milliarden Jahren Was

Mehr

Inhaltsverzeichnis Vorwort Einleitung Kapitel 1: Sonnensystem Kapitel 2: Sterne, Galaxien und Strukturen aus Galaxien

Inhaltsverzeichnis Vorwort Einleitung Kapitel 1: Sonnensystem Kapitel 2: Sterne, Galaxien und Strukturen aus Galaxien Inhaltsverzeichnis Vorwort Einleitung Kapitel 1: Sonnensystem Objekte des Sonnensystems Sonne Innere Gesteinsplaneten und deren Monde Asteroidengürtel Äußere Gas- und Eisplaneten und deren Monde Zentauren

Mehr

Die Entwicklung des Universums vom Urknall bis heute. Gisela Anton Erlangen, 23. Februar, 2011

Die Entwicklung des Universums vom Urknall bis heute. Gisela Anton Erlangen, 23. Februar, 2011 Die Entwicklung des Universums vom Urknall bis heute Gisela Anton Erlangen, 23. Februar, 2011 Inhalt des Vortrags Beschreibung des heutigen Universums Die Vergangenheit des Universums Ausblick: die Zukunft

Mehr

Der Urknall. und die ersten drei Minuten

Der Urknall. und die ersten drei Minuten Der Urknall und die ersten drei Minuten 1 Olbersches paradoxon Warum ist es nachts dunkel? mittlere freie Weglänge des Sternenlichts: Das Universum entwickelt sich auf einer Zeitskala, die viel kürzer

Mehr

Zeitreise durch das Universum - Wo Physik auf das fast Unvorstellbare trifft

Zeitreise durch das Universum - Wo Physik auf das fast Unvorstellbare trifft Zeitreise durch das Universum - Wo Physik auf das fast Unvorstellbare trifft vor 8 Minuten vor vielen Tausenden von Jahren vor vielen Millionen von Jahren Galaxien Hubble deep field vor Milliarden

Mehr

Examensaufgaben RELATIVITÄTSTHEORIE

Examensaufgaben RELATIVITÄTSTHEORIE Examensaufgaben RELATIVITÄTSTHEORIE Aufgabe 1 (Juni 2006) Ein Proton besitzt eine Gesamtenergie von 1800 MeV. a) Wie groß ist seine dynamische Masse? b) Berechne seine Geschwindigkeit in km/s. c) Welcher

Mehr

Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie?

Klassische Mechanik. Elektrodynamik. Thermodynamik. Der Stand der Physik am Beginn des 20. Jahrhunderts. Relativitätstheorie? Der Stand der Physik am Beginn des 20. Jahrhunderts Klassische Mechanik Newton-Axiome Relativitätstheorie? Maxwell-Gleichungen ok Elektrodynamik Thermodynamik Hauptsätze der Therm. Quantentheorie S.Alexandrova

Mehr

Kosmische Hintergrundstrahlung

Kosmische Hintergrundstrahlung Kosmische Hintergrundstrahlung Clemens Adler Hauptseminar: der Urknall und seine Teilchen 8. Dezember 2006 1 Einführung Bedeutung für die Kosmologie Bestimmung der kosmologischen Konstanten Aussagen über

Mehr

1 Das unbekannte Universum

1 Das unbekannte Universum In diesem ersten Kapitel schaffen wir die für das Verständnis der anschließenden Kapitel notwendigen Voraussetzungen, ohne dabei zu sehr ins Detail zu gehen. Einige der Themen werden wir später weiter

Mehr

Galaxien am Rande des Universums?

Galaxien am Rande des Universums? Kosmologie 1. Einige Beobachtungen a) Entfernte Galaxien b) Homogen und Isotrop c) Olbers Paradox 2. Die Entstehung des Universums 3. Kosmologische Parameter 4. Dunkle Energie drart Galaxien am Rande des

Mehr

Die Thermodynamik des Universums

Die Thermodynamik des Universums Die Thermodynamik des Universums Kai Walter Contents 1 Einleitung 2 2 Gleichgewichtsthermodynamik 2 2.1 Quantengas -Einteilchensystem-................... 2 2.2 Quantengase -MehrteilchenSystem.................

Mehr

Licht vom Anfang der Welt

Licht vom Anfang der Welt Licht vom Anfang der Welt Können Sternexplosionen das Universum vermessen? Wolfgang Hillebrandt MPI für Astrophysik Garching Licht vom Anfang der Welt Licht ist die kürzeste Verbindung zweier Ereignisse

Mehr

= +1. Rotverschiebung. Unterschiedliche Arten der Rotverschiebung

= +1. Rotverschiebung. Unterschiedliche Arten der Rotverschiebung Rotverschiebung In der Astronomie wird die Rotverschiebung mit dem Buchstaben z bezeichnet. Mit ihrer Hilfe lassen sich z.b. Fluchtgeschwindigkeiten, Entfernungen und Daten aus früheren Epochen des Universum

Mehr

Statistische Thermodynamik I Lösungen zur Serie 11

Statistische Thermodynamik I Lösungen zur Serie 11 Statistische Thermodynamik I Lösungen zur Serie Verschiedenes 20 Mai 206 Barometrische Höhenformel: Betrachte die rdatmosphäre im homogenen Gravitationspotential M gz der rde Unter der Annahme, dass sich

Mehr

Quarks, Higgs und die Struktur des Vakuums. Univ. Prof. Dr. André Hoang

Quarks, Higgs und die Struktur des Vakuums. Univ. Prof. Dr. André Hoang Quarks, Higgs und die Struktur des Vakuums Univ. Prof. Dr. André Hoang Was bewegt 700 Physiker, in Wien zur größten Konferenz über Elementarteilchen des Jahres 2015 zusammenzukommen? Quarks, Higgs und

Mehr

11. Die Geschichte des Universums

11. Die Geschichte des Universums 11. Die Geschichte des Universums 1. Hinweise auf eine Geschichte, Dynamik 2. Planck Skala 3. Die ersten drei Minuten Das 4. Weltbild Offene der Fragen modernen Physik 11. Die Geschichte des Universums

Mehr

Kosmische Hintergrundstrahlung CMB. 2 Die kosmische Hintergrundstrahlung als schwarzer Strahler

Kosmische Hintergrundstrahlung CMB. 2 Die kosmische Hintergrundstrahlung als schwarzer Strahler Kosmische Hintergrundstrahlung CMB Proseminar theoretische Astroteilchenphysik von: Anna Heise 1 Historische Einführung Mitte des zwanzigsten Jahrhunderts gab es verschiedene Theorien über die Entstehung

Mehr

Stundenprotokoll vom : Compton Effekt

Stundenprotokoll vom : Compton Effekt Stundenprotokoll vom 9.12.2011: Compton Effekt Zunächst beschäftigten wir uns mit den einzelnen Graphen des Photoeffekts (grün), des Compton-Effekts (gelb) und mit der Paarbildung (blau). Anschließend

Mehr

Frühes Universum in Newton scher Kosmologie. Tobias Lautenschlager 27. Juni 2007

Frühes Universum in Newton scher Kosmologie. Tobias Lautenschlager 27. Juni 2007 Frühes Universum in Newton scher Kosmologie Tobias Lautenschlager 7. Juni 7 Inhaltsverzeichnis 1 Annahmen 1.1 Das kosmologische Prinzip...................... 1. Die Bewegung von Galaxien.....................

Mehr

Urknall im Tunnel: Urknall im Tunnel: das Large Hadron Collider Projekt VDI GMA-Kongress Baden-Baden, 12. Juni 2007 S.Bethke, MPI für Physik, München

Urknall im Tunnel: Urknall im Tunnel: das Large Hadron Collider Projekt VDI GMA-Kongress Baden-Baden, 12. Juni 2007 S.Bethke, MPI für Physik, München Urknall im Tunnel: Urknall im Tunnel: das Large Hadron Collider Projekt VDI GMA-Kongress Baden-Baden, 12. Juni 2007 S.Bethke, MPI für Physik, München 1 Urknall im Tunnel: das Large Hadron Collider Projekt

Mehr

Neue Horizonte in der Teilchenphysik - Vom Higgs-Teilchen zur Dunklen Materie im Universum -

Neue Horizonte in der Teilchenphysik - Vom Higgs-Teilchen zur Dunklen Materie im Universum - Neue Horizonte in der Teilchenphysik - Vom Higgs-Teilchen zur Dunklen Materie im Universum - Prof. Dr. Karl Jakobs Physikalisches Institut Universität Freiburg Zielsetzung der Physik Einheitliche und umfassende

Mehr

Spektren von Himmelskörpern

Spektren von Himmelskörpern Spektren von Himmelskörpern Inkohärente Lichtquellen Tobias Schulte 25.05.2016 1 Gliederung Schwarzkörperstrahlung Spektrum der Sonne Spektralklassen Hertzsprung Russell Diagramm Scheinbare und absolute

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode

Mehr

Das Olbers sche Paradoxon

Das Olbers sche Paradoxon Kosmologie Das Olbers sche Paradoxon Die Hubble-Konstante Ein endliches Universum Das kosmologische Prinzip Homogenität des Universums Metrik einer gekrümmter Raumzeit Hubble Parameter und kritische Dichte

Mehr

Masse von Newton und Einstein zu Higgs und dunkler Materie

Masse von Newton und Einstein zu Higgs und dunkler Materie von Newton und Einstein zu Higgs und dunkler Materie Institut f. Kern- und Teilchenphysik Dresden, 13.11.2008 Inhalt 1 Einleitung 2 Newton träge und schwere 3 Einstein bewegte und Ruhemasse 4 Higgs Ruhemasse

Mehr

Das Standardmodell der Kosmologie

Das Standardmodell der Kosmologie Stefan Fryska 10.06.2010 Gliederung Gliederung 1. Umbruch: erste Hinweise auf nicht statisches Universum 2. Theoretische Beschreibung eines dynamischen Universums 3. Experimentelle Bestimmung der kosmologischen

Mehr

Neutrinos in Kosmologie und Teilchenphysik

Neutrinos in Kosmologie und Teilchenphysik Neutrinos in Kosmologie und Teilchenphysik Thomas Schwetz-Mangold Bremer Olbers-Gesellschaft, 12. Nov. 2013 1 Ein Streifzug durch die Welt der Neutrinos Was ist ein Neutrino? Wie hat man Neutrinos entdeckt?

Mehr

Lösungen zur Experimentalphysik III

Lösungen zur Experimentalphysik III Lösungen zur Experimentalphysik III Wintersemester 2008/2009 Prof. Dr. L. Oberauer Blatt 11 19.01.09 Aufgabe 1: a) Die Bedingung für ein Maximum erster Ordnung am Gitter ist: sinα = λ b mit b = 10 3 570

Mehr

VOM KLEINEN UND GROSSEN.

VOM KLEINEN UND GROSSEN. VOM KLEINEN UND GROSSEN. Elementarteilchen, Kräfte und das Universum Christian Stegmann Zeuthen, 2. Mai 2012 C. Stegmann 2. Mai 2012 Seite 2 Unser Planetensystem C. Stegmann 2. Mai 2012 Seite 3 Der Andromedanebel

Mehr

Die wahre Geschichte der Antimaterie

Die wahre Geschichte der Antimaterie Die wahre Geschichte der Antimaterie Philip Bechtle 8. Juli 2009 Öffentlicher Abendvortrag 08.07.2009 1 Die Handlung des Films Antimaterie wird vom Large Hadron Collider (LHC) am CERN gestohlen und im

Mehr

Schnecke auf expandierendem Ballon

Schnecke auf expandierendem Ballon Schnecke auf expandierendem Ballon Kann in einem sich expandierenden Uniersum das Licht einer Galaxie auch die Punkte erreichen, die sich on ihr mit mehr als Lichtgeschwindigkeit entfernen? 1 Als einfaches

Mehr

Ludwig-Maximilians-Universität München Fakultät für Physik Einführung in die Kosmologie Lösung Übungsblatt 2 (SS14)

Ludwig-Maximilians-Universität München Fakultät für Physik Einführung in die Kosmologie Lösung Übungsblatt 2 (SS14) Ludwig-Maximilians-Universität München Fakultät für Physik Einführung in die Kosmologie Lösung Übungsblatt 2 (SS14) 1. Photonengas Besprechung am 2. Mai, 2014. (a) Ein homogen verteiltes Photonengas mit

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #16 am 0.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

DasVermächtnisdesUrknalls Die Hintergrundstrahlung

DasVermächtnisdesUrknalls Die Hintergrundstrahlung DasVermächtnisdesUrknalls Die Hintergrundstrahlung Elementare Kräfte Der Urknall und die Expansion des Universums Wie mißt man die Temperatur von Sternen? Hintergrundstrahlung und Isotropie des Universums

Mehr

analyse Von lhc-daten: Z-pfad ANLEITUNG ZUR AUSWERTUNG VoN TEILCHENSPUREN

analyse Von lhc-daten: Z-pfad ANLEITUNG ZUR AUSWERTUNG VoN TEILCHENSPUREN ANLEITUNG analyse Von lhc-daten: Z-pfad ANLEITUNG ZUR AUSWERTUNG VoN TEILCHENSPUREN der HinterGrund Im Teilchenbeschleuniger LHC am internationalen forschungszentrum CERN bei Genf kollidieren Protonen

Mehr

Der Urknall und die Expansion des Universums

Der Urknall und die Expansion des Universums Der Urknall und die Expansion des Universums 14. August 2002 Inhaltsverzeichnis 1 Einführung 2 2 Der Urknall 2 3 Die Expansion des Universums 3 3.1 Die Expansionsgeschwindigkeit................. 3 3.2

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Übung Qi Li, Bernhard Loitsch, Hannes Schmeiduch Donnerstag, 08.03.2012 1 Schwarzer Körper Außerhalb der Erdatmosphäre misst man das Maximum des Sonnenspektrums bei einer

Mehr

Mein Universum und das Elektron

Mein Universum und das Elektron Mein Universum und das Elektron Ich hatte in einer von meinen Thesen angenommen, dass im Universum nur Energie vorkommt, die wir als Materie und Licht wahrnehmen. Das Wort Energie hatte ich hier eingeführt,

Mehr

Kai Zuber Institut für Kern- und Teilchenphysik TU Dresden

Kai Zuber Institut für Kern- und Teilchenphysik TU Dresden Kai Zuber Institut für Kern- und Teilchenphysik TU Dresden Historische Einführung Das Alter des Universums Warum eine dunkle Seite? Was ist die dunkle Seite? Wie kann man sie nachweisen? Inka-Kultur Navajo-Indianer

Mehr