Adreßräume. Motivation. Seitenersetzung (Paging) Systemsoftware. = Referenzlokalität. Seite 2.1. Instruktionen werden wiederholt ausgeführt

Größe: px
Ab Seite anzeigen:

Download "Adreßräume. Motivation. Seitenersetzung (Paging) Systemsoftware. = Referenzlokalität. Seite 2.1. Instruktionen werden wiederholt ausgeführt"

Transkript

1 Adreßräume Seitenersetzung (Paging) Motivation Instruktionen werden wiederholt ausgeführt Variablen werden wiederholt referenziert Gründe: Sequentielle Ausführung überwiegt Tatsächliche Prozedurverschachtelung gering Kurze Schleifen Häufige Verarbeitung von Feldern und ecords Zeit = eferenzlokalität (c), Prof. Dr. P. Sturm, Universität Trier Seite.

2 Erfahrungen mit Pascal und C elative dynamische Frequenz von Hochsprachenkonstrukten im Quellcode Zuweisung und Bedingung ergeben über 8% eferenzen: T. Huck Comparative Analysis of Computer Architectures Technical eport 8-4, Stanford University, Mai 98 D. Patterson, C. Sequin A VLSI ISC IEEE Computer, Sept. 98 Zuweisung Bedingung Prozedur Schleife Sprung Pascal [Huck] C [Patterson, Sequin] Caching: Ausnutzung der eferenzlokalität CPU Hit Speicher S. Ebene (Cache) Miss Speicher S. Ebene -Ebenen-Speicher Kenngrößen eines Speichers S k : T k = Mittlere Zugriffszeit P k = Preis pro Byte G k = Größe in Byte Trefferrate H Wahrscheinlichkeit, daß referenzierter Wert im ersten Speicher ist 4 (c), Prof. Dr. P. Sturm, Universität Trier Seite.

3 Mittlere Zugriffszeit und Kosten Mittlere Zugriffszeit: T = HT + ( H )( T + T ) = T + ( H ) T Kosten: P = PG G + P G + G Zugriffseffizienz: T T = H H T + ( ) T 5 Zugriffseffizienz T = T T T =,, T = T T = T Hitrate,,,4,6,8 T Typisch bei L-Cache zu Hauptspeicher: 5 T 6 (c), Prof. Dr. P. Sturm, Universität Trier Seite.

4 elative Cache-Größe Trefferquote Hohe Lokalität,8,6,4 Mittlere Lokalität Keine Lokalität, G elative Speichergröße ( ) G,,4,6,8 Optimierungsziel Anstrebenswert ist: T << T : T T C << C : C C Erfordert Trefferquote H zwischen.8 und.9 Bereits sehr kleine Caches (G << G ) liefern hohe Trefferquote 8 (c), Prof. Dr. P. Sturm, Universität Trier Seite.4

5 Caching über mehrere Ebenen CPU Speicher S. Ebene Speicher S. Ebene Speicher S. Ebene Ebene Hit Ebene Miss Ebene Hit Ebene Miss Ausnutzung der Speicherhierarchie L-Cache und MMU-TLB zu L-Cache L-Cache zu Hauptspeicher Hauptspeicher Externer Speicher Caching zwischen internem und externem Speicher besonders vielversprechend: Verhältnis bei Zugriffszeit: : 5 Größenverhältnis: : - Kostenverhältnis: : 9 Vorteile: Paging Vergrößerung des virtuellen Adreßraums Adreßraum nur durch Größe des externen Speichers beschränkt Gleichzeitige Unterstützung mehrerer Adreßräume eferenzlokalität verspricht minimale Zeitverzögerung? Ein- und Auslagern einzelner Seiten P-Bit moderner MMU s Seitenfehler beim Zugriff auf ausgelagerte Seiten Seitentabelle Hauptspeicher Externer Speicher (c), Prof. Dr. P. Sturm, Universität Trier Seite.5

6 Seitenfehler CPU virtuelle Adresse p d Seitenfehler MMU p P-Bit =? P-Bit = : Seitentabelle Seite ausgelagert Adreßraum nicht angelegt Unterscheidung durch: speziellen Adreßwert im Seitendeskriptor Nutzung der freien Bits in den Deskriptoren Behandlung von Seitenfehlern. Adreßraum nicht angelegt (ungültige eferenz)? Programm terminieren Seite ausgelagert!. Freie Kachel im Arbeitsspeicher suchen Belegte Kachel verdrängen (Auslagern), wenn keine freie Kachel vorhanden. Seitentransfer von Platte einplanen Kontextwechsel: Ausführung anderer Kontrollflüsse 4. Seitentabelle aktualisieren P-Bit setzen Adresse der gewählten Kachel eintragen 5. Instruktion wiederholen Instruktionswiederholung muß von CPU unterstützt werden (c), Prof. Dr. P. Sturm, Universität Trier Seite.6

7 Effizienz von Seitenersetzungsverfahren Effektive Zugriffszeit abhängig von der Wahrscheinlichkeit eines Seitenfehlers p: t = ( p) t + p t effektiv HS SF t HS = Zugriffszeit Hauptspeicher (ca. ns) t SF = Zeit für die Behandlung eines Seitenfehlers Seitenfehlerbehandlung: t = t + t + t + t + t SF Interrupt Suchen Auslagern Einlagern Wdh t Ein / Auslagern Effektive Zugriffszeit Annahme: Speicherzugriffszeit: nsec Plattenzugriff: msec t = effektiv p ( ) + p p Weniger als % Zeitverzögerung:. > + p p < 5 höchstens alle Millionen eferenzen ein Seitenfehler 4 (c), Prof. Dr. P. Sturm, Universität Trier Seite.

8 Seitenverdrängungsstrategien Seitenfehler: keine freie Kachel für einzulagernde Seite Konsequenzen: Anwendung wird terminiert ein anderer Adreßraum wird vollständig ausgelagert (Swapping) eine bereits belegte Kachel wird frei gemacht Fall : Seitenverdrängung Welche Seite soll verdrängt werden? = Verdrängungsstrategie minimale Seitenfehlerrate 5 eferenzstring Bewertung von Verdrängungsstrategien Berechnet sich aus der Zugriffsfolge bei welchen Zugriffen entstehen Seitenfehler? nur Seitenanteil wichtig Seite für eine bestimmte Zeit (bis zur Verdrängung) im Speicher (Seite nicht zweimal hintereinander) abhängig von der Anzahl an verfügbaren Kacheln Beispiel: Zugriffe:,, 6,,, 4, 6, 6, 4,,,... Seitengröße eferenzstring ( Kachel):, 6,,,, 6,, eferenzstring ( Kacheln):, 6,,,, 6, eferenz-eferenzstring:,,,,,,, 4,,,,,,,,,,, 6 (c), Prof. Dr. P. Sturm, Universität Trier Seite.8

9 Optimale Verdrängung (Belady) Die Seite verdrängen, die in der Zukunft am längsten nicht gebraucht wird praktisch nicht implementierbar dient der Bewertung anderer Verdrängungsstrategien Warum ist diese Strategie optimal? Beispiel: 4 4 FIFO Die Seite verdrängen, die sich am längsten im Speicher befindet Beispiel: Berücksichtigt eferenzlokalität absolut nicht häufig verwendete Seite (Hot Spot) kann ausgelagert werden selten referenzierte Seiten bleiben lange im Hauptspeicher ealisierung über Liste 8 (c), Prof. Dr. P. Sturm, Universität Trier Seite.9

10 Belady s Anomalie bei FIFO Anzahl Seitenfehler eferenzstring:,,, 4,,, 5,,,, 4, 5 Anomalie: Höhere Seitenfehlerrate bei mehr verfügbaren Kacheln Kacheln 9 Least ecently Used (LU) Die Seite verdrängen, die in der Vergangenheit am längsten nicht referenziert wurde eferenzlokalität: Was in der Vergangenheit lange nicht referenziert wurde, wird auch in der Zukunft lange nicht referenziert Projektion der Vergangenheit in die Zukunft LU nähert optimale Verdrängung am besten an Schwierig zu implementieren (c), Prof. Dr. P. Sturm, Universität Trier Seite.

11 Implementierung von LU Probleme Seiten nach dem letzten Zugriff ordnen JEDE einzelne eferenz (Lesend oder Schreibend) muß berücksichtigt werden ealisierung mit Hilfe eines Zählers: Seitendeskriptor um ein Zählerfeld erweitern CPU um eine logische Uhr erweitern (bei jedem Zugriff inkrementieren) MMU überträgt bei jedem Zugriff CPU-Uhr in Seitendeskriptor (Schreiboperation) Seite mit kleinstem Stempel wird verdrängt ealisierung mit Hilfe eines Kellers: Keller referenzierter Seiten eferenzierte Seite wird aus Keller entfernt und kommt an die Spitze (Keller = doppelt verkettete Liste) Letzte Seite wird verdrängt LU-Näherung I Shift um nach links Seitentabelle Zusatztabelle Zusätzliche Tabelle: Nutzung des -Bits in der Seitentabelle Periodisch (z.b. msec) Übernahme der eferenzbits in die Zusatztabelle Tabelleneintrag spiegelt die eferenzen in den letzten n Zyklen wider Seiten mit dem kleinsten Wert am längsten nicht referenziert (c), Prof. Dr. P. Sturm, Universität Trier Seite.

12 LU-Näherung II: nd Chance = Zweite Chance -Bit = -Bit = Verdrängen Basiert auf FIFO-Algorithmus FIFO wählt Seite, die am längsten im Speicher ist -Bit = : Seite wird verdrängt -Bit = : Seite bekommt eine zweite Chance Seite wird wieder an den Kopf der FIFO-Liste eingereiht -Bit wird zurückgesetzt nd Chance degeneriert zu FIFO wenn alle -Bits gesetzt sind Clock-Algorithmus Implementierungsvariante des nd Chance Aktualisierung der FIFO-Liste zu aufwendig Verkettung der Seiten in einer zirkulären Liste Uhrzeiger zeigt auf die älteste Seite: -Bit = : Seite verdrängen -Bit = : Zurücksetzen Stunde weiter 4 (c), Prof. Dr. P. Sturm, Universität Trier Seite.

13 Variante des Clock-Algorithmus Clock-Algorithmus zu langwierig bei großem Hauptspeicher Zwei Zeiger: Vordere Zeiger setzt -Bit zurück Hintere Zeiger prüft -Bit Beide Zeiger springen Stunde vor Geringer Abstand zwischen Zeiger: Nur sehr häufig referenzierte Seiten bleiben Maximaler Zeigerabstand: Original Clock-Algorithmus BSD UNIX 5 Weitere Verdrängungsstrategien Zufallswahl Eine zufällig ausgewählte Seite wird verdrängt Least Frequently Use (LFU)... Zähler, der bei jedem Seitenzugriff inkrementiert wird Seite mit dem kleinsten Zählerstand wird verdrängt Problem: Kurzzeitg häufig und dann nicht mehr benötigte Seiten (z.b. Initialisierung) Periodisch Links-Shift des Zählers (Exponentielle Dämpfung) 6 (c), Prof. Dr. P. Sturm, Universität Trier Seite.

14 Kachelzuteilung Initiale Seitentabelle für neu eingerichteten Adreßraum: Leer Partiell besetzt Vollständig initialisiert Demand Paging Eine Seite wird erst beim ersten Zugriff (Seitenfehler) geladen Prepaging Seiten werden vor dem ersten Zugriff geladen Ausnutzung der Zugriffscharakteristik auf Platten Zugriffszeit auf erste Seite lang weitere Seiten (Sektoren) schnell Stack Heap Statisch allokierte Daten Text Mischformen Kachelanzahl Wechselwirkungen: Möglichst wenig Kachel zuordnen mehr Adreßräume freie Kacheln für Notfälle (?) Nachteil: u.u. Leistungseinbußen trotz freier Kacheln Möglichst viele Kacheln zuordnen geringe Seitenfehlerrate Nachteil: u.u. essourcenverschwendung Jedem Adreßraum gleich viele Kacheln? Minimum: Nach Seitenfehler müssen alle Seiten geladen werden, die für die Instruktionswiederholung notwendig sind 8 Seiten und mehr (z.b. Blockkopierbefehle) 8 (c), Prof. Dr. P. Sturm, Universität Trier Seite.4

15 elative CPU-Auslastung Systemsoftware Seitenflattern (Thrashing) Schwellwert K Mehr als K Kacheln allokiert: Seitenfehlerrate klein genug viele Seiten selten referenziert u.u. für andere Adreßräume besser einsetzbar Genau K Kacheln Weniger als K Kacheln allokiert: Kontrollfluß löst ständig Seitenfehler aus Betriebssystem lädt nur Seiten nach Kontrollfluß kommt praktisch nicht mehr an die eihe Wie groß ist K? K Kachelanzahl 9 Seitenflattern ist ein globaler Effekt Seitenflattern beginnt in ein oder mehreren Adreßräumen Hauptspeicher Viele Ein- und Auslagerungs-aufträge für Platte Mittlere Zugriffszeit bei E/A wächst Ohne Vorkehrungen kommt praktisch das ganze System zum Stillstand Platte (c), Prof. Dr. P. Sturm, Universität Trier Seite.5

16 Working Sets Magische Schwellwert K P. Denning 968 The Working Set Model for Program Behavior CACM, Mai 968 Working-Set (WS) eines Kontrollflusses: WS( t, ) = letzten referenzierten Seiten vor t Wahl von kritisch: zu klein: Lokalitätsmenge nicht enthalten zu groß: mehrere Lokalitätsmengen enthalten günstige Werte liegen bei ca. 4 Beispiel D D WS(t,D) ) = {,,4} t WS(t,D) ) = {,,,4,5} t Größe des Working-Set für Kachelzuteilung wichtig: D = WS ( t, ) k k D > Verfügbare Kachelanzahl: Thrashing-Gefahr Adreßräume auslagern (Swapping) Kontrollflüsse suspendieren D < Verfügbare Kachelanzahl: Weitere Kontrollflüsse aktivieren (c), Prof. Dr. P. Sturm, Universität Trier Seite.6

17 Bestimmung des Working Set Muß für jeden Prozeß berechnet werden Aufwendige ealisierung: eferenzierte Seite kommt an den Anfang einer großen Schlange Letzte in der Schlange gespeicherte Seite fällt raus Jede Seite in der Schlange ist im Working Set Änderungen rechtzeitig mitbekommen Approximation: siehe LU-Näherung I Vermeidung von Thrashing Seitenfehlerrate Zeit Beobachtung der Seitenfehlerrate Überschreitung einer Maximalfrequenz: Thrashing Zusätzliche Kacheln zuordnen Adreßräume auslagern (Swapping) Unterschreitung einer Minimalfrequenz: Kacheln entziehen 4 (c), Prof. Dr. P. Sturm, Universität Trier Seite.

18 Globale und lokale Verdrängung Lokale Verdrängung Eine Kachel des eigenen Adreßraums wird verdrängt Anzahl zugewiesener Kacheln bleibt gleich Kachelanzahl selbst-bestimmt Working-Set sinnvoll Geringerer Durchsatz (u.u. schwer, weitere Kacheln zu bekommen) Globale Verdrängung Eine Kachel eines beliebigen Adreßraums wird verdrängt Höherpriore Kontrollflüsse können ihren Bedarf bei anderen Adreß-räumen decken Kachelanzahl hängt auch von anderen Kontrollflüssen ab Höherer Durchsatz 5 UNIX: Dämon-Paging Seitenfehlerbehandlung und Verdrängung trennen Spezieller, nebenläufiger Prozeß sorgt für freie Kacheln alle 5 msec aktiv Schwellwert (lotsfree) an freien Kacheln unterschritten? Auslagern von Seiten gemäß Clock- Algorithmus (-Zeiger-Variante) Globale Verdrängung belegte Kacheln freie Kacheln lotsfree lotsfree ca. /4 des verfügbaren Speichers 6 (c), Prof. Dr. P. Sturm, Universität Trier Seite.8

Technische Informatik 1 - HS 2017

Technische Informatik 1 - HS 2017 Institut für Technische Informatik und Kommunikationsnetze Prof. L. Thiele Technische Informatik 1 - HS 2017 Übung 11 Datum: 21. 22. 12. 2017 Virtueller Speicher 1 Performanz Gehen Sie von einem virtuellen

Mehr

Speicherverwaltung (Swapping und Paging)

Speicherverwaltung (Swapping und Paging) Speicherverwaltung (Swapping und Paging) Rückblick: Segmentierung Feste Einteilung des Speichers in einzelne Segmente 750k 0 Rückblick: Segmentierung Feste Einteilung des Speichers in einzelne Segmente

Mehr

Virtueller Speicher WS 2011/2012. M. Esponda-Argüero

Virtueller Speicher WS 2011/2012. M. Esponda-Argüero Virtueller Speicher WS / Virtuelle Speicher Bis jetzt sind wir davon ausgegangen, dass Prozesse komplett im Hauptspeicher gelagert werden. Speicherreferenzen sind nur logische Adressen, die dynamisch in

Mehr

Teil 2: Speicherstrukturen

Teil 2: Speicherstrukturen Inhalt Teil 2: Speicherstrukturen Hauptspeicher Cache Assoziativspeicher Speicherverwaltungseinheit ( Memory Management Unit ) 1 Virtueller Speicher Trennung von virtuellem Adreßraum (mit virtuellen Adressen)

Mehr

Betriebssysteme I WS 2016/2017. Betriebssysteme / verteilte Systeme Tel.: 0271/ , Büro: H-B 8404

Betriebssysteme I WS 2016/2017. Betriebssysteme / verteilte Systeme Tel.: 0271/ , Büro: H-B 8404 Betriebssysteme I WS 2016/2017 Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 2. Februar 2017 Betriebssysteme / verteilte Systeme Betriebssysteme

Mehr

Tutorium Rechnerorganisation

Tutorium Rechnerorganisation Woche 11 Tutorien 3 und 4 zur Vorlesung Rechnerorganisation 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Konzepte von Betriebssystemkomponenten Referat am Thema: Adressräume, Page Faults, Demand Paging, Copy on Write Referent: Johannes Werner

Konzepte von Betriebssystemkomponenten Referat am Thema: Adressräume, Page Faults, Demand Paging, Copy on Write Referent: Johannes Werner Konzepte von Betriebssystemkomponenten Referat am 24.11.2003 Thema: Adressräume, Page Faults, Demand Paging, Copy on Write Referent: Johannes Werner Gliederung Adressräume Page Faults Demand Paging Copy

Mehr

(Cache-Schreibstrategien)

(Cache-Schreibstrategien) Übungsblatt 2 Aufgabe 1 (Digitale Datenspeicher) 1. Nennen Sie einen digitalen Datenspeicher, der mechanisch arbeitet. 2. Nennen Sie zwei rotierende magnetische digitale Datenspeicher. 3. Nennen Sie zwei

Mehr

Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler

Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler Betriebssysteme Teil 10 B: Fragen rund um Seitenfehler 1 Überlegungen Wenn wir einige Seiten eines Programms in den Speicher laden, brauchen wir eine Strategie, welche Seiten als nächstes geladen werden

Mehr

Konzepte von Betriebssystem- Komponenten Olessia Usik 20. Juni 2005

Konzepte von Betriebssystem- Komponenten Olessia Usik 20. Juni 2005 Konzepte von Betriebssystem- Komponenten Olessia Usik olessia@freenet.de 20. Juni 2005 1 GROß 2 SCHNELL UNENDLICH Gliederung 1. Einleitung 2. Swapping 3. Virtuelle Speicherverwaltung 3.1 Segmentorientierter

Mehr

Paging. Einfaches Paging. Paging mit virtuellem Speicher

Paging. Einfaches Paging. Paging mit virtuellem Speicher Paging Einfaches Paging Paging mit virtuellem Speicher Einfaches Paging Wie bisher (im Gegensatz zu virtuellem Speicherkonzept): Prozesse sind entweder ganz im Speicher oder komplett ausgelagert. Im Gegensatz

Mehr

10.1 Seitentauschverfahren. Kapitel 10 Algorithmen zur Speicherverwaltung. Auswahlstrategie. Modellierung der Seitenzugriffe

10.1 Seitentauschverfahren. Kapitel 10 Algorithmen zur Speicherverwaltung. Auswahlstrategie. Modellierung der Seitenzugriffe 0. Seitentauschverfahren Kapitel 0 Algorithmen zur Speicherverwaltung Virtueller Speicher verwendet Paging, hierbei treten evtl. Seitenfehler auf Motivierende Rechnung: Leistungseinfluss von Seitenfehlern

Mehr

Virtueller Speicher und Memory Management

Virtueller Speicher und Memory Management Virtueller Speicher und Memory Management Speicher-Paradigmen Programmierer ein großer Adressraum linear adressierbar Betriebssystem eine Menge laufender Tasks / Prozesse read-only Instruktionen read-write

Mehr

Betriebssysteme (BS)

Betriebssysteme (BS) Betriebssysteme (BS) Virtueller Speicher Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 2 TU Dortmund Olaf.Spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/ In

Mehr

In heutigen Computern findet man schnellen/teuren als auch langsamen/billigen Speicher

In heutigen Computern findet man schnellen/teuren als auch langsamen/billigen Speicher Speicherhierarchie In heutigen Computern findet man schnellen/teuren als auch langsamen/billigen Speicher Register Speicherzellen, direkt mit der Recheneinheit verbunden Cache-Speicher Puffer-Speicher

Mehr

RO-Tutorien 15 und 16

RO-Tutorien 15 und 16 Tutorien zur Vorlesung Rechnerorganisation Tutorienwoche 10 am 29.06.2011 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Leichtgewichtsprozesse

Leichtgewichtsprozesse Leichtgewichtsprozesse häufiger Prozeßwechsel stellt in einem Betriebssystem eine hohe Belastung dar; auch erfordert die Generierung eines neuen Prozesses viele System-Resourcen in vielen Anwendungen werden

Mehr

Leichtgewichtsprozesse

Leichtgewichtsprozesse Leichtgewichtsprozesse häufiger Prozeßwechsel stellt in einem Betriebssystem eine hohe Belastung dar; auch erfordert die Generierung eines neuen Prozesses viele System-Resourcen in vielen Anwendungen werden

Mehr

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl Übung zur Vorlesung Grundlagen Betriebssysteme und Systemsoftware (Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl (gbs-ws11@mailschlichter.informatik.tu-muenchen.de) http://www11.in.tum.de/veranstaltungen/grundlagenbetriebssystemeundsystemsoftwarews1112

Mehr

é Er ist software-transparent, d.h. der Benutzer braucht nichts von seiner Existenz zu wissen. Adreßbus Cache- Control Datenbus

é Er ist software-transparent, d.h. der Benutzer braucht nichts von seiner Existenz zu wissen. Adreßbus Cache- Control Datenbus 4.2 Caches é Cache kommt aus dem Französischen: cacher (verstecken). é Er kann durch ein Anwendungsprogramm nicht explizit adressiert werden. é Er ist software-transparent, d.h. der Benutzer braucht nichts

Mehr

5.5 Virtueller Speicher

5.5 Virtueller Speicher 5.5 Virtueller Speicher Wenn der reale Speicher sogar für einzelne Prozesse zu klein ist : Virtueller Speicher (virtual memory), ist beliebig groß, nimmt alle Prozesse auf, ist in gleichgroße Teile Seiten

Mehr

Übung zu Grundlagen der Betriebssysteme. 14. Übung

Übung zu Grundlagen der Betriebssysteme. 14. Übung Übung zu Grundlagen der Betriebssysteme 14. Übung 29.01.2012 Aufgabe 1 Demand Paging a) Was wird unter dem Begriff Demand Paging verstanden? b) Was sind Vor- und Nachteile des Demand Paging? Bei Demand

Mehr

Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben

Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben Themen heute Besprechung des 9. Übungsblattes Virtuelle Speicherverwaltung Aufgaben Besprechung des 9. Übungsblattes Aufgabe 2 Ist in einer Aufgabe wie hier keine explizite Wortbreite angegeben, nicht

Mehr

Technische Informatik II Wintersemester 2002/03 Sommersemester 2001. Heiko Holtkamp Heiko@rvs.uni-bielefeld.de

Technische Informatik II Wintersemester 2002/03 Sommersemester 2001. Heiko Holtkamp Heiko@rvs.uni-bielefeld.de Technische Informatik II Wintersemester 2002/03 Sommersemester 2001 Heiko Holtkamp Heiko@rvs.uni-bielefeld.de Speicher ist eine wichtige Ressource, die sorgfältig verwaltet werden muss. In der Vorlesung

Mehr

Lösung von Übungsblatt 2

Lösung von Übungsblatt 2 Lösung von Übungsblatt 2 Aufgabe 1 (Digitale Datenspeicher) 1. Nennen Sie einen digitalen Datenspeicher, der mechanisch arbeitet. Lochstreifen, Lochkarte, CD/DVD beim Pressen. 2. Nennen Sie zwei rotierende

Mehr

Übung zu Einführung in die Informatik # 10

Übung zu Einführung in die Informatik # 10 Übung zu Einführung in die Informatik # 10 Tobias Schill tschill@techfak.uni-bielefeld.de 15. Januar 2016 Aktualisiert am 15. Januar 2016 um 9:58 Erstklausur: Mi, 24.02.2016 von 10-12Uhr Aufgabe 1* a),

Mehr

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset.

Quiz. Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset. Quiz Gegeben sei ein 16KB Cache mit 32 Byte Blockgröße. Wie verteilen sich die Bits einer 32 Bit Adresse auf: Tag Index Byte Offset 32 Bit Adresse 31 3 29... 2 1 SS 212 Grundlagen der Rechnerarchitektur

Mehr

2.3 Prozessverwaltung

2.3 Prozessverwaltung Realisierung eines Semaphors: Einem Semaphor liegt genau genommen die Datenstruktur Tupel zugrunde Speziell speichert ein Semaphor zwei Informationen: Der Wert des Semaphors (0 oder 1 bei einem binären

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informatik III Wintersemester 2010/2011 Wolfgang Heenes, atrik Schmittat 12. Aufgabenblatt 07.02.2011 Hinweis: Der Schnelltest und die Aufgaben sollen in den Übungsgruppen bearbeitet werden.

Mehr

Wie groß ist die Page Table?

Wie groß ist die Page Table? Wie groß ist die Page Table? Im vorigen (typischen) Beispiel verwenden wir 20 Bits zum indizieren der Page Table. Typischerweise spendiert man 32 Bits pro Tabellen Zeile (im Vorigen Beispiel brauchten

Mehr

RO-Tutorien 17 und 18

RO-Tutorien 17 und 18 RO-Tutorien 17 und 18 Tutorien zur Vorlesung Rechnerorganisation Christian A. Mandery TUTORIENWOCHE 12 AM 19.07.2012 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der

Mehr

Wunschvorstellung der Entwickler vom Speicher

Wunschvorstellung der Entwickler vom Speicher Wunschvorstellung der Entwickler vom Speicher Unendlich groß Unendlich schnell Nicht flüchtig billig Obwohl sich der verfügbare Speicher laufend erhöht, wird immer mehr Speicher benötigt, als verfügbar

Mehr

Speicherverwaltung. Kapitel VI. Adressbindung (2) Adressbindung (1) Speicherverwaltung

Speicherverwaltung. Kapitel VI. Adressbindung (2) Adressbindung (1) Speicherverwaltung Speicherverwaltung Kapitel VI Speicherverwaltung Computer exekutiert Programme (mit Daten) im Hauptspeicher. Hauptspeicher: Großes Array von Wörtern ( oder mehrere Bytes) Jedes Wort hat eine eigene Adresse.

Mehr

Definitionen zum Verschnitt

Definitionen zum Verschnitt Definitionen zum Verschnitt Die absoluten Größen haben eine Einheit. Beim Bilden der Verhältnisgrößen wird die Einheit gekürzt. Man kann bei den Verhältnisgrößen die Größe durch die Anzahl vorgegebener

Mehr

Lösung von Übungsblatt 5

Lösung von Übungsblatt 5 Lösung von Übungsblatt 5 Aufgabe 1 (Speicherverwaltung) 1. Bei welchen Konzepten der Speicherpartitionierung entsteht interne Fragmentierung? Statische Partitionierung f Dynamische Partitionierung Buddy-Algorithmus

Mehr

9) Speicherverwaltung

9) Speicherverwaltung Inhalte Speicherhierarchien Speicherzuteilung Adressbildung Lineare Adressbildung mit statischer/dynamischer Zuteilung (Segmentierung) Kompaktifizierung Lineare Adressbildung mit virtueller Adressierung

Mehr

Aufgabe 4 : Virtueller Speicher

Aufgabe 4 : Virtueller Speicher Sommer 216 Technische Informatik I Lösungsvorschlag Seite 16 Aufgabe 4 : Virtueller Speicher (maximal 27 Punkte) 4.1: Generelle Funktionsweise (maximal 5 Punkte) (a) (1 Punkt) Nennen Sie zwei Gründe, weshalb

Mehr

virtueller Speicher - Trennung des logischen Speichers der Anwendung vom physikalischen Speicher.

virtueller Speicher - Trennung des logischen Speichers der Anwendung vom physikalischen Speicher. Kapitel 9 virtueller Speicher Seite 1 Kapitel 9: virtueller Speicher - Seiten-Swap Hintergrund virtueller Speicher - Trennung des logischen Speichers der Anwendung vom physikalischen Speicher. - Der Adressraum

Mehr

Cache Blöcke und Offsets

Cache Blöcke und Offsets Cache Blöcke und Offsets Ein Cache Eintrag speichert in der Regel gleich mehrere im Speicher aufeinander folgende Bytes. Grund: räumliche Lokalität wird wie folgt besser ausgenutzt: Bei Cache Miss gleich

Mehr

Speicherorganisation

Speicherorganisation Speicherorganisation John von Neumann 1946 Ideal wäre ein unendlich großer, undendlich schneller und undendlich billiger Speicher, so dass jedes Wort unmittelbar, d.h. ohne Zeitverlust, zur Verfügung steht

Mehr

Hauptspeicherverwaltung - Memory Management

Hauptspeicherverwaltung - Memory Management Hauptspeicherverwaltung - Memory Management Operating Systems I SS21 Prof. H.D.Clausen - unisal 1 Speicherhierarchie Verarbeitung cache Sekundär- Speicher Primär- Speicher ALU SS21 Prof. H.D.Clausen -

Mehr

Hausübung 5 (Musterlösung )

Hausübung 5 (Musterlösung ) SoSe 2014 Konzepte und Methoden der Systemsoftware Universität Paderborn Fachgebiet Rechnernetze Hausübung 5 (Musterlösung ) 2014-06-23 bis 2014-07-04 Hausübungsabgabe: Format: Lösungen in schriftlicher

Mehr

Lösungsvorschlag für Übung 3 1. Oktober 2010

Lösungsvorschlag für Übung 3 1. Oktober 2010 Universität Mannheim Vorlesung Betriebssysteme Lehrstuhl für Praktische Informatik 1 Herbstsemester 2010 Prof. Dr. Felix Freiling Dipl.-Inform. Jan Göbel Dynamische Seitenersetzung Aufgabe 1 Gegeben sei

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung. Maren Bennewitz

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung. Maren Bennewitz Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Maren Bennewitz Version 29.1.214 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten

Mehr

Zwei Möglichkeiten die TLB zu aktualisieren

Zwei Möglichkeiten die TLB zu aktualisieren Zwei Möglichkeiten die TLB zu aktualisieren Die MMU kümmert sich um alles (Hardware-Lösung) sucht die p-entry wenn diese nicht da ist, behandelt direkt das TLB-miss zum Schluss wird die neue p-entry (virt

Mehr

Linux Paging, Caching und Swapping

Linux Paging, Caching und Swapping Linux Paging, Caching und Swapping Inhalte Paging Das Virtuelle Speichermodell Die Page Table im Detail Page Allocation und Page Deallocation Memory Mapping & Demand Paging Caching Die verschiedenen Caches

Mehr

Betriebssysteme I WS 2013/2014. Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404

Betriebssysteme I WS 2013/2014. Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Betriebssysteme I WS 213/214 Betriebssysteme / verteilte Systeme rolanda.dwismuellera@duni-siegena.de Tel.: 271/74-45, Büro: H-B 844 Stand: 2. Januar 214 Betriebssysteme / verteilte Systeme Betriebssysteme

Mehr

Grundlagen der Informatik III Wintersemester 2010/2011

Grundlagen der Informatik III Wintersemester 2010/2011 Grundlagen der Informatik III Wintersemester 21/211 Wolfgang Heenes, atrik Schmittat 12. Aufgabenblatt mit Lösungsvorschlag 7.2.211 Hinweis: Der Schnelltest und die Aufgaben sollen in den Übungsgruppen

Mehr

Vorlesung Betriebssysteme

Vorlesung Betriebssysteme Kapitel VI Speicherverwaltung Vorlesung Betriebssyst 1 Speicherverwaltung Computer exekutiert Programme (mit Daten) im Hauptspeicher. Hauptspeicher: Großes Array von Wörtern (1 oder mehrere Bytes) Jedes

Mehr

Betriebssysteme (BTS)

Betriebssysteme (BTS) .Vorlesung Betriebssysteme (BTS) Christian Baun cray@unix-ag.uni-kl.de Hochschule Mannheim Fakultät für Informatik Institut für Betriebssysteme..007 Organisatorisches zur Übung Verteilung auf die beiden

Mehr

wichtigstes Betriebsmittel - neben dem Prozessor: Speicher

wichtigstes Betriebsmittel - neben dem Prozessor: Speicher Speicherverwaltung Aufgaben der Speicherverwaltung wichtigstes Betriebsmittel - neben dem Prozessor: Speicher Sowohl die ausführbaren Programme selbst als auch deren Daten werden in verschiedenen Speicherbereichen

Mehr

Virtueller Speicher 1

Virtueller Speicher 1 Betriebssysteme Sommersemester 2017 Betriebssysteme 6. Kapitel Virtueller Speicher 1 Dr. Peter Tröger / Prof. M. Werner Professur Betriebssysteme 1 Aktualisierte Fassung vom 29.6.17 6.1 Einführung Motivation

Mehr

Wegweiser: Virtueller Speicher

Wegweiser: Virtueller Speicher Wegweiser: Virtueller Speicher Anliegen Begriffe - Vorgehen Adressumsetzung Seitenersetzung Arbeitsmengenmodell Betriebssysteme WS 2007, Speicher 1 Virtueller Speicher im Betriebssystem Teilaufgaben Seitenfehler-Behandlung

Mehr

Fachbericht Thema: Virtuelle Speicherverwaltung

Fachbericht Thema: Virtuelle Speicherverwaltung Fachbericht 15.10.99 1 HINTERGRÜNDE/ MOTIVATION 2 2 FUNKTIONEN DER SPEICHERVERWALTUNG 2 3 ARTEN DER SPEICHERVERWALTUNG 2 3.1 STATISCHE SPEICHERVERWALTUNG 2 3.2 DYNAMISCHE SPEICHERVERWALTUNG 3 3.2.1 REALER

Mehr

, 2014W Übungsgruppen: Mo., Mi.,

, 2014W Übungsgruppen: Mo., Mi., VU Technische Grundlagen der Informatik Übung 7: Speichermanagement 183.579, 2014W Übungsgruppen: Mo., 12.01. Mi., 14.01.2015 Aufgabe 1: Cache-Adressierung Ein Prozessor mit einer Adresslänge von 20 Bit

Mehr

Wenn alle Referenzbits gleich 1, wird nach FIFO entschieden

Wenn alle Referenzbits gleich 1, wird nach FIFO entschieden 4 Second Chance (5) Second chance zeigt FIFO Anomalie Wenn alle Referenzbits gleich 1, wird nach FIFO entschieden Erweiterung Modifikationsbit kann zusätzlich berücksichtigt werden (Dirty bit) vier Klassen:

Mehr

Freispeicherverwaltung

Freispeicherverwaltung Freispeicherverwaltung Allgemeine Techniken und Anwendung unter Linux Martin Wahl, 17.11.03 Freispeicherverwaltung 1 Überblick Allgemeines Suchstrategien Verwaltungsstrategien externer / interner Verschnitt

Mehr

Verdrängung eingelagerter Fragmente

Verdrängung eingelagerter Fragmente Verdrängung eingelagerter Fragmente Platz schaffen zur Einlagerung anderer Fragmente (d.h., Seiten oder Segmente) Konsequenz zur Durchsetzung der Ladestregie bei Arbeitsspeichermangel wenn eine Überbelegung

Mehr

Schreiben von Pages. Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen).

Schreiben von Pages. Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen). Schreiben von Pages Schreiben einer Page in den Swap Space ist sehr teuer (kostet millionen von CPU Zyklen). Write Through Strategie (siehe Abschnitt über Caching) ist hier somit nicht sinnvoll. Eine sinnvolle

Mehr

Kapitel VI. Speicherverwaltung. Vorlesung Betriebssysteme

Kapitel VI. Speicherverwaltung. Vorlesung Betriebssysteme Kapitel VI Speicherverwaltung 1 Speicherverwaltung Computer exekutiert Programme (mit Daten) im Hauptspeicher. Hauptspeicher: Großes Array von Wörtern W (1 oder mehrere Bytes) Jedes Wort hat eine eigene

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Version 21.12.2016 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Speicher Übersicht Speicherhierarchie Cache Grundlagen Verbessern der Cache Performance Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 2 Speicherhierarchie

Mehr

Proseminar Konzepte von Betriebssystem- Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging

Proseminar Konzepte von Betriebssystem- Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging Proseminar Konzepte von Betriebssystem- Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging Grundlegende Bedeutung von Speicheradressierung: Wie sind die Daten auf Dem Speicher

Mehr

Memory Management. Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at

Memory Management. Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at Memory Management Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at 1 Speicherverwaltung Effektive Aufteilung und Verwaltung des Arbeitsspeichers für BS und Programme Anforderungen

Mehr

4.3 Hintergrundspeicher

4.3 Hintergrundspeicher 4.3 Hintergrundspeicher Registers Instr./Operands Cache Blocks Memory Pages program 1-8 bytes cache cntl 8-128 bytes OS 512-4K bytes Upper Level faster Disk Tape Files user/operator Mbytes Larger Lower

Mehr

Speicher. Speicher. Speicherhierarchie. Speicher. Interessante Zahlen:

Speicher. Speicher. Speicherhierarchie. Speicher. Interessante Zahlen: Übersicht 1 Einleitung Hauptspeicher 2 Hauptspeicher 3 Caches, Cache-Kohärenz Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2008/2009

Mehr

Echtzeitbetriebssysteme

Echtzeitbetriebssysteme Speicherverwaltung (Memory Management) Aufgaben der Memory-Management-Unit ist l der Speicherschutz und l die Adressumsetzung Wird durch Hardware unterstützt l Memory Management Unit (MMU) l MMU wird vom

Mehr

5 Kernaufgaben eines Betriebssystems (BS)

5 Kernaufgaben eines Betriebssystems (BS) 5 Kernaufgaben eines Betriebssystems (BS) Betriebssystem ist eine Menge von Programmen, die die Abarbeitung anderer Programme auf einem Rechner steuern und überwachen, insbesondere verwaltet es die Hardware-Ressourcen

Mehr

Lösungsvorschlag für Übung September 2009

Lösungsvorschlag für Übung September 2009 Universität Mannheim Vorlesung Betriebssysteme Lehrstuhl für Praktische Informatik 1 Herbstsemester 2009 Prof. Dr. Felix Freiling Dipl.-Inform. Jan Göbel Lösungsvorschlag für Übung 2 25. September 2009

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 13. Vorlesung Inhalt Cache Lesen Schreiben Überschreiben Memory Management Unit (MMU) Translation Lookaside Buffer (TLB) Klausurvorbereitung Inhalte der Klausur Rechnergrundlagen

Mehr

Technische Informatik 1 - Übung & 22. Dezember Philipp Miedl

Technische Informatik 1 - Übung & 22. Dezember Philipp Miedl Technische Informatik 1 - Übung 11 21. & 22. Dezember 2017 Philipp Miedl Philipp Miedl 21.12.2017 22.12.2017 1 Motivation Aufteilen des Hauptspeichers auf mehrere Prozesse Philipp Miedl 21.12.2017 22.12.2017

Mehr

Betriebssysteme. Speicherverwaltung - Grundlegende Konzepte. Sommersemester 2014 Prof. Dr. Peter Mandl. Prof. Dr. Peter Mandl Seite 1.

Betriebssysteme. Speicherverwaltung - Grundlegende Konzepte. Sommersemester 2014 Prof. Dr. Peter Mandl. Prof. Dr. Peter Mandl Seite 1. Speicherverwaltung - Grundlegende Konzepte Sommersemester 2014 Prof. Dr. Peter Mandl Prof. Dr. Peter Mandl Seite 1 Gesamtüberblick 1. Einführung in 2. Betriebssystemarchitekturen und Betriebsarten 3. Interruptverarbeitung

Mehr

Betriebssysteme - Speicherverwaltung

Betriebssysteme - Speicherverwaltung Betriebssysteme - Speicherverwaltung alois.schuette@h-da.de Version: (8c45d65) ARSnova 19226584 Alois Schütte 18. Mai 2016 1 / 80 Inhaltsverzeichnis Der Hauptspeicher ist neben dem Prozessor das wichtigste

Mehr

5.5.5 Der Speicherverwalter

5.5.5 Der Speicherverwalter 5.5.5 Der Speicherverwalter Speicherverwalter (memory manager) reagiert auf = im einfachsten Fall ein Systemprozess, der für die Umlagerung der Seiten (page swapping) zuständig ist (analog zum Umlagerer/Swapper)

Mehr

Betriebssysteme. Dipl.-Ing.(FH) Volker Schepper

Betriebssysteme. Dipl.-Ing.(FH) Volker Schepper Speicherverwaltung Real Mode Nach jedem starten eines PC befindet sich jeder x86 (8086, 80386, Pentium, AMD) CPU im sogenannten Real Mode. Datenregister (16Bit) Adressregister (20Bit) Dadurch lassen sich

Mehr

Rechnerstrukturen. 6. System. Systemebene. Rechnerstrukturen Wintersemester 2002/03. (c) Peter Sturm, Universität Trier 1. Prozessor.

Rechnerstrukturen. 6. System. Systemebene. Rechnerstrukturen Wintersemester 2002/03. (c) Peter Sturm, Universität Trier 1. Prozessor. Rechnerstrukturen 6. System Systemebene 1 (Monoprozessor) 2-n n (Multiprozessor) s L1- in der L2- ( oder Motherboard) ggf. L3- MMU Speicher Memory Controller (Refresh etc.) E/A-Geräte (c) Peter Sturm,

Mehr

Betriebssysteme, Rechnernetze und verteilte Systeme 1 (BSRvS1) Virtueller Speicher.

Betriebssysteme, Rechnernetze und verteilte Systeme 1 (BSRvS1) Virtueller Speicher. Betriebssysteme, Rechnernetze und verteilte Systeme (BSRvS) Virtueller Speicher Olaf Spinczyk rbeitsgruppe ingebettete Systemsoftware Lehrstuhl für Informatik TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/teaching/ss8/bsrvs/

Mehr

Speicher- und Cacheverwaltung unter Linux. Ralf Petring & Guido Schaumann

Speicher- und Cacheverwaltung unter Linux. Ralf Petring & Guido Schaumann Speicher- und Cacheverwaltung unter Linux Ralf Petring & Guido Schaumann Übersicht Virtueller Adressraum Virtuelle Speicheraufteilung Reale Speicheraufteilung Speicherverwaltung Speicherzugriff Auslagerungsstrategien

Mehr

8. Swapping und Virtueller Speicher

8. Swapping und Virtueller Speicher 8. Swapping und Virtueller Speicher Der physikalische Adreßraum wird weiter abgebildet auf Arbeitsspeicher und Plattenspeicher. Prozesse (deren benutzte Seiten) die nicht laufen (und bald nicht laufen)

Mehr

1. Welche Speichereinheiten werden belegt, wenn die folgenden Strategien eingesetzt werden?

1. Welche Speichereinheiten werden belegt, wenn die folgenden Strategien eingesetzt werden? Sommersemester 009 Konzepte und Methoden der Systemsoftware Universität Paderborn Fachgebiet Rechnernetze Hausübung 05 Abgabe am 0.07.009 (Kästen D) Aufgabe : Speicherzuteilung (6++=8 Punkte) Es sei der

Mehr

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Wolfram Burgard

Systeme I: Betriebssysteme Kapitel 4 Prozesse. Wolfram Burgard Systeme I: Betriebssysteme Kapitel 4 Prozesse Wolfram Burgard Version 18.11.2015 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

Lösungsvorschlag zur 6. Übung

Lösungsvorschlag zur 6. Übung rof. Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik 3 Wintersemester 9/1 Lösungsvorschlag zur 6. Übung 1 räsenzübungen 1.1 Schnelltest a) Caches und virtueller Speicher können

Mehr

Grundlagen der Betriebssysteme

Grundlagen der Betriebssysteme Grundlagen der Betriebssysteme [CS2100] Sommersemester 2014 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 6 Speicherverwaltung

Mehr

Freispeicherverwaltung Martin Wahl,

Freispeicherverwaltung Martin Wahl, Freispeicherverwaltung Martin Wahl, 17.11.03 Allgemeines zur Speicherverwaltung Der physikalische Speicher wird in zwei Teile unterteilt: -Teil für den Kernel -Dynamischer Speicher Die Verwaltung des dynamischen

Mehr

Programm. Logischer Speicher. Physischer Speicher. Hintergrundspeicher

Programm. Logischer Speicher. Physischer Speicher. Hintergrundspeicher 5. Virtueller Speicher 5.1 Grundprinzip Dem Programm wird ein größerer Hauptspeicher vorgespiegelt, als physikalisch vorhanden ist: - Das Programm arbeitet nur mit logischen bzw. virtuellen Adressen, -

Mehr

Praktische Lernkarten zum Ausschneiden, Zusammenkleben und Sammeln :-) zur Prüfungsvorbereitung Diplomprüfung. Betriebssysteme

Praktische Lernkarten zum Ausschneiden, Zusammenkleben und Sammeln :-) zur Prüfungsvorbereitung Diplomprüfung. Betriebssysteme Eine Zusammenstellung aus Prüfungsprotokollen bei Professor Schlageter Praktische Lernkarten zum Ausschneiden, Zusammenkleben und Sammeln :-) zur Prüfungsvorbereitung Diplomprüfung Betriebssysteme Thomas

Mehr

Seminarvortrag Swapping Schwerpunkt Linux

Seminarvortrag Swapping Schwerpunkt Linux Seminarvortrag Swapping Schwerpunkt Linux Konzepte von Betriebssystem- Komponenten (KVBK) Thomas Mayer Betriebssystem-Komponenten KVBK 1 Gliederung Was ist Swapping? Aufbau eines Swapbereiches Swapcache

Mehr

1. Speicher. Typische Nutzung eines Adreßraums. Systemsoftware. Textbereich relativ klein. Sehr großer Abstand zwischen Heap und Stack

1. Speicher. Typische Nutzung eines Adreßraums. Systemsoftware. Textbereich relativ klein. Sehr großer Abstand zwischen Heap und Stack 1. Speicher 1 Typische Nutzung eines Adreßraums Textbereich relativ klein Sehr großer Abstand zwischen Heap und Stack Keine Verunreinigungen durch: E/A-Bereiche nicht bestückte Adreßbereiche fremde Kontrollflüsse

Mehr

Überschrift. Speicherverwaltung. Prof. Dr. Margarita Esponda Freie Universität Berlin 2011/2012

Überschrift. Speicherverwaltung. Prof. Dr. Margarita Esponda Freie Universität Berlin 2011/2012 Überschrift Speicherverwaltung Prof. Dr. Margarita Esponda Freie Universität Berlin 2011/2012 1 Hauptziele: Speicherverwaltung Speicher ist die zweite wichtigste Ressource, die das Betriebssystem verwalten

Mehr

Kapitel VI. Speicherverwaltung. Speicherverwaltung

Kapitel VI. Speicherverwaltung. Speicherverwaltung Kapitel VI Speicherverwaltung 1 Speicherverwaltung Computer exekutiert Programme (mit Daten) im Hauptspeicher. Hauptspeicher: Großes Array von Wörtern (1 oder mehrere Bytes) Jedes Wort hat eine eigene

Mehr

Proseminar Konzepte von Betriebssystem-Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging Von Christian Hubert

Proseminar Konzepte von Betriebssystem-Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging Von Christian Hubert Proseminar Konzepte von Betriebssystem-Komponenten (KVBK) Vortrag zum Thema: Speicheraddressierung, Segmentierung, Paging Von Christian Hubert 1.: Speicherung und Adressierung von Daten Bei der Speicheradressierung

Mehr

9 Speicherorganisation

9 Speicherorganisation 9 Speicherorganisation In diesem Kapitel behandeln wir... verschiedene Speicherkonzepte Algorithmen zur effektivenspeichernutzung Rechteverwaltung vonspeicher 98 Kapitel 9: Speicherorganisation 9. Speicherhierarchie

Mehr

Speicher. Betriebssysteme (zu großen Teilen nach Tanenbaum) Hermann Härtig TU Dresden

Speicher. Betriebssysteme (zu großen Teilen nach Tanenbaum) Hermann Härtig TU Dresden Speicher Betriebssysteme (zu großen Teilen nach Tanenbaum) Hermann Härtig TU Dresden Wegweiser Einführung Elementare Techniken Virtueller Speicher (Paging) Anliegen - Begriffe - Vorgehen Adressumsetzung

Mehr

Übung zu Grundlagen der Betriebssysteme. 13. Übung 22.01.2012

Übung zu Grundlagen der Betriebssysteme. 13. Übung 22.01.2012 Übung zu Grundlagen der Betriebssysteme 13. Übung 22.01.2012 Aufgabe 1 Fragmentierung Erläutern Sie den Unterschied zwischen interner und externer Fragmentierung! Als interne Fragmentierung oder Verschnitt

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Version 11.01.2017 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

Echtzeit-Multitasking

Echtzeit-Multitasking Technische Informatik Klaus-Dieter Thies Echtzeit-Multitasking Memory Management und System Design im Protected Mode der x86/pentium-architektur. Shaker Verlag Aachen 2002 Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Mehr

Echtzeit-Multitasking

Echtzeit-Multitasking Technische Informatik Klaus-Dieter Thies Echtzeit-Multitasking Memory Management und System Design im Protected Mode der x86/pentium-architektur. Shaker Verlag Aachen 2002 Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Mehr

Linker: Adreßräume verknüpfen. Informationen über einen Prozeß. Prozeß-Erzeugung: Verwandtschaft

Linker: Adreßräume verknüpfen. Informationen über einen Prozeß. Prozeß-Erzeugung: Verwandtschaft Prozeß: drei häufigste Zustände Prozeß: anatomische Betrachtung jeder Prozeß verfügt über seinen eigenen Adreßraum Sourcecode enthält Anweisungen und Variablen Compiler überträgt in Assembler bzw. Binärcode

Mehr