Übung 5 Algorithmen II

Größe: px
Ab Seite anzeigen:

Download "Übung 5 Algorithmen II"

Transkript

1 Michael Axtmann Axtmann: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

2 Themenübersicht Ford Fulkerson Erhöhende Pfade Residualgraph Max-Flow und Min-Cut Dinitz Algorithmus Distanz Label Layergraph Blocking Flow Axtmann:

3 Nachklausur Dienstag, :00 bis 3:00 Uhr Axtmann:

4 Ford Fulkerson 3 Axtmann:

5 Flüsse und Ford Fulkerson Axtmann:

6 Flüsse und Ford Fulkerson Axtmann:

7 Flüsse und Ford Fulkerson Axtmann:

8 Flüsse und Ford Fulkerson Axtmann:

9 Flüsse und Ford Fulkerson Axtmann:

10 Flüsse und Ford Fulkerson Axtmann:

11 Flüsse und Ford Fulkerson Axtmann:

12 Flüsse und Ford Fulkerson Axtmann:

13 Flüsse und Ford Fulkerson Axtmann:

14 Residualgraph Verwalten von Restkapazitäten Modellierung und Erkennung von Gegenflüssen c f (e) = c(e) f (e): Restkapazität Hier: Fluss f (e) und Gesamtkapazität c(e) c f (e rev ) = f (e): Fluss über Kante e Hier: Restkapazität und Gesamtkapazität von e Keine 0-Gewicht Kanten Flüsse über Kanten e und e rev erlaubt Fluss über Kante Update beider Kanten 5 Axtmann:

15 Flüsse und Ford Fulkerson Axtmann:

16 Flüsse und Ford Fulkerson Axtmann:

17 Flüsse und Ford Fulkerson Axtmann:

18 Flüsse und Ford Fulkerson Axtmann:

19 Max Flow - Min Cut 7 Axtmann:

20 Max Flow - Min Cut Axtmann:

21 Max Flow - Min Cut S-T -Schnitte betrachten nur Kanten S T Kanten T S werden nicht berücksichtigt s und t werden durch alle möglichen S-T -Schnitte getrennt Flow muss von s nach t, auch durch alle möglichen S-T -Schnitte Max Flow = Min S-T -Cut Axtmann:

22 Max Flow - Min Cut S-T -Schnitte betrachten nur Kanten S T Kanten T S werden nicht berücksichtigt s und t werden durch alle möglichen S-T -Schnitte getrennt Flow muss von s nach t, auch durch alle möglichen S-T -Schnitte Max Flow = Min S-T -Cut 9 Axtmann:

23 Algorithmus 0 Axtmann:

24 Distanz Label Geben Distanz im Residualgraphen (hop-based) zur Senke t an Rückwärtsgerichtete Breitensuche 4 Start bei Knoten t Layer: Knoten mit gleicher Distanz zu s im BFS-Baum Knoten in einem Layer: gleiches Label s 4 3 t Layered graph auch: kürzeste Wege Netzwerk, Schichtgraph Axtmann:

25 Distanz Label Geben Distanz im Residualgraphen (hop-based) zur Senke t an Rückwärtsgerichtete Breitensuche Start bei Knoten t Layer: Knoten mit gleicher Distanz zu s im BFS-Baum Knoten in einem Layer: gleiches Label Layered graph auch: kürzeste Wege Netzwerk, Schichtgraph Axtmann:

26 Distanz Label Geben Distanz im Residualgraphen (hop-based) zur Senke t an Rückwärtsgerichtete Breitensuche Start bei Knoten t Layer: Knoten mit gleicher Distanz zu s im BFS-Baum Knoten in einem Layer: gleiches Label Layered graph auch: kürzeste Wege Netzwerk, Schichtgraph Axtmann:

27 Distanz Label Geben Distanz im Residualgraphen (hop-based) zur Senke t an Rückwärtsgerichtete Breitensuche Start bei Knoten t Layer: Knoten mit gleicher Distanz zu s im BFS-Baum Knoten in einem Layer: gleiches Label Layered graph auch: kürzeste Wege Netzwerk, Schichtgraph Axtmann:

28 Distanz Label Geben Distanz im Residualgraphen (hop-based) zur Senke t an Rückwärtsgerichtete Breitensuche Start bei Knoten t Layer: Knoten mit gleicher Distanz zu s im BFS-Baum Knoten in einem Layer: gleiches Label Layered graph auch: kürzeste Wege Netzwerk, Schichtgraph Axtmann:

29 Distanz Label Geben Distanz im Residualgraphen (hop-based) zur Senke t an Rückwärtsgerichtete Breitensuche 4 Start bei Knoten t Layer: Knoten mit gleicher Distanz zu s im BFS-Baum Knoten in einem Layer: gleiches Label Layered graph auch: kürzeste Wege Netzwerk, Schichtgraph Axtmann:

30 Schichtgraph für Graph G = (V, E) Knotenmenge V S = V E = {e = (u, v) E f (e) < c(e), d(u) = d(v) + } E rev = {e rev = (v, u) rev f (v, u) > 0, d(u) = d(v) + } Kantenmenge E S = E E rev betrachte Analogie zu Edmonds-Karp (kürzeste erhöhende Wege) Axtmann:

31 Blockierender Fluss Kein weiterer Fluss möglich Auf jedem Weg durch den Graphen mindestens eine Kante bis zur maximalen Kapazität 0 0 ausgelastet ist Blocking flow als atomare Operation Berechnung auf Schichtgraph Kein Residualgraph Kein Rückfluss möglich i.a. nicht maximal auf Schichtgraph und Redisualgraph Axtmann:

32 Blockierender Fluss Kein weiterer Fluss möglich Auf jedem Weg durch den Graphen mindestens eine Kante bis zur maximalen Kapazität 0 0 ausgelastet ist Blocking flow als atomare Operation Berechnung auf Schichtgraph Kein Residualgraph Kein Rückfluss möglich i.a. nicht maximal auf Schichtgraph und Redisualgraph Axtmann:

33 Blockierender Fluss Kein weiterer Fluss möglich Auf jedem Weg durch den Graphen mindestens eine Kante bis zur maximalen Kapazität 0 0 ausgelastet ist Blocking flow als atomare Operation Berechnung auf Schichtgraph Kein Residualgraph Kein Rückfluss möglich i.a. nicht maximal auf Schichtgraph und Redisualgraph Axtmann:

34 Blockierender Fluss Kein weiterer Fluss möglich Auf jedem Weg durch den Graphen mindestens eine Kante bis zur maximalen Kapazität 0 0 ausgelastet ist Blocking flow als atomare Operation Berechnung auf Schichtgraph Kein Residualgraph Kein Rückfluss möglich i.a. nicht maximal auf Schichtgraph und Redisualgraph Axtmann:

35 Blockierender Fluss Kein weiterer Fluss möglich Auf jedem Weg durch den Graphen mindestens eine Kante bis zur maximalen Kapazität 0 0 ausgelastet ist Blocking flow als atomare Operation Berechnung auf Schichtgraph Kein Residualgraph Kein Rückfluss möglich i.a. nicht maximal auf Schichtgraph und Redisualgraph Axtmann:

36 Blockierender Fluss Kein weiterer Fluss möglich Auf jedem Weg durch den Graphen mindestens eine Kante bis zur maximalen Kapazität 0 0 ausgelastet ist Blocking flow als atomare Operation Berechnung auf Schichtgraph Kein Residualgraph Kein Rückfluss möglich i.a. nicht maximal auf Schichtgraph und Redisualgraph Axtmann:

37 Blockierender Fluss: Operationen Blocking flow: Berechnung basiert auf Tiefensuche von Knoten s Drei Operationen extend - gehe einen Knoten näher ans Ziel (Schichtgraph) retreat - Sackgasse gefunden, gehe zurück, lösche Kante breakthrough - Tiefensuche hat Senke erreicht, lösche saturierte Kanten 4 Axtmann:

38 Blockierender Fluss: Operationen Blocking flow: Berechnung basiert auf Tiefensuche von Knoten s Drei Operationen extend - gehe einen Knoten näher ans Ziel (Schichtgraph) retreat - Sackgasse gefunden, gehe zurück, lösche Kante breakthrough - Tiefensuche hat Senke erreicht, lösche saturierte Kanten 5 t d d- d- 4 Axtmann:

39 Blockierender Fluss: Operationen Blocking flow: Berechnung basiert auf Tiefensuche von Knoten s Drei Operationen extend - gehe einen Knoten näher ans Ziel (Schichtgraph) retreat - Sackgasse gefunden, gehe zurück, lösche Kante breakthrough - Tiefensuche hat Senke erreicht, lösche saturierte Kanten 5 t d d- d- 4 Axtmann:

40 Blockierender Fluss: Operationen Blocking flow: Berechnung basiert auf Tiefensuche von Knoten s Drei Operationen extend - gehe einen Knoten näher ans Ziel (Schichtgraph) retreat - Sackgasse gefunden, gehe zurück, lösche Kante breakthrough - Tiefensuche hat Senke erreicht, lösche saturierte Kanten 5 t d d- d- 4 Axtmann:

41 Blockierender Fluss: Operationen Blocking flow: Berechnung basiert auf Tiefensuche von Knoten s Drei Operationen extend - gehe einen Knoten näher ans Ziel (Schichtgraph) retreat - Sackgasse gefunden, gehe zurück, lösche Kante breakthrough - Tiefensuche hat Senke erreicht, lösche saturierte Kanten 5 t d d- d- 4 Axtmann:

42 Blockierender Fluss: Operationen Blocking flow: Berechnung basiert auf Tiefensuche von Knoten s Drei Operationen extend - gehe einen Knoten näher ans Ziel (Schichtgraph) retreat - Sackgasse gefunden, gehe zurück, lösche Kante breakthrough - Tiefensuche hat Senke erreicht, lösche saturierte Kanten 5 t d d- d- 4 Axtmann:

43 Blockierender Fluss: Operationen Blocking flow: Berechnung basiert auf Tiefensuche von Knoten s Drei Operationen extend - gehe einen Knoten näher ans Ziel (Schichtgraph) retreat - Sackgasse gefunden, gehe zurück, lösche Kante breakthrough - Tiefensuche hat Senke erreicht, lösche saturierte Kanten 5 d d- t 4 Axtmann:

44 Blockierender Fluss: Operationen Blocking flow: Berechnung basiert auf Tiefensuche von Knoten s Drei Operationen extend - gehe einen Knoten näher ans Ziel (Schichtgraph) retreat - Sackgasse gefunden, gehe zurück, lösche Kante breakthrough - Tiefensuche hat Senke erreicht, lösche saturierte Kanten 5 d d- t 4 Axtmann:

45 Blockierender Fluss: Operationen Blocking flow: Berechnung basiert auf Tiefensuche von Knoten s Drei Operationen extend - gehe einen Knoten näher ans Ziel (Schichtgraph) retreat - Sackgasse gefunden, gehe zurück, lösche Kante breakthrough - Tiefensuche hat Senke erreicht, lösche saturierte Kanten 5 d d- t 4 Axtmann:

46 Blockierender Fluss: Operationen Blocking flow: Berechnung basiert auf Tiefensuche von Knoten s Drei Operationen extend - gehe einen Knoten näher ans Ziel (Schichtgraph) retreat - Sackgasse gefunden, gehe zurück, lösche Kante breakthrough - Tiefensuche hat Senke erreicht, lösche saturierte Kanten 3 5 d 3 d- t 4 Axtmann:

47 Blockierender Fluss: Operationen Blocking flow: Berechnung basiert auf Tiefensuche von Knoten s Drei Operationen extend - gehe einen Knoten näher ans Ziel (Schichtgraph) retreat - Sackgasse gefunden, gehe zurück, lösche Kante breakthrough - Tiefensuche hat Senke erreicht, lösche saturierte Kanten 3 5 d 3 d- t 4 Axtmann:

48 Kosten pro Blockierender Fluss #breakthrough m Jedes breakthrough saturiert mindestens eine Kante Kein breakthrough über saturierte Kante mehr möglich Laufzeit O(n) #retreat m Jedes retreat löscht eine Kante Laufzeit O() #extends #retreats + n #breakthrough Retreat: Vorher ein extend Ohne breakthrough nur retreats Breakthrough: Vorher n erfolgreiche extends Schichtgraph schließt Kreise aus Laufzeit O() Blockierender Fluss in O(nm) 5 Axtmann:

49 Laufzeit Pro Phase Rückwärtsgerichtete Breitensuche: Laufzeit O(n + m) Blockierender Fluss: Laufzeit O(nm) Phase in O(nm) #Phasen n (Lemma : Jede Phase erhöht Label von s um mindestens ) Gesamtlaufzeit O(n m) 6 Axtmann:

50 Laufzeit Pro Phase Rückwärtsgerichtete Breitensuche: Laufzeit O(n + m) Blockierender Fluss: Laufzeit O(nm) Phase in O(nm) #Phasen n (Beweis, wie in Vorlesung, nicht hier) (Lemma : Jede Phase erhöht Label von s um mindestens ) Gesamtlaufzeit O(n m) 6 Axtmann:

51 Kosten pro Phase - Unit Capacity Network Amortisierte Kosten Retreat/breakthrough Löscht alle beteiligten Kanten Jede Kante nur an einem Retreat/breakthrough beteiligt Extend Pro Kante ein extend Bezahlt für Breakthrough und Retreat #extends = O(m) Kosten O() Phase in O(m + n) 7 Axtmann:

52 Anzahl Phasen - Unit Capacity Network Nach m Phasen Graph hat mindestens m Layer (Lemma : Jede Phase erhöht Label von s um mindestens ) Erwartet m/ m Kanten pro Layer es gibt Layer i mit höchstens m Kanten zu Layer i Induziert Schnitt (im Residualgraphen) zwischen S = {v d(v) i} und T = V \ S, Kapazität m m m 0 Jede Phase erhöht Fluss um Zusätzlich m Phasen 8 Axtmann:

53 Anzahl Phasen - Unit Capacity Network Nach m Phasen Graph hat mindestens m Layer (Lemma : Jede Phase erhöht Label von s um mindestens ) Erwartet m/ m Kanten pro Layer es gibt Layer i mit höchstens m Kanten zu Layer i Induziert Schnitt (im Residualgraphen) zwischen S = {v d(v) i} und T = V \ S, Kapazität m Jede Phase erhöht Fluss um Zusätzlich m Phasen m m m m m m #Kanten m m 0 8 Axtmann:

54 Anzahl Phasen - Unit Capacity Network Nach m Phasen Graph hat mindestens m Layer (Lemma : Jede Phase erhöht Label von s um mindestens ) Erwartet m/ m Kanten pro Layer es gibt Layer i mit höchstens m Kanten zu Layer i Induziert Schnitt (im Residualgraphen) zwischen S = {v d(v) i} und T = V \ S, Kapazität m Jede Phase erhöht Fluss um Zusätzlich m Phasen m m m m m m m m #Kanten m m 0 8 Axtmann:

55 Ende! Feierabend! 9 Axtmann:

Flüsse und Schnitte von Graphen

Flüsse und Schnitte von Graphen Flüsse und Schnitte von Graphen Christian Koch Friedrich-Alexander-Universität Erlangen-Nürnberg 2. Juni 27 Christian Koch Flüsse und Schnitte 2. Juni 27 / 29 Gliederung Flüsse Allgemeines Maximaler Fluss

Mehr

Laufzeit. Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode.

Laufzeit. Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode. Effiziente Algorithmen Flußprobleme 81 Laufzeit Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode. Der Fluß ist höchstens f = min{ V 1, V 2 }.

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Minimale spannende Bäume 5. Färbungen und Cliquen 6. Traveling Salesman Problem 7. Flüsse in Netzwerken

Mehr

4.7 Der Algorithmus von Dinic für maximalen Fluss

4.7 Der Algorithmus von Dinic für maximalen Fluss 4.7 Der Algorithmus von Dinic für maximalen Fluss Wir kennen bereits den Algorithmus von Ford Fulkerson zur Suche nach einem maximalen Fluss in einem Graphen. Wir lernen nun einen Algorithmus für maximalen

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

Flüsse in Netzwerken

Flüsse in Netzwerken Proseminar Theoretische Informatik, Prof. Wolfgang Mulzer, SS 17 Flüsse in Netzwerken Zusammenfassung Gesa Behrends 24.06.2017 1 Einleitung Unterschiedliche technische Phänomene wie der Flüssigkeitsdurchfluss

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen 6. Juni 2017 Guido Brückner INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

KAPITEL 4 FLÜSSE IN NETZWERKEN

KAPITEL 4 FLÜSSE IN NETZWERKEN KAPITEL 4 FLÜSSE IN NETZWERKEN F. VALLENTIN, A. GUNDERT 1. Das Max-Flow-Min-Cut Theorem Es sei D = (V, A) ein gerichteter Graph, s, t V zwei Knoten. Wir nennen s Quelle und t Senke. Definition 1.1. Eine

Mehr

Flüsse, Schnitte, bipartite Graphen

Flüsse, Schnitte, bipartite Graphen Flüsse, chnitte, bipartite Graphen Matthias Hoffmann 5.5.009 Matthias Hoffmann Flüsse, chnitte, bipartite Graphen 5.5.009 / 48 Übersicht Einführung Beispiel Definitionen Ford-Fulkerson-Methode Beispiel

Mehr

Algorithmen und Datenstrukturen Klausur WS 2006/07 Software-Engineering und Technische Informatik Bachelor

Algorithmen und Datenstrukturen Klausur WS 2006/07 Software-Engineering und Technische Informatik Bachelor Klausur WS 2006/07 Software-Engineering und Technische Informatik Bachelor Die Klausur besteht aus 6 Aufgaben und umfasst 60 Punkte. Bitte schreiben Sie die Lösungen auf die Aufgabenblätter. Vergessen

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 18, 2012 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Name:... Vorname:... Matr.-Nr.:... Studiengang:...

Name:... Vorname:... Matr.-Nr.:... Studiengang:... Technische Universität Braunschweig Sommersemester 2013 IBR - Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christiane Schmidt Stephan Friedrichs Klausur Netzwerkalgorithmen 16.07.2013 Name:.....................................

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 4: Flüsse

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 4: Flüsse Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 4: Flüsse Dipl-Math. Wolfgang Kinzner 3.4.2012 Kapitel 4: Flüsse Flüsse Netzwerk, Fluss, s,t-schnitt, Kapazität MaxFlow-MinCut-Theorem Restnetzwerk

Mehr

Kapitel 1: Flussalgorithmen

Kapitel 1: Flussalgorithmen Netzwerke und Flüsse Ein Flussnetzwerk ist ein gerichteter Graph G = (V, E, c) mit zwei ausgewählten Knoten q, s V und einer Kapazitätsfunktion c : E N 0. Die Quelle q hat Eingangsgrad 0 und die Senke

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe 3. Elementare Graphalgorithmen und Anwendungen 4. Minimal spannende Bäume 5. Kürzeste Pfade 6. Traveling Salesman Problem 7. Flüsse

Mehr

1.Aufgabe: Minimal aufspannender Baum

1.Aufgabe: Minimal aufspannender Baum 1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

6. Flüsse und Zuordnungen

6. Flüsse und Zuordnungen 6. Flüsse und Zuordnungen Flußnetzwerke 6. Flüsse und Zuordnungen In diesem Kapitel werden Bewertungen von Kanten als maximale Kapazitäten interpretiert, die über diese Kante pro Zeiteinheit transportiert

Mehr

10. Übung Algorithmen I

10. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Bäume

Mehr

Flüsse, Schnitte, bipartite Graphen

Flüsse, Schnitte, bipartite Graphen Flüsse, Schnitte, bipartite Graphen Thomas Fersch mail@t-fersch.de 11.06.2010 Seminar "Hallo Welt!" für Fortgeschrittene 1 Übersicht Maximale Flüsse in Netzwerken Worum geht s? Lösung nach Ford-Fulkerson

Mehr

Flüsse, Schnitte, Bipartite Graphen

Flüsse, Schnitte, Bipartite Graphen Flüsse, Schnitte, Bipartite Graphen Sebastian Hahn 4. Juni 2013 Sebastian Hahn Flüsse, Schnitte, Bipartite Graphen 4. Juni 2013 1 / 48 Überblick Flussnetzwerke Ford-Fulkerson-Methode Edmonds-Karp-Strategie

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 13: Flüsse und Zuordnungen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 9. Juni 2017 DURCHSATZ D(e) ist die maximale Flussmenge,

Mehr

Anwendungen von Netzwerkfluss. Wojciech Polcwiartek Institut für Informatik FU Berlin

Anwendungen von Netzwerkfluss. Wojciech Polcwiartek Institut für Informatik FU Berlin Anwendungen von Netzwerkfluss Wojciech Polcwiartek Institut für Informatik FU Berlin 13. 01. 2009 Gliederung Einführung Netzwerk, Fluss und Schnitt Max-Flow-Min-Cut Theorem Algorithmen zum Bestimmen vom

Mehr

2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2006/ April 2007

2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2006/ April 2007 2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2006/2007 12. April 2007 Hier Aufkleber mit Name und Matrikelnr. anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie den Aufkleber

Mehr

6 Flüsse und Matchings

6 Flüsse und Matchings 6. Flüsse in Netzwerken Flußnetzwerke 6 Flüsse und Matchings In diesem Kapitel werden Bewertungen von Kanten als maximale Kapazitäten interpretiert, die über diese Kante pro Zeiteinheit transportiert werden

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Graphenalgorithmen Maximaler Fluss Einleitung Flussnetzwerke Ford-Fulkerson Fulkerson Methode Maximales bipartites Matching

Mehr

Breitensuche BFS (Breadth First Search)

Breitensuche BFS (Breadth First Search) Breitensuche BFS (Breadth First Search) Algorithmus BREITENSUCHE EINGABE: G = (V, E) als Adjazenzliste, Startknoten s V 1 Für alle v V 1 If (v = s) then d[v] 0 else d[v] ; 2 pred[v] nil; 2 Q new Queue;

Mehr

7. Übungsblatt zu Algorithmen II im WS 2016/2017

7. Übungsblatt zu Algorithmen II im WS 2016/2017 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders Dr. Christian Schulz, Dr. Simon Gog Michael Axtmann 7. Übungsblatt zu Algorithmen II im WS 216/217 Aufgabe

Mehr

Effiziente Algorithmen (SS2014)

Effiziente Algorithmen (SS2014) Effiziente Algorithmen (SS204) Kapitel 2 Flüsse Walter Unger Lehrstuhl für Informatik 26.06.204 09: (2:2) Walter Unger 7..205 7:56 SS204 Z x Inhalt I Dinitz mit Propagation Einleitung Algorithmus und

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen June 1, 2015 Ignaz Rutter INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Algorithmen I - Tutorium 28 Nr. 11

Algorithmen I - Tutorium 28 Nr. 11 Algorithmen I - Tutorium 28 Nr. 11 13.07.2017: Spaß mit Schnitten, Kreisen und minimalen Spannbäumen Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR.

Mehr

Graphalgorithmen Netzwerkalgorithmen. Laufzeit

Graphalgorithmen Netzwerkalgorithmen. Laufzeit Netzwerkalgorithmen Laufzeit (Folie 390, Seite 78 im Skript) Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V, V 2 }) mit der Ford Fulkerson Methode. Der Fluß ist höchstens f = min{

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 3 Programm des

Mehr

Algorithmen und Datenstrukturen 2-1. Seminar -

Algorithmen und Datenstrukturen 2-1. Seminar - Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8

Mehr

Klausur zum Modul Einführung in die Diskrete Mathematik

Klausur zum Modul Einführung in die Diskrete Mathematik Klausur zum Modul Einführung in die Diskrete Mathematik 11.2.2014 Aufgabe 1 [10 Punkte] Sei G ein ungerichteter Graph, k N und x, y, z V (G). Zeigen Sie: Gibt es k paarweise kantendisjunkte x-y-wege und

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesungen 5 und 6 Programm

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME

11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME Algorithmen und Datenstrukturen 11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME Algorithmen und Datenstrukturen - Ma5hias Thimm (thimm@uni-koblenz.de) 1 Algorithmen und Datenstrukturen 11.1. BERECHNUNG MAXIMALER FLÜSSE

Mehr

Bipartite Graphen. Beispiele

Bipartite Graphen. Beispiele Bipartite Graphen Ein Graph G = (V, E) heiÿt bipartit (oder paar), wenn die Knotenmenge in zwei disjunkte Teilmengen zerfällt (V = S T mit S T = ), sodass jede Kante einen Knoten aus S mit einem Knoten

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Minimale Spannbäume Maike Buchin 18.7., 20.7.2017 Einführung Motivation: Verbinde Inseln mit Fähren oder Städte mit Schienen und verbrauche dabei möglichst wenig Länge. Problem:

Mehr

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

Vorlesung 4 BETWEENNESS CENTRALITY

Vorlesung 4 BETWEENNESS CENTRALITY Vorlesung 4 BETWEENNESS CENTRALITY 101 Aufgabe! Szenario: Sie arbeiten bei einem sozialen Online-Netzwerk. Aus der Netzwerk-Struktur Ihrer Benutzer sollen Sie wichtige Eigenschaften extrahieren. [http://www.fahrschule-vatterodt.de/

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Musterlösung

Mehr

Matchings in Graphen. Praktikum Diskrete Optimierung (Teil 5)

Matchings in Graphen. Praktikum Diskrete Optimierung (Teil 5) Praktikum Diskrete Optimierung (Teil 5) 6.05.009 Matchings in Graphen Es sei ein ungerichteter Graph G = (V, E) gegeben. Ein Matching in G ist eine Teilmenge M E, so dass keine zwei Kanten aus M einen

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphdurchläufe Maike Buchin 22. und 27.6.2017 Graphexploration Motivation: Für viele Zwecke will man den gesamten Graphen durchlaufen, zb. um festzustellen ob er (stark) zusammenhängt.

Mehr

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2005/2006

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2005/2006 . Klausur zur Vorlesung Algorithmentechnik Wintersemester 005/006 Lösung! Beachten Sie: Bringen Sie den Aufkleber mit Ihrem Namen und Matrikelnummer auf diesem Deckblatt an und beschriften Sie jedes Aufgabenblatt

Mehr

Algorithmen zur Berechnung von Matchings

Algorithmen zur Berechnung von Matchings Algorithmen zur Berechnung von Matchings Berthold Vöcking 10. Oktober 2006 1 Einleitung Matchingprobleme sind Zuordnungsprobleme. Es geht darum z.b. Studierenden Plätze in Seminaren zuzuordnen, Bewerber

Mehr

Inhalt. 1. Flußprobleme. 2. Matching. 3. Lineares Programmieren. 4. Ganzzahliges Programmieren. 5. NP-Vollständigkeit. 6. Approximationsalgorithmen

Inhalt. 1. Flußprobleme. 2. Matching. 3. Lineares Programmieren. 4. Ganzzahliges Programmieren. 5. NP-Vollständigkeit. 6. Approximationsalgorithmen Effiziente Algorithmen Einführung 1 Inhalt 1. Flußprobleme 2. Matching. Lineares Programmieren 4. Ganzzahliges Programmieren 5. NP-Vollständigkeit 6. Approximationsalgorithmen 7. Backtracking und Branch-and-Bound

Mehr

Übungsblatt 2 - Lösung

Übungsblatt 2 - Lösung Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 2 - Lösung Vorlesung Algorithmentechnik im WS 08/09 Ausgabe 04. November 2008 Abgabe 8. November, 5:0 Uhr (im Kasten vor Zimmer

Mehr

Algorithmen und Datenstrukturen Kapitel 10

Algorithmen und Datenstrukturen Kapitel 10 Algorithmen und Datenstrukturen Kapitel 10 Flüsse Frank Heitmann heitmann@informatik.uni-hamburg.de 6. Januar 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/8 Flüsse Graphen Grundlagen Definition

Mehr

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108

23. November Betweenness Centrality Closeness Centrality. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 23. November 2011 Betweenness Centrality Closeness Centrality H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 108 Betweenness Centrality Grundlegende Idee: Ein Knoten ist wichtig, wenn er auf

Mehr

Graphentheorie. Maximale Flüsse. Maximale Flüsse. Maximale Flüsse. Rainer Schrader. 31. Oktober Gliederung. sei G = (V, A) ein gerichteter Graph

Graphentheorie. Maximale Flüsse. Maximale Flüsse. Maximale Flüsse. Rainer Schrader. 31. Oktober Gliederung. sei G = (V, A) ein gerichteter Graph Graphentheorie Rainer Schrader Zentrum ür Angewandte Inormatik Köln 31. Oktober 2007 1 / 30 2 / 30 Gliederung maximale Flüsse Schnitte Edmonds-Karp-Variante sei G = (V, A) ein gerichteter Graph sei c eine

Mehr

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1 Allgemeines. Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition.. (a) Ein Graph G =(V, E) heißt kreisfrei, wenn er keinen Kreis besitzt. Beispiel: Ein kreisfreier Graph: FG KTuEA, TU Ilmenau

Mehr

lässt sich auch ableiten, dass es einen augmentierenden Pfad der Länge höchstens

lässt sich auch ableiten, dass es einen augmentierenden Pfad der Länge höchstens Praktikum Algorithmen-Entwurf (Teil 5)..5 Matchings in Graphen Es sei ein ungerichteter Graph G = (V, E) gegeben. Ein Matching in G ist eine Teilmenge M E, so dass keine zwei Kanten aus M einen Endpunkt

Mehr

Vorlesung. Graphenalgorithmen. Sommersemester Angelika Steger. ETH Zürich

Vorlesung. Graphenalgorithmen. Sommersemester Angelika Steger. ETH Zürich Vorlesung Graphenalgorithmen Sommersemester 005 Angelika Steger ETH Zürich 3. Mai 006 Teile des vorliegenden Skriptes sind Erweiterungen des Skript zu meiner Vorlesung Effiziente Algorithmen und Datenstrukturen

Mehr

FLÜSSE, SCHNITTE UND - TEIL 2 - BIPARTITE GRAPHEN. Vortrag im Seminar Hallo Welt Für Fortgeschrittene Dozenten: Werth, T. & Brinkers, D.

FLÜSSE, SCHNITTE UND - TEIL 2 - BIPARTITE GRAPHEN. Vortrag im Seminar Hallo Welt Für Fortgeschrittene Dozenten: Werth, T. & Brinkers, D. FLÜSSE, SCHNITTE UND BIPARTITE GRAPHEN - TEIL 2 - Vortrag im Seminar Hallo Welt Für Fortgeschrittene Dozenten: Werth, T. & Brinkers, D. Lukas Dresel 17. Juni 215 Inhalt Problemstellung Lösungsmethode 1

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

durch Einfügen von Knoten konstruiert werden kann.

durch Einfügen von Knoten konstruiert werden kann. Satz von Kuratowski Definition Unterteilung eines Graphen Sei G = (V, E) und e = {u, v} E. 1 Das Einfügen eines neuen Knoten w in die Kante e führt zum Graphen G = (V {w}, E \ e {{u, w}, {w, v}}). 2 Der

Mehr

Kapitel 1: Flussalgorithmen

Kapitel 1: Flussalgorithmen Netzwerke und Flüsse Kapitel 1: Flussalgorithmen Ein Flussnetzwerk ist ein gerichteter Graph G = (V, E, q, s, c) mit zwei ausgewählten Knoten q, s V und einer Kapazitätsfunktion c : E N. Die Quelle q hat

Mehr

Effiziente Algorithmen Übung 2 Lösungen

Effiziente Algorithmen Übung 2 Lösungen TU Ilmenau, Fakultät für Informatik und Automatisierung FG Komplexitätstheorie und Effiziente Algorithmen Univ.-Prof. Dr. M. Dietzfelbinger, M. Sc. Stefan Walzer https://www.tu-ilmenau.de/iti/lehre/lehre-ws-016017/ea/

Mehr

VU Algorithmen auf Graphen Übungsblatt 2 - Aufgabe 2 Transformation einer MaxFlow- in eine MinCost Circulation Instanz

VU Algorithmen auf Graphen Übungsblatt 2 - Aufgabe 2 Transformation einer MaxFlow- in eine MinCost Circulation Instanz VU Algorithmen auf Graphen Übungsblatt 2 - Aufgabe 2 Transformation einer MaxFlow- in eine MinCost Circulation Instanz Gruppe A: Bernhard Stader, Georg Ziegler, Andreas Zugaj 10. November 2004 Inhaltsverzeichnis

Mehr

Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung

Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung Gliederung der Vorlesung 1. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

6. Flüsse und Zuordnungen

6. Flüsse und Zuordnungen 6. Flüsse und Zuordnungen In diesem Kapitel werden Bewertungen von Kanten als maximale Kapazitäten interpretiert, die über solch eine Kante pro Zeiteinheit transportiert werden können. Wir können uns einen

Mehr

Felix Brandt, Jan Johannsen. Vorlesung im Wintersemester 2008/09

Felix Brandt, Jan Johannsen. Vorlesung im Wintersemester 2008/09 Felix Brandt, Jan Johannsen Vorlesung im Wintersemester 2008/09 Übersicht Übersicht Definition Ein Matching in G = (V, E) ist eine Menge M E mit e 1 e 2 = für e 1, e 2 M, e 1 e 2 Ein Matching M ist perfekt,

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Wdhlg.: Dijkstra-Algorithmus I Bestimmung der

Mehr

Wie wird ein Graph dargestellt?

Wie wird ein Graph dargestellt? Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

ij. , d (k 1) + d (k 1)

ij. , d (k 1) + d (k 1) Dabei war ja die Idee, dass wir unser k Schritt für Schritt erhöhen bis wir bei n angekommen sind, denn dann haben wir das Problem gelöst. Dies ist im Grunde unser Algorithmus. Wir müssen diesen nur noch

Mehr

5. Musterlösung. Problem 1: Vitale Kanten * ω(f) > ω(f ). (a) Untersuchen Sie, ob es in jedem Netzwerk vitale Kanten gibt.

5. Musterlösung. Problem 1: Vitale Kanten * ω(f) > ω(f ). (a) Untersuchen Sie, ob es in jedem Netzwerk vitale Kanten gibt. Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 05/06 ITI Wagner 5. Musterlösung Problem : Vitale Kanten * In einem Netzwerk (D = (V, E); s, t; c) mit Maximalfluß f heißen Kanten e

Mehr

8. Übung Algorithmen I

8. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Grundlagen

Mehr

3. Übungsblatt zu Algorithmen II im WS 2011/2012

3. Übungsblatt zu Algorithmen II im WS 2011/2012 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders Moritz Kobitzsch, Dennis Schieferdecker 3. Übungsblatt zu Algorithmen II im WS 20/202 http://algo2.iti.kit.edu/algorithmenii.php

Mehr

Effiziente Algorithmen und Datenstrukturen II

Effiziente Algorithmen und Datenstrukturen II Effiziente Algorithmen und Datenstrukturen II Prof. Dr. Christian Scheideler Technische Universität München, 25. April 2006 1 Algorithmen für maximale Flüsse 1.1 Flüsse Ein Flussnetzwerk G = (V, E) ist

Mehr

Algorithmen zur Berechnung von Matchings

Algorithmen zur Berechnung von Matchings Algorithmen zur Berechnung von Matchings Berthold Vöcking 1 Einleitung Matchingprobleme sind Zuordnungsprobleme. Es geht darum z.b. Studierenden Plätze in Seminaren zuzuordnen, Bewerber auf freie Stellen

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Dipl-Math. Wolfgang Kinzner 2.4.2012 Kapitel 1: Grundlagen der algorithmischen Graphgentheorie

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Jörn Müller-Quade 19.6.1 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=99 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik 1 Organisatorisches

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Kürzeste-Wege-Algorithmen und Datenstrukturen

Kürzeste-Wege-Algorithmen und Datenstrukturen Kürzeste-Wege-Algorithmen und Datenstrukturen Institut für Informatik Universität zu Köln SS 2009 Teil 1 Inhaltsverzeichnis 1 Kürzeste Wege 2 1.1 Voraussetzungen................................ 2 1.2

Mehr

Netzwerkfluß. Gegeben ist ein System von Wasserrohren: Die Kapazität jedes Rohres ist 3, 5 oder 8 l/s.

Netzwerkfluß. Gegeben ist ein System von Wasserrohren: Die Kapazität jedes Rohres ist 3, 5 oder 8 l/s. Netzwerkfluß (Folie, Seite 78 im Skript) Gegeben ist ein System von Wasserrohren: Quelle s t Senke Die Kapazität jedes Rohres ist, oder 8 l/s. Frage: Wieviel Wasser kann von der Quelle zur Senke fließen?

Mehr

Vorwort. 1 Flüsse in Planaren Graphen. 1.1 Flüssen in Planaren Graphen als Kürzeste-Wege-Problem

Vorwort. 1 Flüsse in Planaren Graphen. 1.1 Flüssen in Planaren Graphen als Kürzeste-Wege-Problem Vorwort Es handelt sich hierbei um einen vorläufigen Aufschrieb zu Flüssen in planaren Graphen. Die Darstellung basiert auf dem Artikel Maximum Flows and Parametric Shortest Paths in Planar Graphs von

Mehr

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 2. November 2011 Gradfolgen Zusammenhang Kürzeste Wege H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 Satz von Erdős und Gallai Eine Partition einer natürlichen Zahl ist genau dann die Gradfolge

Mehr

Lösungsvorschlag Hausübung 8

Lösungsvorschlag Hausübung 8 Lösungsvorschlag Hausübung 8 Peter Kling 16. Juli 2007 Aufgabe 27 Betrachten Sie den Algorithmus Heapsort (vgl. Alg. 1) aus der Vorlesung. Illustrieren Sie die Arbeitsweise von Heapsort am Beispiel des

Mehr

2.6.1 Definition und Darstellung Ausspähen von Graphen Minimal spannende Bäume Kürzeste Pfade 2.6.

2.6.1 Definition und Darstellung Ausspähen von Graphen Minimal spannende Bäume Kürzeste Pfade 2.6. .6 Graphen.6. Definition und Dartellung.6. Aupähen von Graphen.6.3 Minimal pannende Bäume.6.4 Kürzete Pfade.6.5 Maximaler Flu .6.5 Maximaler Flu.6.5. Flunetzwerke.6.5. Ford-Fulkeron-Methode.6.5.3 Algorithmu

Mehr

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Wasist das? Maximaler Fluss Minimaler Schnitt Warumtut man das? Logistische

Mehr

Grundbegriffe der Informatik Tutorium 8

Grundbegriffe der Informatik Tutorium 8 Grundbegriffe der Informatik Tutorium 8 Tutorium Nr. 16 Philipp Oppermann 22. Dezember 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2005/2006

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2005/2006 1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2005/2006 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie den Aufkleber mit

Mehr

Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen

Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen WS 08/09 Friedhelm Meyer auf der Heide Vorlesung 8, 4.11.08 Friedhelm Meyer auf der Heide 1 Organisatorisches Am Dienstag, 11.11., fällt die

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die nformatik 2 raphenexploration Sven Kosub A Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v. Sommersemester

Mehr

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn Optimierung Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung 1 Assignment Problem (Zuordnungsproblem) Gewichtetes Perfektes Bipartites Matching agents Costs tasks Weise jedem Agenten genau

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN F. VALLENTIN, A. GUNDERT 1. Definitionen Notation 1.1. Ähnlich wie im vorangegangenen Kapitel zunächst etwas Notation. Wir beschäftigen uns jetzt mit ungerichteten

Mehr

Bäume und Wälder. Definition 1

Bäume und Wälder. Definition 1 Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt

Mehr