3.5 Faktorzerlegung von Polynomen

Größe: px
Ab Seite anzeigen:

Download "3.5 Faktorzerlegung von Polynomen"

Transkript

1 Algebra I c Rudolf Scharlau, Faktorzerlegung von Polynomen In diesem Abschnittes geht es um eine Verfeinerung der Methoden, mit denen man Polynome, z.b. mit Koeffizienten in Z oder Q, auf Irreduziblität untersuchen kann. Dies war bei der Einführung von Polynomen in Abschnitt 3.2 noch nicht möglich, da die eindeutige Primfaktorzerlegung aus Abschnitt 3.3 benötigt wird (und zwar sowohl für die Polynome selbst als auch für ihre Koeffizienten). Diese Irreduzibilitäts-Kriterien werden in Kapitel 4 für die genauere Untersuchung von Körperweiterungen der rationalen Zahlen benötigt. Vorher wird in diesem Abschnitt noch eine andere Konstruktion nachgetragen, nämlich die Erweiterung eines Integritätsbereiches R zu einem Körper, dem sogenannten Quotientenkörper von R. DiesesgeschiehtdurchEinführung von formalen Brüchen, wie bei der vielleicht schon bekannten Konstruktion von Q aus Z. DieseKonstruktionhatmitPolynomeneigentlichnichtszutun,wir benötigen sie als Grundlage für eine präzise Theorie von gekürzten Brüchen. Die entsprechenden Sätze gelten im Quotientenkörper eines beliebigen Hauptidealrings und können als der Kern des Beweises eines dann folgenden wichtigen Satzes von Gauß über die Zerlegung von Polynomen mit rationalen Koeffizienten angesehen werden. Gegeben sei also ein kommutativer Ring R mit 1. Wir möchten R möglichst sparsam (siehe unten für eine präzise Formulierung) zu einem Körper erweitern. Wenn R schon Teilring eines Körpers K wäre, so müsste man mindestens noch alle Elemente b 1,b R {0} hinzunehmen, weiter dann alle ab 1,a R, b R {0}. DieseElementebildendannabertatsächlich schon einen Teilring von K, derselbsteinkörperist: die Abgeschlossenheit unter Addition ergibt sich aus a 1 b a 2 b 1 2 =(a 1 b 2 + a 2 b 1 )b 1 1 b 1 2, (*) die weiteren Eigenschaften sind klar. Wenn man nur R hat und weit und breit noch kein Körper zu sehen ist, definiert man in geeigneter Weise Brüche a/b von Elementen aus R, dienach Konstruktion die gewünschte Eigenschaft haben, dass nämlich b/a invers zu a/b sind. Die Details sehen wir folgt aus: Satz und Definition (Quotientenkörper) Es sei R ein Integritätsbereich. Auf R R {0} wird durch (a, b) (a,b ) ab = a b eine Äquivalenzrelation definiert. Die Äquivalenzklasse von (a, b) bzgl. dieserre- lation heißt Bruch und wird mit a bezeichnet. Die folgenden Veknüpfungen + b

2 Algebra I c Rudolf Scharlau, und auf der Menge Quot(R) allerbrüche a 1 b 1 + a 2 b 2 := a 1b 2 + a 2 b 1 b 1 b 2 a 1 b 1 a2 b 2 := a 1 a 2 b 1 b 2 sind wohldefiniert und machen Quot(R) zueinemkörper, dem sogenannten Quotientenkörper von R. Die Abbildung ist eine Einbettung von R in Quot(R). i R : R Q(R), r r 1 R Beweisskizze: Die Wohldefiniertheit, die Assoziativgesetze und das Distributivgesetz rechnet man mit etwas Schreibarbeit anhand der Definitionen einfach nach. Das Nullelement ist 0,dasEinselementist 1, das Negative (additive Inverse) zu a a 1 1 ist. Somit haben wir einen Ring (wie gewünscht kommutativ mit b b Eins). Für a = 0= b ist b ein multipikatives Inverses zum Element a. Also ist a b Quot(R) einkörper. Wir schließen nun an die dem Satz vorangegangene Diskussion an und klären, dass in dem Fall, dass R bereits Teilring eines Körpers ist, der Quotientenkörper wirklich das ist, was wir uns unter ihm vorstellen. Bemerkung Ist j : R K eine Einbettung von R in einen Körper K, so ist der Durchschnitt aller Teilkörper K mit j(r) K K wiederum ein Körper und nach Defintion der kleinste Teilkörper von K, derdenringi(r) = R enthält. In dieser Situation gibt es einen eindeutig bestimmten Homomorphismus j : Quot K mit j = j i R,d.h.dasDiagramm R j K i R Quot R j ist kommutativ. Dieser Homomorphsimus induziert einen Isomorphismus Quot R = K. Zusammengefasst: Der Quotientenkörper eines Intergritätsbereiches R ist der im wesentlichen eindeutig bestimmte kleinste Körper, der R als Teilring enthält.

3 Algebra I c Rudolf Scharlau, Falls R ein Hauptidealring ist, hat man im Quotientenkörper Quot(R) gekürzte Brüche. Jedes a Quot(R) läßt sich schreiben als a = a 0 b b b 0 mit ggt(a 0,b 0 )=1. In einer solchen Darstellung sind a 0,b 0 bis auf Assoziiertheit eindeutig bestimmt. Genauer gilt a b = a 0 b 0 mit ggt(a, b) =1=ggT(a 0,b 0 ) = u R : a = ua 0,b= ub 0. Anders ausgedrückt: Auch in in Quot(R) existierteineeindeutige Primfaktorzerlegung, nämlich mit positiven oder negativen Exponenten. Zunächst wählt man wie am Schluss von Abschnitt 3.3 auf Seite 145 ein Vertretersystem P R aller Primelemente in R bezüglich Assoziiertheit. Dann läßt sich jedes x Quot(R) eindeutig als x = u p P R p νp mit u R sowie ν p =: ν p (a) Z, ν p =0für fast alle p, schreiben. Im folgenden Satz benutzen wir die offensichtliche Verallgemeinerung des größten gemeinsamen Teilers in Hauptidealringen auf mehr als zwei Elemente: g = ggt(a 1,...,a r )isteinerzeugerdesidealsra Ra r und hat die Eigenschaft, dass es alle a i teilt und jeder Teiler von allen a i ein Teiler von g ist (für R = Z siehe ). Bemerkung (Gekürzte Brüche und Hauptnenner) Es sei R ein Hauptidealring und K =Quot(R) seinquotientenkörper. Dann gibt es für je r Elemente x 1,...,x r K, dienichtallegleich0sind,elemente a 1,...,a r,b R, b = 0mitggT(a 1,...,a r,b)=1undx i = a i /b für i =1,...,r. Eine solche Darstellung ist bis auf Assoziiertheit eindeutig bestimmt; genauer gibt es zu jeder weiteren solchen Darstellung a 1,...,a r,b R eine Einheit u R mit a i = ua i für i 1,...,r und b = ub. Das Element b heißt auch der Hauptnenner von x 1,...,x r. Für r =1,x 1 = x heißt das Paar (a, b) einegekürzte Bruchdarstellung, kurz gekürzter Bruch für x. Den Beweis überlassen wir als Übungsaufgabe. Es sollte dabei weder Schwierigkeiten noch Überraschungen geben. Wir weisen darauf hin, dass die Sprechweise gekürzter Bruch zwar üblich und praktisch ist, aber eigentlich nicht korrekt: ein Bruch ist bereits eine Äquivalenzklasse, bzw. das zugehörige Körperelement. Kürzen kann man nur das Paar (a, b), in dem Zähler und Nenner einzeln vorhanden sind. Weiter beachte man, dass in einer Darstellung von zwei oder mehr Elementen mit einem gemeinsamen (Haupt-)Nenner b keine der einzelnen Darstellungen (a i,b)derx i gekürzt sein muss. Beispiel x 1 = 5/2, x 2 = 5/3 inq. Hier ist (a 1,a 2,b)=(15, 10, 6).

4 Algebra I c Rudolf Scharlau, Wir kehren nun zu Polynomen zurück und interessieren uns für die Zerlegung von Polynomen über einem Hauptidealring. Für den Beweis des nächsten Satzes benötigen wir folgende Aussage über Polynomringe, die wir der Deutlichkeit halber als eigenständige Bemerkung formulieren. Bemerkung Es sei ϕ : R S ein Ringhomomorphismus. Dann ist die induzierte Abbildung ϕ X : R[X] S[X], ϕ X ri X i = ϕ(r i )X i der zugehörigen Polyonomringe ebenfalls ein Ringhomomorphismus. Man benutzt dieses oft für den Speziallfall des kanonischen Homomorphismus π : R R/I, r r auf einen Faktorring, wobei I R ein Ideal ist. Der induzierte Ringhomomorphismus π X : R[X] (R/I)[X], r 0 + r 1 X + r 2 X r 0 + r 1 X + r 2 X reduziert die Koeffizienten eines Polynoms modulo dem Ideal I. Der folgende Satz ist ein grundlegendes Hilfsmittel für die Überprüfung der Irreduzibiltät von Polynomen. Satz (Lemma von Gauß) Es sei R ein Hauptidealring, K =Quot(R) sein Quotientenkörper, f R[X] ein normiertes Polynom und f = g h eine Zerlegung in K[X], wobei g, h K[X] normierte Polynome seien. Dann gilt sogar g, h R[X]. Beweis: Esseif = g h wie im Satz und grad g = m, grad h = n. Wir stellen die Koeffiziententupel (g 0,...,g m )und(h 0,...,h n )vong und h, alsog i,h j K jeweils als Brüche mit Hauptnenner von Elementen aus R dar, sagen wir (a 0,...,a m ; a)und(b 0,...,b n ; b). Es ist also g = 1g, h = 1 h mit g = a a b i X i, h = bj X j R[X]. Zu zeigen ist, dass a =1undb = 1 (bzw. eine Einheit von R) ist. Wegen g m = h n = 1 ist a m = a und b n = b, also ggt(a 0,...,a m ) = ggt(a 0,...,a m,a)=1,ebensoggt(b 0,...,b n ) = 1. Wir haben nun die Polynomgleichung g h =(ab)f im Polynomring R[X]. Wir nehmen jetzt an, dass a oder b keine Einheit ist und führen diese Annahme zum Widerspruch. Sei p R ein Primelement, das ab teilt. Wir benutzen nun den Reduktionshomomorphismus R R/pR und die letzte Bemerkung Wir reduzieren also in der Gleichung g h =(ab)f die Koeffizienten aller drei beteiligten Polynome modulo p, d.h.ersetzensiedurchihrerestklassena i = a i + pr R/pR für g, entsprechend für h. Auf der rechten Seite ergibt sich das Nullpolynom, links ergibt sich ḡ h, wobeiḡ, h R/pR[X] diepolynomemitdenreduziertenkoeffizientenvon g, h sind. Da R/pR nullteilerfrei ist (siehe und , R/pR ist sogar ein

5 Algebra I c Rudolf Scharlau, Körper), ist der Polynomring (R/pR)[X] nach b) wieder nullteilerfrei. Also ist ḡ = 0 oder h = 0. Das heißt aber, dass alle Koeffizienten von g bzw. h durch p teilbar sind, im Widerspruch zu ggt(a 0,...,a m )=ggt(b 0,...,b n )=1. Korollar Es sei R ein Hauptidealring, f R[X] normiert mit grad(f) > 0 und c Quot(R) eine Nullstelle von f.danngiltc R,undc teilt den konstanten Term von f. Beweis: Wir wenden Satz auf den Teiler X c von f im Polynomring Quot(R)[X] an. Beispiel zu Das Polynom f = X 3 +3X + 2 hat keine rationale Nullstelle. Dies überprüft man durch Einsetzen der Teiler von 2 in f, diesesind{±1, ±2}. Beispiel zu Das Polynom g = X 4 + X 2 X +1istüber Q irreduzibel. Beweis: Wie im vorigen Beispiel zeigt man zunächst, dass g keine Nullstelle hat, also keinen Linearfaktor abspaltet. Wir müssen nun noch die Möglichkeit ausschließen, dass g in zwei Faktoren vom Grad 2 zerfällt. Hierzu können wir nach einen Ansatz g =(X 2 + ax + b)(x 2 + cx + d) mita, b, c, d Z machen. Es muss b = d = ±1 sein. Ausmultiplizieren und Koeffizientenvergleich liefert einen Widerspruch für a und c. Wichtig für Beispiele irreduzibler Polynome ist neben Satz und Korollar noch folgendes Kriterium: Satz (Eisenstein sches Irreduzibilitätskriterium) Es sei R ein Hauptidealring und f = X n + r n 1 X n r 1 X + r 0 R[X] normiert. Ferner existiere ein Primelement p R derart, dass alle r j mit j = 0,...,n 1 durch p teilbar sind, aber r 0 nicht durch p 2 teilbar ist. Dann ist f irreduzibel in Quot(R)[X]. Beweis: Angenommen, f ist reduzibel. Dann existieren nach normierte Polynome g, h R[X] mitf = g h und grad(f) 1 grad(g). Wir benutzen nun den Reduktionshomomorphismus ϕ : R[X] (R/I)[X] nachdemideal I := pr aus Bemerkung und erhalten X n = ϕ(f) =ϕ(g) ϕ(h). Weil R/I ein Körper ist, ist R/I[X] ein Hauptidealring und X n besitzt in R/I[X] eine eindeutige Primfaktorzerlegung. Nun ist X aber prim in R/I[X] undsomitgilt ϕ(g) =X grad(g) =: X k sowie ϕ(h) =X grad(h) = X l. Zurückschauend auf die Polynome g, h R[X] ergibtdiesinsbesondere,dassdiekonstantentermeg(0) und h(0) durch p teilbar sind. Damit ist aber f(0) = g(0) h(0) durch p 2 teilbar. Dies ist ein Widerspruch zur Voraussetzung. Korollar Für eine Primzahl p N ist Φ p (X) :=X p 1 + X p X +1= Xp 1 X 1 irreduzibel über Q. MannenntΦ p (X) dasp-te Kreisteilungspolynom.

6 Algebra I c Rudolf Scharlau, Beweis: Die Abbildung X X +1 induziert mittels des Einsetzungs-Homomorphismus einen (Ring-)Automorphismus von Q[X]. Damit ist f(x) :=Φ p (X +1) genau dann irreduzibel, wenn Φ p (X) irreduzibel ist. Wir rechnen nach f(x) = Φ p (X +1)= (X+1)p 1 = p p X+1 1 i=1 i X i 1 = X p 1 + px p 2 + p p 2 X p p 2 X + p. Nun läßt sich Satz anwenden, weil p alle Koeffizienten p i = p(p 1)... (p i+1) i mit i =1,...p 1teiltundp 2 nicht den konstanten Term f(0) = p teilt. Damit ist f, alsoauchφirreduzibelüber Q.

3.5 Faktorzerlegung von Polynomen

3.5 Faktorzerlegung von Polynomen Algebra I c Rudolf Scharlau, 2002 2010 154 3.5 Faktorzerlegung von Polynomen In diesem Abschnittes geht es um eine Verfeinerung der Methoden, mit denen man Polynome, z.b. mit Koeffizienten in Z oder Q,

Mehr

3.5 Faktorzerlegung von Polynomen

3.5 Faktorzerlegung von Polynomen Algebra und Zahlentheorie c Rudolf Scharlau, 2002 2013 251 3.5 Faktorzerlegung von Polynomen In diesem Abschnittes geht es um eine Verfeinerung der Methoden, mit denen man Polynome, z.b. mit Koeffizienten

Mehr

3.4 Faktorzerlegung von Polynomen

3.4 Faktorzerlegung von Polynomen Algebra und Zahlentheorie c Rudolf Scharlau, 2002 2014 251 3.4 Faktorzerlegung von Polynomen In diesem Abschnittes geht es um eine Verfeinerung der Methoden, mit denen man Polynome, z.b. mit Koe zienten

Mehr

Algebra. (b) Der Beweis funktioniert analog zu Teil (a), nur daß wir in der Argumentation Z durch R und 2 durch c ersetzen müssen.

Algebra. (b) Der Beweis funktioniert analog zu Teil (a), nur daß wir in der Argumentation Z durch R und 2 durch c ersetzen müssen. Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 2. Dezember 2008 Algebra 8. Übung mit Lösungshinweisen Aufgabe 36 (a) Zeige, daß Z[X] kein Hauptidealring

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 20 Multiplikative Systeme Wir wollen zeigen, dass es zu jedem Integritätsbereich R einen Körper K gibt derart, dass R ein Unterring

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 22 Algebraische Körpererweiterung Satz 1. Sei K L eine Körpererweiterung und sei f L ein Element. Dann sind folgende Aussagen

Mehr

Algebra I. p min{ordp(a),ordp(b)}, p max{ordp(a),ordp(b)}. f = 10X 15, g = 15X 6. p ordp(x), x = v. p ord p(x)+ord p(y) xy = uv.

Algebra I. p min{ordp(a),ordp(b)}, p max{ordp(a),ordp(b)}. f = 10X 15, g = 15X 6. p ordp(x), x = v. p ord p(x)+ord p(y) xy = uv. WS 05/06 Priv.-Doz. Dr. S. Wewers Andreas Martin Algebra I 8. Übungsblatt Aufgabe 1: (1+1+1/2+1/2+1=4 P) Sei R ein faktorieller Ring. Wir bezeichnen mit P R ein Vertretersystem der Assoziiertenklassen

Mehr

7.3 Euklidische Bereiche, Hauptideal- und Gaußbereiche

7.3 Euklidische Bereiche, Hauptideal- und Gaußbereiche 7.3. EUKLIDISCHE BEREICHE, HAUPTIDEAL- UND GAUSSBEREICHE301 7.3 Euklidische Bereiche, Hauptideal- und Gaußbereiche Wir wissen bereits, daß in Integritätsbereichen R eine Division mit Rest möglich ist,

Mehr

2.2. ELEMENTARE TEILBARKEITSTHEORIE, INTEGRITÄTSBEREICHE 65

2.2. ELEMENTARE TEILBARKEITSTHEORIE, INTEGRITÄTSBEREICHE 65 2.2. ELEMENTARE TEILBARKEITSTHEORIE, INTEGRITÄTSBEREICHE 65 Nun kommen wir zur Teilbarkeitstheorie in Integritätsbereichen. Es wird ganz elementar in dem Sinne, dass wir wieder mehr von Elementen als von

Mehr

Ringe. Kapitel Einheiten

Ringe. Kapitel Einheiten Kapitel 8 Ringe Die zahlreichen Analogien zwischen Matrizenringen und Endomorphismenringen (beides sind zugleich auch Vektorräume) legen es nahe, allgemeinere ringtheoretische Grundlagen bereitzustellen,

Mehr

für alle a, b, x, y R.

für alle a, b, x, y R. Algebra I 13. April 2008 c Rudolf Scharlau, 2002 2008 33 1.5 Ringe Definition 1.5.1 Ein Ring ist eine Menge R zusammen mit zwei Verknüpfungen + und, genannt Addition und Multiplikation, für die folgendes

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 3 Es sei K L eine endliche Körpererweiterung und x L ein Element. Dann sind die Potenzen x i, i N, linear abhängig, und das bedeutet,

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 23 Die Gradformel Satz 1. Seien K L und L M endliche Körperweiterungen. Dann ist auch K M eine endliche Körpererweiterung und

Mehr

In einem faktoriellen Ring A existieren der größte gemeinsame Teiler ggt und das kleinste gemeinsame Vielfache kgv: Mit 0 a = λ i I pn i

In einem faktoriellen Ring A existieren der größte gemeinsame Teiler ggt und das kleinste gemeinsame Vielfache kgv: Mit 0 a = λ i I pn i 2 Faktorielle Ringe In Folgenden seien alle Ringe stets Integritätsbereiche. Hier nun einige aus der Algebra 1 bekannte Definitionen und Fakten für einen Integritätsbereich A. x A heißt irreduzibel falls

Mehr

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt.

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt. Polynome Definition 1. Ein Polynom f über einem Körper K mit der Unbestimmten x ist eine formale Summe f(x) = i 0 a i x i, (1) wobei nur endlich viele der Koeffizienten a i K von Null verschieden sind.

Mehr

Bemerkungen. Gilt m [l] n, so schreibt man auch m l mod n oder m = l mod n und spricht. m kongruent l modulo n.

Bemerkungen. Gilt m [l] n, so schreibt man auch m l mod n oder m = l mod n und spricht. m kongruent l modulo n. 3.6 Restklassen in Polynomringen 3.6.1 Einführung und Definitionen Der Begriff der Restklasse stammt ursprünglich aus der Teilbarkeitslehre in Z; (Z = Z, +, ist ein kommutativer Ring). Definition 153 Sei

Mehr

Klausur vom Algebra I. Rolf Farnsteiner

Klausur vom Algebra I. Rolf Farnsteiner Klausur vom 12.02.2010 Algebra I Rolf Farnsteiner Lösungen Daiva Pučinskaitė Aufgabe 1. Seien U 1, U 2 G Untergruppen einer Gruppe G. Zeigen Sie, dass folgende Aussagen äquivalent sind: (1) U 1 U 2 ist

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Definition 153 Sei n eine fest gewählte ganze Zahl 0. Für jedes l Z heißt die Menge

Definition 153 Sei n eine fest gewählte ganze Zahl 0. Für jedes l Z heißt die Menge 3.6 Restklassen in Polynomringen 3.6.1 Einführung und Definitionen Der Begriff der Restklasse stammt ursprünglich aus der Teilbarkeitslehre in Z; (Z = Z, +, ist ein kommutativer Ring). Definition 153 Sei

Mehr

Das Lemma von Gauß und Quotientenringe

Das Lemma von Gauß und Quotientenringe Das Lemma von Gauß und Quotientenringe Proseminar Körpertheorie, 02.05.2013 Fabian Cejka Prof. K. Wingberg, K. Hübner Zusammenfassung In diesem Teil des Proseminars wird zunächst bewiesen, dass jedes irreduzible

Mehr

Algebra WS 2008/ Übungsblatt

Algebra WS 2008/ Übungsblatt Algebra WS 2008/2009 1. Übungsblatt Konvention. In Aufgabenstellungen getätigte Aussagen sind jeweils zu beweisen, auch wenn kein explizites Zeigen Sie, dass... dabeisteht. 1. Sei (R, +, ) ein Ring, a

Mehr

Anzahl der Generatoren

Anzahl der Generatoren Anzahl der Generatoren Satz Anzahl Generatoren eines Körpers Sei K ein Körper mit q Elementen. Dann besitzt K genau φ(q 1) viele Generatoren. Beweis: K ist zyklisch, d.h. K besitzt einen Generator a mit

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 16 Polynomringe Definition 16.1. Der Polynomring über einem kommutativen Ring R besteht aus allen Polynomen P = a 0 +a 1 X +a

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 17 Kummererweiterungen Ernst Eduard Kummer (1810-1893) Wir haben in der letzten Vorlesung gesehen, dass sich einige Eigenschaften

Mehr

(R4) Addition und Multiplikation erfüllen das Distributivgesetz a (b + c) = ab + ac und. Endomorphismenring d) K Körper, n N, R = K n n Matrizenring

(R4) Addition und Multiplikation erfüllen das Distributivgesetz a (b + c) = ab + ac und. Endomorphismenring d) K Körper, n N, R = K n n Matrizenring 5 Polynome 5.1 Ringe Definition 5.1.1. Eine Menge R zusammen mit zwei inversen Verknüpfungen (+ : R R R Addition, : R R R Multiplikation heißt Ring, wenn folgende Bedingungen gelten: Ring (R1 (R, + abelsche

Mehr

3 Teilbarkeit in Integritätsringen

3 Teilbarkeit in Integritätsringen 3 Teilbarkeit in Integritätsringen 3.1 Division mit Rest in Z Zu a, b Z, b > 0 existieren eindeutig bestimmte Zahlen q, r Z a = qb + r, 0 r < b. 3.2 Satz Sei K ein Körper zu f, g K[T ], g 0 existieren

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 17 Wir wollen für den Polynomring in einer Variablen über einem Körper zeigen, dass dort viele wichtige Sätze, die für den Ring

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 11 Zerfällungskörper Wir wollen zu einem Polynom F K[X] einen Körper konstruieren, über dem F in Linearfaktoren zerfällt. Dies

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 21. Januar 2016 Definition 8.1 Eine Menge R zusammen mit zwei binären Operationen

Mehr

Übungsblatt 5: Primfaktorzerlegung in Polynomringen

Übungsblatt 5: Primfaktorzerlegung in Polynomringen Übungsblatt 5: Primfaktorzerlegung in Polynomringen Wer vieles bringt, wird manchem etwas bringen. Johann Wolfgang von Goethe, Faust I 1. INHALT UND GGT S 1.1. ( Punkte) Man bestimme den Inhalt von P =

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. Jochen Schröder Einführung in Algebra und Zahlentheorie Übungsblatt 9 Aufgabe 1 (4 Punkte +) Sei

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte) Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden

Mehr

Kapitel III. Ringerweiterungen

Kapitel III. Ringerweiterungen Inhalt der Vorlesung Algebraische Zahlentheorie Prof. Dr. Arno Fehm, TU Dresden SS2017 Kapitel III. Ringerweiterungen 0 Ringerweiterungen Seien R S Ringe. 0.1 Definition. Für A S bezeichnet R[A] den kleinsten

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 8 Erzeugte Algebra und erzeugter Körper Satz 8.1. Sei K L eine Körpererweiterung und sei f L ein algebraisches Element. Dann ist

Mehr

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f.

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f. 3 Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f 4 Auf der Menge aller Restklassen [f] g kann man Addition und

Mehr

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 12 (WS 2015/16) 1. Abgabetermin: Donnerstag, 28. Januar.

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 12 (WS 2015/16) 1. Abgabetermin: Donnerstag, 28. Januar. Algebra I Prof. Dr. M. Rost Übungen Blatt 12 (WS 2015/16) 1 Abgabetermin: Donnerstag, 28. Januar http://www.math.uni-bielefeld.de/~rost/a1 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige

Mehr

UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN

UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN UNTERLAGEN ZUR TEILBARKEIT IN KOMMUTATIVEN RINGEN VORLESUNG KOMMUTATIVE ALGEBRA, SOMMERSEMESTER 2007 1. Definitionen Ein kommutativer Ring mit Eins R ist ein Integritätsbereich, wenn er zumindest zwei

Mehr

Kapitel III Ringe und Körper

Kapitel III Ringe und Körper Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem

Mehr

n (als K 0 -Vektorraum) und insbesondere

n (als K 0 -Vektorraum) und insbesondere Algebra I c Rudolf Scharlau, 2002 2010 209 4.3 Endliche Körper. Wir beschäftigen uns in diesem Abschnitt mit endlichen Körpern. Zum einen kann hier die allgemeine Theorie (auch die der folgenden Abschnitte

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 3 Der euklidische Algorithmus Euklid (4. Jahrhundert v. C.) Definition 3.1. Seien zwei Elemente a, b (mit b 0) eines euklidischen Bereichs

Mehr

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018 Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik Sommersemester 2018 Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper).

Mehr

Algebra. 0 = (f g)(x) = f(x) g(x).

Algebra. 0 = (f g)(x) = f(x) g(x). Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 25. November 2008 Algebra 7. Übung mit Lösungshinweisen Aufgabe 31 Sei R ein Integritätsbereich,

Mehr

Sei R ein Integritätsring. R heißt Hauptidealring, falls jedes Ideal I R ein Hauptideal ist, d.h. I = b := Rb := {rb r R} für ein b R.

Sei R ein Integritätsring. R heißt Hauptidealring, falls jedes Ideal I R ein Hauptideal ist, d.h. I = b := Rb := {rb r R} für ein b R. Hauptidealring Definition Hauptideal Sei R ein Integritätsring. R heißt Hauptidealring, falls jedes Ideal I R ein Hauptideal ist, d.h. I = b := Rb := {rb r R} für ein b R. Satz Jeder euklidische Ring R

Mehr

31 Polynomringe Motivation Definition: Polynomringe

31 Polynomringe Motivation Definition: Polynomringe 31 Polynomringe 31.1 Motivation Polynome spielen eine wichtige Rolle in vielen Berechnungen, einerseits weil oftmals funktionale Zusammenhänge durch Polynome beschrieben werden, andererseits weil Polynome

Mehr

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Sebastian Dobrzynski 17042014 1 Grundsätzliches zu Idealen Vorab legen wir fest: Alle im Vortrag betrachteten Ringe sind

Mehr

Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form

Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form 3. Polynome 3.1 Definition und Grundlagen Definition 131 Sei R ein (kommutativer) Ring. Ein Polynom über R in der Variablen x ist eine Funktion p der Form p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0,

Mehr

3.4 Erweiterungen von Ringen und Körpern

3.4 Erweiterungen von Ringen und Körpern Algebra I c Rudolf Scharlau, 2002 2010 145 3.4 Erweiterungen von Ringen und Körpern In diesem Abschnitt werden Erweiterungen von Ringen (etwas vereinfacht gesagt: Oberringe), insbesondere Erweiterungen

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 21 Algebren Definition 21.1. Seien R und A kommutative Ringe und sei R A ein fixierter Ringhomomorphismus. Dann nennt man A eine

Mehr

Algebra und Zahlentheorie I (WS03/04), Lösungen zu Blatt 12

Algebra und Zahlentheorie I (WS03/04), Lösungen zu Blatt 12 Algebra und Zahlentheorie I (WS03/04), Lösungen zu Blatt 12 Aufgabe 1. (Division mit Rest in Polynomringen) Es sei R ein kommutativer Ring {0} und R[X] ein Polynomring in der Unbestimmten X über R. Ferner

Mehr

Übungsblatt 7. Hausübungen

Übungsblatt 7. Hausübungen Übungsblatt 7 Hausübungen Die Hausübungen müssen bis Mittwoch, den 06.1.17, um 18:00 Uhr in den Briefkasten Algebra mit Ihrer Übungsgruppennummer im Mathematischen Institut, Raum 301 abgegeben werden.

Mehr

Lösungen zur Algebra-Klausur vom Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird.

Lösungen zur Algebra-Klausur vom Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird. Aufgabe 1 Lösungen zur Algebra-Klausur vom 3.4.9 Es sei G eine Gruppe, die von je einem Element der Ordnung 7, 11 und 13 erzeugt wird. a) Zeigen Sie, dass es keine transitive Operation von G auf einer

Mehr

Klausur vom Algebra I. Rolf Farnsteiner

Klausur vom Algebra I. Rolf Farnsteiner Klausur vom 31.03.2010 Algebra I Rolf Farnsteiner Lösungen Daiva Pučinskaitė Aufgabe 1. Sei p R ein Primideal eines Integritätsbereichs R. Beweisen Sie folgende Aussagen: (1 S := R \ p ist eine multiplikativ

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 4 Injektive und surjektive Abbildungen Definition 4.1. Es seien L und M Mengen und es sei eine Abbildung. Dann heißt F F

Mehr

ist (oder besser Abspalten von Linearfaktoren beschäftigen. Zu einem beliebigen Körper K betrachten wir die Menge (j,k) N N j+k=n

ist (oder besser Abspalten von Linearfaktoren beschäftigen. Zu einem beliebigen Körper K betrachten wir die Menge (j,k) N N j+k=n 8. Polynomringe Das Umgehen mit Polynomen, d.h. mit Ausdrücken der Form a 0 + a 1 x + a 2 x 2 +... + a n x n ist aus der Schule vertraut, falls die Koeffizienten a 0,..., a n ganze oder rationale oder

Mehr

Aufgabe 1. (i) Lineare Algebra II Übungsbetrieb Blatt Σ

Aufgabe 1. (i) Lineare Algebra II Übungsbetrieb Blatt Σ 1 2 3 4 5 Σ Aufgabe 1 (i) X Menge, Äquivalenzrelation auf X, x, y X x y [x] = [y] [x] [y], X ist disjunkte Vereinigung aller Äquivalenzklassen (Letzte Aussage) Paarweise verschiedene Äquivalenzklassen

Mehr

Seminar zur. Zahlentheorie. Prof. Dr. T. Wedhorn. Vortrag zum Thema. Euklidische und faktorielle Ringe Peter Picht. und.

Seminar zur. Zahlentheorie. Prof. Dr. T. Wedhorn. Vortrag zum Thema. Euklidische und faktorielle Ringe Peter Picht. und. Seminar zur Zahlentheorie Prof. Dr. T. Wedhorn Vortrag zum Thema Euklidische und faktorielle Ringe 13.11.2007 Peter Picht und Stephan Schmidt 4 Euklidische und faktorielle Ringe (A) Assoziierheit, Irreduziblität,

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,

Mehr

Leseprobe. Rolf Socher. Algebra für Informatiker. Mit Anwendungen in der Kryptografie und Codierungstheorie. ISBN (Buch):

Leseprobe. Rolf Socher. Algebra für Informatiker. Mit Anwendungen in der Kryptografie und Codierungstheorie. ISBN (Buch): Leseprobe Rolf Socher Algebra für Informatiker Mit Anwendungen in der Kryptografie und Codierungstheorie ISBN (Buch): 978-3-446-43257-4 ISBN (E-Book): 978-3-446-43312-0 Weitere Informationen oder Bestellungen

Mehr

Kapitel 2. Endliche Körper und Anwendungen. 2.1 Körpererweiterungen

Kapitel 2. Endliche Körper und Anwendungen. 2.1 Körpererweiterungen Kapitel 2 Endliche Körper und Anwendungen 2.1 Körpererweiterungen Deinition Sei L ein Körper und K ein Unterkörper von L. Dann sagen wir, dass L ein Erweiterungskörper von K ist. Wir sagen dann auch: K

Mehr

Unterlagen zu Polynomringen. Erhard Aichinger

Unterlagen zu Polynomringen. Erhard Aichinger Unterlagen zu Polynomringen Erhard Aichinger Linz, im November 2005 Alle Rechte vorbehalten 1 KAPITEL 1 Polynome und Körper 1. Körper DEFINITION 1.1. Ein kommutativer Ring mit Eins R R,,,, 0, 1 ist ein

Mehr

Einführung in Algebra und Zahlentheorie

Einführung in Algebra und Zahlentheorie Institut für Algebra und Geometrie 05. September 2013 Klausur zur Vorlesung Einführung in Algebra und Zahlentheorie Name, Vorname: Matrikelnummer: Fachrichtung: Semester: Zur Bearbeitung: Verwenden Sie

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 20 Kultur ist Reichtum an Problemen. Egon Friedell Der Interpolationssatz Satz 20.1. Es sei K ein Körper

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Arbeitsblatt 19 Die Pausenaufgabe Aufgabe 19.1. Sei K ein Körper und sei K[X] der Polynomring über K. Wie lautet

Mehr

15 Grundlagen der Idealtheorie

15 Grundlagen der Idealtheorie 15 Grundlagen der Idealtheorie Definition und Lemma 15.1. Sei R ein Ring, S R. x R nennt man eine R-Linearkombination von Elementen in) S falls n N 0, s 1,..., s n S, λ 1,..., λ n R mit x = n i=1 λ is

Mehr

17 Euklidische Ringe und Polynome

17 Euklidische Ringe und Polynome 17 Euklidische Ringe und Polynome Definition 17.1. Sei R ein Integritätsbereich. Eine Abbildung δ : R \{0} N 0 heißt euklidisch falls gilt (E1) a, b R mit b 0: q, r R mit r = 0 oder mit r 0 und δ(r)

Mehr

#1(14) #2(12) #3(20) #4(18) #5(16) #6(20) Total(100)

#1(14) #2(12) #3(20) #4(18) #5(16) #6(20) Total(100) #1(14) #2(12) #3(20) #4(18) #5(16) #6(20) Total(100) Name, Vorname: Matrikelnr.: Übungsgruppe: Hinweis: Es ist Ihnen erlaubt, Ergebnisse aus vorherigen Aufgaben dieser Klausur in den nachfolgenden Aufgaben

Mehr

Mathematische Strukturen Teilbarkeit und Faktorisierung

Mathematische Strukturen Teilbarkeit und Faktorisierung Mathematische Strukturen Teilbarkeit und Faktorisierung Hagen Knaf SS 2014 Einleitung Im Ring Z = {... 3, 2, 1, 0, 1, 2, 3,...} der ganzen Zahlen ist der Begriff der Teilbarkeit einer Zahl z Z durch eine

Mehr

Klausur zur Einführung in die Algebra, Lösungsvorschlag

Klausur zur Einführung in die Algebra, Lösungsvorschlag Universität Konstanz Christoph Hanselka Fachbereich Mathematik und Statistik Markus Schweighofer 16. März 2015 Wintersemester 2014/2015 Klausur zur Einführung in die Algebra, Lösungsvorschlag Aufgabe 1

Mehr

Algebra. 1 = a u + b,

Algebra. 1 = a u + b, Fachbereich Mathematik Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 11. November 2008 Algebra 5. Übung mit Lösungshinweisen Aufgabe 23 Es sei R ein euklidischer Integritätsbereich.

Mehr

Algebra II, SS September 2011 Aufgaben zur Körpertheorie. (+1 + i), x 2 = 1 2. ( 1 + i), x 4 = 1 2

Algebra II, SS September 2011 Aufgaben zur Körpertheorie. (+1 + i), x 2 = 1 2. ( 1 + i), x 4 = 1 2 1. Zeige, dass Q(, i) Zerfällungskörper von X 4 + 1 Q[X] ist. Lösung: Die vier Nullstellen von X 4 + 1 über Q sind x 1 = 1 (+1 + i), x = 1 (+1 i), x 3 = 1 ( 1 + i), x 4 = 1 ( 1 i). Damit ist ein Zerfällungskörper

Mehr

EINFÜHRUNG IN DIE ALGEBRA Proseminar SS Übungsblatt für den

EINFÜHRUNG IN DIE ALGEBRA Proseminar SS Übungsblatt für den 1. Übungsblatt für den 11. 3. 2010 1. Es seien a, b Z. Beweisen Sie: a) a b T (a) T (b) b) Für jedes k Z gilt: T (a) T (b) = T (a) T (b + ka) c) Für jedes k Z gilt: ggt(a, b) = ggt(a, b + ka). 2. Für n

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 80 Andreas Gathmann 11. Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als ein Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K }

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1 14 Körper (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } (14.2) BEM: a) Ist K ein Körper, so ist (K

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

1 Herangehensweise an eine Aufgabe

1 Herangehensweise an eine Aufgabe Im Folgenden seien sofern nicht anders angegeben G eine Gruppe, R, S Ringe, I, J Ideale, K, L Körper, p Z eine Primzahl und m Z. 1 Herangehensweise an eine Aufgabe Soll man einen gewissen Sachverhalt A

Mehr

1 3. Nullstellen- und Z erfällungskörper von Polynomen

1 3. Nullstellen- und Z erfällungskörper von Polynomen 1. Nullstellen- und Z erfällungskörper von Polynomen Im ganzen apitel ist ein örper. 1. 1. ( Polynome und Polynomring) [ X] der -Vektorraum der Polynome in der Unbestimmten X, mit Basis { X 0, X 1, X,

Mehr

Algebraische Kurven. Vorlesung 10. Noethersche Moduln

Algebraische Kurven. Vorlesung 10. Noethersche Moduln Prof. Dr. H. Brenner Osnabrück SS 202 Algebraische Kurven Vorlesung 0 Noethersche Moduln Wir wollen zeigen, das für einen noetherschen Ring R und einen endlich erzeugten R-Modul jeder R-Untermodul wieder

Mehr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 22 In dieser und der nächsten Vorlesung beweisen wir zwei Versionen zur eindeutigen Primfaktorzerlegung in Zahlbereichen, die beide Abschwächungen

Mehr

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG MATHEMATISCHES INSTITUT SEMINAR: QUADRATISCHE FORMEN ÜBER DEN RATIONALEN ZAHLEN SOMMERSEMESTER 2007 DOZENT: PROF. DR. KAY WINGBERG ASSISTENT: JOHANNES BARTELS KAPITEL

Mehr

Gruppen, Ringe, Körper

Gruppen, Ringe, Körper Gruppen, Ringe, Körper Martin Gubisch Lineare Algebra I WS 2007/2008 Eine Gruppe G ist eine Menge X mit einer Veknüpfung, so dass gelten: (1) x, y, z X : (x y) z = x (y z). (2) e X : x X : e x = x = x

Mehr

4.4 Zerfällungskörper von Polynomen

4.4 Zerfällungskörper von Polynomen Algebra I c Rudolf Scharlau, 2002 2010 214 4.4 Zerfällungskörper von Polynomen Dieser Abschnitt enthält eine ganze Reihe von eher technischen Resultaten über Nullstellen von Polynomen und die hiervon erzeugten

Mehr

Algebra für Informationssystemtechniker

Algebra für Informationssystemtechniker Algebra für Informationssystemtechniker Prof. Dr. Ulrike Baumann Fachrichtung Mathematik Institut für Algebra www.math.tu-dresden.de/ baumann Ulrike.Baumann@tu-dresden.de 16.07.2018 14. Vorlesung irreduzible

Mehr

Beispiel: Primelemente in den Gaußschen Zahlen

Beispiel: Primelemente in den Gaußschen Zahlen Beispiel: Primelemente in den Gaußschen Zahlen Satz Primelemente in Z[i] Für die Primelemente π Z[i] gilt bis auf Assoziiertheit 1 N(π) = p für ein p P oder 2 π = p für ein p P mit p x 2 + y 2 für (x,

Mehr

Beispiel: Primelemente in den Gaußschen Zahlen

Beispiel: Primelemente in den Gaußschen Zahlen Beispiel: Primelemente in den Gaußschen Zahlen Satz Primelemente in Z[i] Für die Primelemente π Z[i] gilt bis auf Assoziiertheit 1 N(π) = p für ein p P oder 2 π = p für ein p P mit p x 2 + y 2 für (x,

Mehr

Zahlentheorie. Vorlesung 2. Ideale

Zahlentheorie. Vorlesung 2. Ideale Prof. Dr. H. Brenner Osnabrück WS 016/017 Zahlentheorie Vorlesung Ideale Alle Vielfachen der 5, also Z5, bilden ein Ideal im Sinne der folgenden Definition. Definition.1. Eine nichtleere Teilmenge a eines

Mehr

Algebra I. Zwischenprüfung. 19. Februar 2016

Algebra I. Zwischenprüfung. 19. Februar 2016 Name: Vorname: Studiengang: Legi-Nr.: Algebra I D-MATH, HS 2015 Prof. Richard Pink Algebra I Zwischenprüfung Wichtig: 19. Februar 2016 Die Prüfung dauert 120 Minuten. Bitte legen Sie Ihre Legi (Studierendenausweis)

Mehr

Klausur Grundlagen der Algebra und Computeralgebra

Klausur Grundlagen der Algebra und Computeralgebra Prof. Werner M. Seiler, Ph.D. FB 10 Mathematik und Naturwissenschaften Institut für Mathematik Klausur Grundlagen der Algebra und Computeralgebra 21.02.2012 Name: Vorname: Geburtsdatum: Matrikelnummer:

Mehr

1. Eine funktionentheoretische Sichtweise der ganzen und der rationalen Zahlen

1. Eine funktionentheoretische Sichtweise der ganzen und der rationalen Zahlen 1. Eine funktionentheoretische Sichtweise der ganzen und der rationalen Zahlen Vereinbarung. In dieser Vorlesung sei ein Ring stets ein kommutativer Ring mit Einselement. Für einen Ringhomomorphismus φ

Mehr

$Id: integral.tex,v /05/05 13:36:42 hk Exp $

$Id: integral.tex,v /05/05 13:36:42 hk Exp $ $Id: integral.tex,v.5 07/05/05 3:36:4 hk Exp $ Integralrechnung.4 Integration rationaler Funktionen In diesem Abschnitt wollen wir die Integration rationaler Funktionen diskutieren. Es wird sich herausstellen

Mehr

Prof. M. Eisermann Algebra SoSe 2010

Prof. M. Eisermann Algebra SoSe 2010 Übungsblatt 4: Teilbarkeitslehre Lassen Sie sich nicht durch die Menge der Aufgaben einschüchtern. Es gibt nur wenig schriftliche Aufgaben und wir halten die Menge der Votieraufgaben überschaubar. Alle

Mehr

Galoiskörper GF(2 n ) (Teschl/Teschl 4)

Galoiskörper GF(2 n ) (Teschl/Teschl 4) Galoiskörper GF(2 n ) (Teschl/Teschl 4) auch Galois-Felder (englisch Galois elds), benannt nach Evariste Galois (18111832). Körper (in der Mathematik) allgemein: Zahlenbereich, in dem die vier Grundrechenarten

Mehr

Musterlösung zur Probeklausur

Musterlösung zur Probeklausur Musterlösung zur Probeklausur Markus Severitt 26. Juni 2006 Aufgabe 1. Sei G eine Gruppe mit g 2 = e für alle g G. Zeigen Sie, dass G abelsch ist. Lösung. g 2 = e für alle g G heißt gerade, dass alle Elemente

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 9 Graduierte Körpererweiterungen Definition 9.1. Es sei K ein Körper und D eine kommutative Gruppe. 1 Eine K-Algebra A heißt D-graduiert,

Mehr

14 Ideale und Ringhomomorphismen

14 Ideale und Ringhomomorphismen 14 Ideale und Ringhomomorphismen Falls nichts anderes gesagt wird, so bezeichnen wir ab jetzt mit Ring immer einen kommutativen Ring mit 1 0. Definition 14.1. Sei R ein Ring, I R. Dann nennt man I ein

Mehr

Klausur vom Algebra II. Lösungen

Klausur vom Algebra II. Lösungen Klausur vom 21.10.2010 Algebra II Rolf Farnsteiner Lösungen Daiva Pučinskaitė Aufgabe 1. Sei R ein Ring. Ein R-Modul M heißt artinsch, falls es für jede Folge (N i ) i 0 von Untermoduln von M mit N i N

Mehr

Integritätsbereiche und Teilbarkeit

Integritätsbereiche und Teilbarkeit Kapitel 5 Integritätsbereiche und Teilbarkeit 5.1 Einfache Teilbarkeitsregeln 5.1.1 Definition. Sei (I,+, 0,,, 1) ein Integritätsbereich. Sind a, b I, dann heißt a durch b teilbar und b ein Teiler von

Mehr