Ringe. Kapitel Einheiten

Größe: px
Ab Seite anzeigen:

Download "Ringe. Kapitel Einheiten"

Transkript

1 Kapitel 8 Ringe Die zahlreichen Analogien zwischen Matrizenringen und Endomorphismenringen (beides sind zugleich auch Vektorräume) legen es nahe, allgemeinere ringtheoretische Grundlagen bereitzustellen, die dann im Spezialfall Anwendungen auf Polynome, Matrizen und Endomorphismen zulassen. Wir befassen uns in diesem Kapitel vorrangig mit kommutativen Ringen, beachten aber, dass Matrizen- und Endomorphismenringe nur selten diese Eigenschaft haben. 8.1 Einheiten R sei stets ein (zunächst nicht notwendig kommutativer) Ring mit Einselement e, Nullelement 0 und R = R \ {0}. In Verallgemeinerung der Situation bei Matrizen und Endomorphismen vereinbaren wir: Definition. u R heißt Einheit oder invertierbar, falls ein w mit uw = wu = e existiert. a, b R heißen (zueinander) konjugiert, falls eine Einheit u mit au = ub existiert. E(R) sei die Menge der Einheiten von R Bemerkung. In kommutativen Ringen bedeutet Konjugiertheit bereits Gleichheit, und die Gleichung E(R) = R charakteristiert Körper Satz. (Einheitengruppe) E(R) ist bezüglich der Multiplikation von R eine Gruppe. Insbesondere gibt es zu u E(R) genau ein w = u 1 aus E(R) mit uw = wu = e. Für u, v E(R) gilt: (uv) 1 = v 1 u 1, (u 1 ) 1 = u Beispiele. Einheitengruppen (1) R Körper: E(R) = R. (2) R = Z: E(Z) = { 1, 1}. (3) R = K[x]: E(K[x]) = {p K[x] grad p = 0}. (4) R = K n n : E(K n n ) = GL (n, K). (5) R = End K (V ): E(R) = GL K (V ). 92

2 KAPITEL 8. RINGE Teilbarkeit und Ideale Im Folgenden sei R ein kommutativer Ring mit Einselement e Definition. Eine nichtleere Teilmenge A von R heißt Ideal, falls für alle a, b A und r R auch a + b A und ra A gilt, kurz: A + A = A, RA = A. Mit I(R) bezeichnen wir das System aller Ideale von R Bemerkungen. (1) Jedes Ideal ist ein Unterring, d.h. eine additive Untergruppe, die zusätzlich unter Multiplikation abgeschlossen ist. (2) Jede Teilmenge der Form Ra = {ra r R} ist ein Ideal, das von a erzeugte Hauptideal. Das kleinste Ideal R0 besteht nur aus dem Nullelement, das größte ist der ganze Ring R = Re. (3) Der Idealbegriff lässt sich auch auf den nichtkommutativen Fall erweitern, doch muss man dann zwischen Linksidealen (RA = A), Rechtsidealen (AR = A) und zweiseitigen Idealen (RA AR = A) unterscheiden Definition. Für I, J, I 1,..., I k I(R) sei I + J := { a + b a I, b J }, I I k := { a a k a j I j, j k } Satz. (Summe und Durchschnitt von Idealen) Die Ideale des Ringes R bilden ein Hüllensystem, d.h. beliebige Durchschnitte von Idealen sind wieder solche. Somit existiert zu jeder Menge Y R ein kleinstes Y umfassendes Ideal I(Y ), das von Y erzeugte Ideal. Für Ideale I 1,..., I k I(R) ist I 1 I k das größte in jedem I j (j k) enthaltene Ideal und I I k das kleinste jedes I j (j k) umfassende Ideal. Insbesondere gilt I(a 1,..., a k ) := I({a 1,..., a k }) = Ra Ra k Lemma. u E(R) Ru = R. (k N, a j R) Definition. Ein Element a R heißt Nullteiler, wenn ein b R mit ab = 0 existiert. Ist außerdem a 0, so heißt a echter Nullteiler. Ein Integritätsring ist ein kommutativer Ring R mit Eins und ohne echte Nullteiler, d. h. für a, b R gilt auch ab R. Ein Hauptidealring ist ein Integritätsring, in dem jedes Ideal ein Hauptideal ist Beispiele. (1) Z ist ein Hauptidealring: I(Z) = {nz n N 0 } (Beweis später). (2) Für jeden Körper K ist der Polynomring K[x] ein Hauptidealring: I(K) = {{0}, K}. (3) R := Z[x] ist ein Integritätsring, aber kein Hauptidealring: R2 + Rx ist kein Hauptideal. (4) Für jeden (kommutativen) Ring R und jede Menge X ist auch R X, die Menge der Funktionen von X nach R mit elementweiser Addition und Multiplikation wieder ein (kommutativer) Ring. Aber R X wird nur dann ein Integritätsring, wenn R einer ist und X höchstens ein Element hat. (5) Jede Potenzmenge P(X) ist mit A + B := (A B) \ (A B) und A B := A B ein

3 KAPITEL 8. RINGE 94 kommutativer Ring mit Eins, aber für #X > 1 kein Integritätsring: Jede von Ø und X verschiedene Teilmenge ist echter Nullteiler! P(X) ist dann erst recht kein Hauptidealring, obwohl für endliches X jedes Ideal von P(X) ein Hauptideal ist. Hingegen ist für unendliches X das System aller endlichen Teilmengen eine Ideal, aber kein Hauptideal. { } (6) Die Abbildung C : P(X) Z X 1, x Y 2, Y C Y mit C Y (x) = ist ein 0, x / Y Ring Isomorphismus. Die Aussagen aus (5) gelten daher entsprechend für Z X Lemma. (Kürzungsregel) In Integritätsringen folgt aus ac = bc und c 0 schon a = b Definition. Es seien a, b R. (1) Gibt es ein c R mit ac = b, so schreibt man a b und sagt, a sei ein Teiler von b oder b sei durch a teilbar, und b sei ein Vielfaches von a. (2) a und b heißen (zueinander) assoziiert, in Zeichen a b, falls b sowohl Teiler als auch Vielfaches von a ist, d. h. a b a b und b a. (3) Man nennt a 1,..., a k R teilerfremd, in Zeichen (a 1,..., a k ) = 1, falls die einzigen gemeinsamen Teiler von a 1,..., a k die Einheiten sind. Hingegen heißen a 1,..., a k paarweise teilerfremd, falls (a i, a j ) = 1 für i j gilt Bemerkungen. (1) Jedes Ringelement ist durch jede Einheit teilbar. (2) Das Nullelement ist durch jedes Ringelement teilbar. (3) Die Teilbarkeitsrelation ist eine Quasiordnung, aber im allgemeinen keine Ordnung (z. B. gilt 2 2 und 2 2 in Z). (4) Die Assoziiertheitsrelation ist eine Äquivalenzrelation. (5) Die zum Einselement e assoziierten Elemente sind die Teiler von e, d.h. die Einheiten. (6) In Z sind zum Beispiel 6, 10 und 15 teilerfremd, aber nicht paarweise teilerfremd Satz. (Teilerfremdheit) R sei ein Hauptidealring. Für a 1,..., a k R sind äquivalent: (a) (a 1,..., a k ) = 1. (b) Ra Ra k = R. (c) Es existieren r 1,..., r k R mit r 1 a r k a k = e Lemma. Es seien a, b Elemente des (kommutativen) Ringes R. (1) a b Ra Rb. (2) a b Ra = Rb. (3) Ist R ein Integritätsring, so gilt: a b es gibt ein u E(R) mit ua = b.

4 KAPITEL 8. RINGE Definition. Für Elemente a 1,..., a k, d R nennt man d einen größten gemeinsamen Teiler (ggt) von a 1,..., a k, in Zeichen d ggt (a 1,..., a k ), falls d ein gemeinsamer Teiler aller a j ist und jeder weitere gemeinsame Teiler von a 1,..., a k auch ein Teiler von d ist. Analog: Kleinstes gemeinsames Vielfaches (kgv) Bemerkungen. (1) Oft schreibt man d = ggt (a 1,..., a k ) statt d ggt (a 1,..., a k ) und v = kgv (a 1,..., a k ) statt v kgv (a 1,..., a k ), muss aber beachten, dass dies keine Gleichungen im eigentlichen Sinn sind. (2) ggt und kgv sind bis auf Assoziiertheit eindeutig, d. h. von den drei Aussagen d 1 ggt (a 1,..., a k ), d 2 ggt (a 1,..., a k ), d 1 d 2 implizieren je zwei die dritte (analog für kgv). (3) (a 1,..., a k ) = 1 bedeutet ggt (a 1,..., a k ) e Satz. (ggt und kgv) In einem Hauptidealring besitzen je endlich viele Elemente einen größten gemeinsamen Teiler und ein kleinstes gemeinsames Vielfaches, und es gilt: d ggt (a 1,..., a k ) Rd = Ra Ra k, v kgv (a 1,..., a k ) Rv = Ra 1 Ra k Lemma. In einem Hauptidealring gilt: c ab und (a, c) = 1 = c b Lemma. Für ein Element p 0 eines Integritätsringes R sind folgende Aussagen äquivalent: (a) p = ab = a p oder b p. (b) p = ab = a 1 oder b 1. (c) a p = a 1 oder a p. (d) p a = (a, p) = Definition. Ein Element p R heißt irreduzibel, falls p keine Einheit ist und aus p = ab stets p a oder p b folgt. p heißt prim (oder Primelement), falls p keine Einheit ist und aus p ab stets p a oder p b folgt Folgerung. Jedes Primelement ist irreduzibel, und in Haupidealringen gilt auch die Umkehrung Bemerkung. Gilt p q, so ist p genau dann prim (irreduzibel), wenn q prim (irreduzibel) ist. Multiplikation mit einer Einheit ändert nichts an Teilbarkeitsbeziehungen Definition. Ein Integritätsring R heißt faktoriell oder ZPE Ring, falls jedes a R \ E(R) eine Darstellung a = p 1... p r als Produkt von Primelementen besitzt. Diese ist dann bis auf Assoziiertheit und Reihenfolge eindeutig.

5 KAPITEL 8. RINGE Satz. (1) In einem faktoriellen Ring sind Produktzerlegungen in Primelemente bis auf Assoziiertheit und Reihenfolge eindeutig. (2) Jeder Hauptidealring ist faktoriell Beispiele. (1) Der Ring Z der ganzen Zahlen ist ein Hauptidealring, in dem die von 0 verschiedenen Primelemente genau die Primzahlen und ihre Negativen sind. (2) Jeder Polynomring K[x] ist ein Hauptidealring, in dem die Primelemente 0 genau diejenigen nicht konstanten Polynome sind, die keine Zerlegung in Polynome kleineren Grades zulassen. (3) Der Polynomring Z[x] ist faktoriell, aber kein Hauptidealring. (4) Mit 5 bezeichnen wir eine komplexe Zahl, deren Quadrat 5 ist (es gibt zwei solche Zahlen). Im Ring Z[ 5] = {a + b 5 a, b Z} ist 2 irreduzibel, aber nicht prim: 2 teilt 6 = (1 + 5)(1 5), aber weder noch Euklidische Ringe Besonders bequem läßt sich in Hauptidealringen rechnen, wenn man eine Größenfunktion für die Elemente zur Verfügung hat, die eine Division mit Rest wie in Z ermöglicht Definition. Eine Abbildung ν von einem Integritätsring R nach N 0 heißt euklidische Normfunktion, falls ν(0) = 0 gilt und zu a, b R mit a 0 Elemente q, r R mit b = qa + r und ν(r) < ν(a) existieren. Gilt zusätzlich ν(ab) = ν(a)ν(b), so nennen wir ν multiplikativ. Gilt zumindest a b = ν(a) ν(b) für b 0, so heißt ν monoton. Ein Integritätsring, der eine euklidische Normfunktion besitzt, heißt euklidischer Ring. (Manchmal wird Multiplikativität oder Monotonie der Normfunktion gefordert.) Beispiele. (1) Z ist ein euklidischer Ring mit multiplikativer Normfunktion ν(a) = a. (2) Jeder Körper K ist ein euklidischer Ring mit multiplikativer Normfunktion { 0, a = 0 ν(a) = 1, a 0, denn für a 0 gilt b = qa mit q = ba 1. (3) Jeder Polynomring K[x] ist ein euklidischer Ring mit monotoner, aber nicht multiplikativer Normfunktion ν(f) = 1 + grad f für f 0, ν(0) = 0. Im Gegensatz zu ν liefert µ(f) = 2 grad f eine multiplikative Normfunktion. (4) Der Gaußsche Ring Z[ı] = {a + ıb a, b Z} ist ein euklidischer Ring mit multiplikativer Normfunktion ν(c) = c 2 = a 2 + b 2 für c = a + ıb.

6 KAPITEL 8. RINGE Satz. (Euklidische Ringe) Jeder euklidische Ring ist ein Hauptidealring Folgerung. Euklidischer Ring = Hauptidealring = ZPE Ring = Integritätsring Lemma. Für eine multiplikative euklidische Normfunktion ν gilt: (1) ν(e) = 1. (2) a b = ν(a) ν(b) = ν(a) ν(b) oder b = 0. ν ist also monoton. (3) a b ν(a) = ν(b) und a b. (4) u E(R) ν(u) = Definition. R[x] bezeichnet den Ring der Polynome mit Koeffizienten aus dem Ring R. Ein Polynom f(x) = f 0 + +f n 1 x n 1 +f n x n R[x] heißt normiert, falls f n das Einselement von R ist Bemerkung. Jedes Polynom g(x) K[x] hat eindeutig die Form g(x) = αf(x), wobei f(x) ein normiertes Polynom ist und α in K liegt Folgerungen. Im Polynomring K[x] über einem Körper K gilt: (1) Zwei normierte Polynome sind nur dann assoziiert, wenn sie gleich sind. (2) Zu jedem Ideal A {0} von K[x] existiert ein eindeutiges normiertes Polynom f(x) aus K[x] mit A = K[x] f(x). Insbesondere besitzen je endlich viele Polynome einen eindeutigen normierten ggt. (3) Jedes Polynom f(x) von Grad 1 besitzt eine bis auf die Reihenfolge eindeutige Produktdarstellung r f(x) = α p j (x) n j, j=1 wobei α aus K ist und die p j (x) paarweise verschiedene normierte irreduzible, d. h. prime Polynome sind Bemerkungen. (1) Über C sind die einzigen irreduziblen normierten Polynome die Polynome der Form q(x) = x + q 0, q 0 C. (2) Über R sind die einzigen irreduziblen normierten Polynome: q(x) = x + q 0, q 0 R, und q(x) = x 2 + q 1 x + q 0 = (x + q 1 2 )2 + q 0 q2 1 4 mit q 0 q2 1 4 > 0, q 0, q 1 R Algorithmus. (Bestimmung des ggt durch den euklidischen Algorithmus) Zu gegebenen Elementen a 1, a 2 0 eines euklidischen Ringes bestimmt man rekursiv Elemente a j und q j mit ( j ) a j = q j a j+1 + a j+2, ν(a j+2 ) < ν(a j+1 ), bis man bei a n+1 = 0 ankommt. Dann ist a n = ggt (a 1, a 2 ) = a 1 b 1 + a 2 b 2, wobei sich b 1 und b 2 durch rückwärtiges Einsetzen der Gleichungen ( j ) ineinander ergeben.

Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus

Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus Max Zoller 14. April 8 1 Der klassische euklidische Algorithmus Beispiel: ggt 15, 56? 15 = 1 56 + 49 56 = 1 49 + 7 49 = 7 7 + =

Mehr

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt.

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt. Polynome Definition 1. Ein Polynom f über einem Körper K mit der Unbestimmten x ist eine formale Summe f(x) = i 0 a i x i, (1) wobei nur endlich viele der Koeffizienten a i K von Null verschieden sind.

Mehr

Integritätsbereiche und Teilbarkeit

Integritätsbereiche und Teilbarkeit Kapitel 5 Integritätsbereiche und Teilbarkeit 5.1 Einfache Teilbarkeitsregeln 5.1.1 Definition. Sei (I,+, 0,,, 1) ein Integritätsbereich. Sind a, b I, dann heißt a durch b teilbar und b ein Teiler von

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 3 Der euklidische Algorithmus Euklid (4. Jahrhundert v. C.) Definition 3.1. Seien zwei Elemente a, b (mit b 0) eines euklidischen Bereichs

Mehr

Integritätsbereiche und Teilbarkeit

Integritätsbereiche und Teilbarkeit Kapitel 5 Integritätsbereiche und Teilbarkeit 5.1 Einfache Teilbarkeitsregeln 5.1.1 Definition. Sei (I,+, 0,,, 1) ein Integritätsbereich. Sind a, b I, dann heißt a durch b teilbar und b ein Teiler von

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,

Mehr

10. Teilbarkeit in Ringen

10. Teilbarkeit in Ringen 10. Teilbarkeit in Ringen 67 10. Teilbarkeit in Ringen Ein wichtiges Konzept in Ringen, das ihr für den Fall des Ringes Z bereits aus der Schule kennt, ist das von Teilern also der Frage, wann und wie

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

Prof. M. Eisermann Algebra SoSe 2010

Prof. M. Eisermann Algebra SoSe 2010 Übungsblatt 4: Teilbarkeitslehre Lassen Sie sich nicht durch die Menge der Aufgaben einschüchtern. Es gibt nur wenig schriftliche Aufgaben und wir halten die Menge der Votieraufgaben überschaubar. Alle

Mehr

Kapitel 2. Ganze Zahlen. 2.1 Teilbarkeit

Kapitel 2. Ganze Zahlen. 2.1 Teilbarkeit Kapitel 2 Ganze Zahlen In diesem Kapitel setzen wir voraus, dass die Menge Z der ganzen Zahlen, ihre Ordnung und die Eigenschaften der Addition und Multiplikation ganzer Zahlen dem Leser vertraut sind.

Mehr

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe

Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Seminar Kommutative Algebra und Varietäten Vortrag 1: Ideale kommutativer Ringe Sebastian Dobrzynski 17042014 1 Grundsätzliches zu Idealen Vorab legen wir fest: Alle im Vortrag betrachteten Ringe sind

Mehr

31 Polynomringe Motivation Definition: Polynomringe

31 Polynomringe Motivation Definition: Polynomringe 31 Polynomringe 31.1 Motivation Polynome spielen eine wichtige Rolle in vielen Berechnungen, einerseits weil oftmals funktionale Zusammenhänge durch Polynome beschrieben werden, andererseits weil Polynome

Mehr

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen Universität Paderborn WS 2007/2008 Warburger Str. 100 33098 Paderborn Seminararbeit zur Zahlentheorie Die Gaußschen Zahlen Tatjana Linkin, Svetlana Krez 20. November 2007 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis

Mehr

Seminar. Der Ring O K der ganzen Zahlen über einem Zahlenkörper K. Armin Hecht, Sabine Naewe

Seminar. Der Ring O K der ganzen Zahlen über einem Zahlenkörper K. Armin Hecht, Sabine Naewe Universität Paderborn SS 2007 Warburger Str. 100 33098 Paderborn Seminar Der Ring O K der ganzen Zahlen über einem Zahlenkörper K Armin Hecht, Sabine Naewe 04.Dezember 2007 Inhaltsverzeichnis 7 Der Ring

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Definition Sei A eine Menge und ɛ A A A eine zweistellige

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte) Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

Definition 153 Sei n eine fest gewählte ganze Zahl 0. Für jedes l Z heißt die Menge

Definition 153 Sei n eine fest gewählte ganze Zahl 0. Für jedes l Z heißt die Menge 3.6 Restklassen in Polynomringen 3.6.1 Einführung und Definitionen Der Begriff der Restklasse stammt ursprünglich aus der Teilbarkeitslehre in Z; (Z = Z, +, ist ein kommutativer Ring). Definition 153 Sei

Mehr

Zusatztutorium, 25.01.2013

Zusatztutorium, 25.01.2013 Zusatztutorium, 25.01.2013 David Müßig muessig[at]mi.fu-berlin.de http://page.mi.fu-berlin.de/def/tutorium/ WiSe 12/13 1 Der Homomorphiesatz Der Homomorphiesatz scheint für viele eine Art rotes Tuch zu

Mehr

5. Gruppen, Ringe, Körper

5. Gruppen, Ringe, Körper 5. Gruppen, Ringe, Körper 5.1. Gruppen Die Gruppentheorie, als mathematische Disziplin im 19. Jahrhundert entstanden, ist ein Wegbereiter der modernen Mathematik. Beispielsweise folgt die Gruppe, die aus

Mehr

Algebra I. Zwischenprüfung. 19. Februar 2016

Algebra I. Zwischenprüfung. 19. Februar 2016 Name: Vorname: Studiengang: Legi-Nr.: Algebra I D-MATH, HS 2015 Prof. Richard Pink Algebra I Zwischenprüfung Wichtig: 19. Februar 2016 Die Prüfung dauert 120 Minuten. Bitte legen Sie Ihre Legi (Studierendenausweis)

Mehr

1 Algebraische Strukturen

1 Algebraische Strukturen Prof. Dr. Rolf Socher, FB Technik 1 1 Algebraische Strukturen In der Mathematik beschäftigt man sich oft mit Mengen, auf denen bestimmte Operationen definiert sind. Es kommt oft vor, dass diese Operationen

Mehr

3.3 Primfaktorzerlegung in Hauptidealringen

3.3 Primfaktorzerlegung in Hauptidealringen Algebra I c Rudolf Scharlau, 2002 2012 140 3.3 Primfaktorzerlegung in Hauptidealringen Inhalt dieses Abschnitts ist die Verallgemeinerung der Teilbarkeitslehre vom Ring Z auf beliebige Hauptidealringe.

Mehr

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe

Kongruenzen und Restklassenringe. 2. Kongruenzen und Restklassenringe 2. Kongruenzen und Restklassenringe Kongruenzen Definition: Wir sagen a ist kongruent zu b modulo m schreiben a b mod m, wenn m die Differenz b-a te Beispiel: Es gilt 2 19 mod 21, 10 0 mod 2. Reflexivität:

Mehr

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f.

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f. 3 Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f 4 Auf der Menge aller Restklassen [f] g kann man Addition und

Mehr

Einführung in die Zahlentheorie und algebraische Strukturen

Einführung in die Zahlentheorie und algebraische Strukturen Einführung in die Zahlentheorie und algebraische Strukturen Wintersemester 2012/2013 Universität Bayreuth Michael Stoll Inhaltsverzeichnis 1. Wiederholung: Gruppen, Ringe, Körper 2 2. Teilbarkeitslehre

Mehr

Ringe. Kapitel 3. 3.1 Abelsche Gruppen, Ringe und Moduln

Ringe. Kapitel 3. 3.1 Abelsche Gruppen, Ringe und Moduln Kapitel 3 Ringe Gruppen- und Ringstrukturen sind uns schon in den verschiedensten Zusammenhängen begegnet. In diesem Kapitel wollen wir einige wichtige Klassen von Ringen im Hinblick auf Anwendungen in

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

2 Teilbarkeit in Z. (a) Aus a b folgt a b und a b und a b und a b. (b) Aus a b und b c folgt a c.

2 Teilbarkeit in Z. (a) Aus a b folgt a b und a b und a b und a b. (b) Aus a b und b c folgt a c. 2 Teilbarkeit in Z Bis auf weiteres stehen kleine Buchstaben für ganze Zahlen. Teilbarkeit. Sei a 0. Eine Zahl b heißt durch a teilbar, wenn es ein q gibt mit b = qa. Wir sagen dann auch: a teilt b (ist

Mehr

3-1 Elementare Zahlentheorie

3-1 Elementare Zahlentheorie 3-1 Elementare Zahlentheorie 3. Der Restklassenring Z/n und seine Einheitengruppe 3.0. Erinnerung: Teilen mit Rest, euklidscher Algorithmus, Bézoutsche Gleichung. Sei n eine feste natürliche Zahl. Sei

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n Definitionen Die Ringe Z n für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: Beispiel n = 15 + n : Z n Z n Z n : (a, b) (a + b) mod n n : Z n Z n Z n : (a, b) (a b) mod n 9 + 15 11 = 5 9 15 11 = 9

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

Klausur vom Algebra I. Rolf Farnsteiner

Klausur vom Algebra I. Rolf Farnsteiner Klausur vom 31.03.2010 Algebra I Rolf Farnsteiner Lösungen Daiva Pučinskaitė Aufgabe 1. Sei p R ein Primideal eines Integritätsbereichs R. Beweisen Sie folgende Aussagen: (1 S := R \ p ist eine multiplikativ

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

Kapitel II. Algebraische Grundbegriffe

Kapitel II. Algebraische Grundbegriffe Kapitel II. Algebraische Grundbegriffe 1 Ringe und Körper Für das Rechnen in Z haben wir in Kap. I, 1 Regeln aufgestellt, welche auch in Q und R gelten. Damit werden Z, Q und R zu Ringen im folgenden Sinn:

Mehr

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat

Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Seminar zur Zahlentheorie Spezialfälle des Satzes von Fermat Vortrag von Kristina Rupp und Benjamin Letschert am 29.01.2008 Inhaltsverzeichnis 13 Speziallfälle des Satzes von Fermat 1 13.1 Der Große Satz

Mehr

1 Der Ring der ganzen Zahlen

1 Der Ring der ganzen Zahlen 1 Der Ring der ganzen Zahlen Letztendlich wird die Addition und Multiplikation in endlichen Körpern auf die Addition und Multiplikation von ganzen Zahlen zurückgeführt. Deswegen müssen wir die an sich

Mehr

Kapitel 3 Elementare Zahletheorie

Kapitel 3 Elementare Zahletheorie Kapitel 3 Elementare Zahletheorie 89 Kapitel 3.1 Ganze Zahlen, Gruppen und Ringe 90 Die ganzen Zahlen Menge der ganzen Zahlen Z={..., 3, 2, 1,0,1,2,3,...} Es gibt zwei Operationen Addition: Z Z Z, (a,b)

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

Elementare Zahlentheorie

Elementare Zahlentheorie Euklid-1 Euklid sche Ringe (Das Rechnen in Z und in K[T]). Ist K ein Körper und f K[T] ein Polynom, so nennt man f normiert, falls f 0 gilt und der höchste Koeffizient von f gleich 1 ist. (Natürlich gilt:

Mehr

Ganze algebraische Zahlen

Ganze algebraische Zahlen Seminarvortrag Ganze algebraische Zahlen gehalten von Johannes Hölken an der Universität Duisburg-Essen im Sommersemester 2012 im Rahmen des Seminars über Elementrare Zahlentheorie. Kontakt: johannes.hoelken@stud.uni-due.de

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 19 Algebraisch abgeschlossene Körper Wir haben zuletzt erwähnt, dass ein lineares Polynom X a über einem Körper stets irreduzibel

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

2 Polynome und rationale Funktionen

2 Polynome und rationale Funktionen Gleichungen spielen auch in der Ingenieurmathematik eine große Rolle. Sie beschreiben zum Beispiel Bedingungen, unter denen Vorgänge ablaufen, Gleichgewichtszustände, Punktmengen. Gleichungen für eine

Mehr

Ganzzahlige Division mit Rest

Ganzzahlige Division mit Rest Modulare Arithmetik Slide 1 Ganzzahlige Division mit Rest Für a,b Æ mit a b gibt es stets eine Zerlegung von a der Form a = q b+r mit 0 r b 1. Hierbei gilt q = a b (salopp formuliert: b passt q-mal in

Mehr

2 Restklassenringe und Polynomringe

2 Restklassenringe und Polynomringe 2 Restklassenringe und Polynomringe Sei m > 1 ganz und mz := {mx x Z}. Nach I. 5.3 gilt: Die verschiedenen Restklassen von Z modulo m sind mz, 1 + mz,..., (m 1) + mz. Für die Gesamtheit aller Restklassen

Mehr

Chr.Nelius: Zahlentheorie (WS 2006/07) ggt und kgv

Chr.Nelius: Zahlentheorie (WS 2006/07) ggt und kgv ChrNelius: Zahlentheorie (WS 2006/07) 8 3 ggt und kgv Wir erinnern uns hoffentlich an die folgenden Definitionen des ggt s und des kgv s zweier ganzer Zahlen (31) DEF: Eine ganze Zahl g heißt größter gemeinsamer

Mehr

Mathematik III. (für Informatiker) Oliver Ernst. Wintersemester 2014/15. Professur Numerische Mathematik

Mathematik III. (für Informatiker) Oliver Ernst. Wintersemester 2014/15. Professur Numerische Mathematik Mathematik III (für Informatiker) Oliver Ernst Professur Numerische Mathematik Wintersemester 2014/15 Inhalt 10 Differentialgleichungen 11 Potenz- und Fourier-Reihen 12 Integraltransformationen 13 Algebraische

Mehr

3.4 Erweiterungen von Ringen und Körpern

3.4 Erweiterungen von Ringen und Körpern Algebra I c Rudolf Scharlau, 2002 2010 145 3.4 Erweiterungen von Ringen und Körpern In diesem Abschnitt werden Erweiterungen von Ringen (etwas vereinfacht gesagt: Oberringe), insbesondere Erweiterungen

Mehr

Teilbarkeitstheorie in Integritätsringen

Teilbarkeitstheorie in Integritätsringen KAPITEL 5 Teilbarkeitstheorie in Integritätsringen 5A. Motivation Teilbarkeitsbegriffe sind von den natürlichen Zahlen allgemein geläufig, zum Beispiel: Die Zahl 4 teilt die Zahl 12. Die Zahl 12345 ist

Mehr

Quadrate und Wurzelziehen modulo p

Quadrate und Wurzelziehen modulo p Quadrate und Wurzelziehen modulo p Sei im Folgenden p eine Primzahl größer als. Wir möchten im Körper Z p Quadratwurzeln ziehen. Die Quadrierabbildung Q :Z p Z p ist aber nicht surjektiv, daher gibt es

Mehr

Universität Zürich HS , Vorlesung #3

Universität Zürich HS , Vorlesung #3 Algebraic Number Theory P. Habegger Universität Zürich HS 2010 6.10.2010, Vorlesung #3 1.4 Diskriminante Die primitivste Invariante eines Zahlkörpers ist sein Grad. Die Diskriminante eines Zahlkörpers

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

Ringe und Körper. Das Homomorphieprinzip für Ringe

Ringe und Körper. Das Homomorphieprinzip für Ringe Ringe und Körper Das Homomorphieprinzip für Ringe Wir beginnen mit einem Beispiel. R = Z/m Z sei die Faktorgruppe von Z nach der Untergruppe m Z, m IN. Für m = 0 ist der kanonische Homomorphismus Z Z/m

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 18. April 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Algebraische Zahlentheorie. Teil II. Die Diskriminante.

Algebraische Zahlentheorie. Teil II. Die Diskriminante. II-1 Algebraische Zahlentheorie Teil II Die Diskriminante Sei K ein Zahlkörper vom Grad n (also [K : Q] = n) Es gibt genau n Körper- Homomorphismen σ i : K C (siehe Merkzettel Separabilität) Stellen wir

Mehr

Galoiskörper GF(2 n ) (Teschl/Teschl 4)

Galoiskörper GF(2 n ) (Teschl/Teschl 4) Galoiskörper GF(2 n ) (Teschl/Teschl 4) auch Galois-Felder (englisch Galois elds), benannt nach Evariste Galois (18111832). Körper (in der Mathematik) allgemein: Zahlenbereich, in dem die vier Grundrechenarten

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n)

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n) Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 4 Die Restklassenringe Z/(n) Satz 4.1. (Einheiten modulo n) Genau dann ist a Z eine Einheit modulo n (d.h. a repräsentiert eine Einheit in

Mehr

Diskrete Strukturen Vorlesungen 11 und 12

Diskrete Strukturen Vorlesungen 11 und 12 Sebastian Thomas RWTH Aachen, WS 2016/17 24.11.2016 30.11.2016 Diskrete Strukturen Vorlesungen 11 und 12 10 Teilbarkeitslehre Ziel dieses Abschnitts ist es zu sehen, dass es starke formale Ähnlichkeiten

Mehr

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule Berufsfeldbezogenes Fachseminar - Zahlentheorie Lisa Laudan Prof. Dr. Jürg Kramer Wintersemester 2014/2015 Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule 1.1

Mehr

σ-algebren, Definition des Maßraums

σ-algebren, Definition des Maßraums σ-algebren, Definition des Maßraums Ziel der Maßtheorie ist es, Teilmengen einer Grundmenge X auf sinnvolle Weise einen Inhalt zuzuordnen. Diese Zuordnung soll so beschaffen sein, dass dabei die intuitiven

Mehr

Eine Menge K, auf der eine Addition. + und eine Multiplikation definiert sind, nennt man einen Körper, wenn folgende Eigenschaften gelten: Körper 1-1

Eine Menge K, auf der eine Addition. + und eine Multiplikation definiert sind, nennt man einen Körper, wenn folgende Eigenschaften gelten: Körper 1-1 Körper Eine Menge K, auf der eine Addition + und eine Multiplikation definiert sind, nennt man einen Körper, wenn folgende Eigenschaften gelten: Körper 1-1 Körper Eine Menge K, auf der eine Addition +

Mehr

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0.

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0. Def 4 Eine Menge K mit zwei Abbildungen + : K K K und : K K K (heißen Addition und Multiplikation; wir werden a b bzw a+b statt (a,b), +(a,b) schreiben) ist ein kommutativer Ring, falls: (R1) (K, +) ist

Mehr

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st Primzahlen Herbert Koch Mathematisches Institut Universität Bonn 12.08.2010 1 Die Primfaktorzerlegung Wir kennen die natürlichen Zahlen N = 1, 2,..., die ganzen Zahlen Z, die rationalen Zahlen (Brüche

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

Grundlagen der Arithmetik und Zahlentheorie

Grundlagen der Arithmetik und Zahlentheorie Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend

Mehr

II Integritätsbereiche

II Integritätsbereiche II Integritätsbereiche II.1 Teilbarkeit in Integritätsbereichen Die Teilbarkeitslehre in der Menge ZZ der ganzen Zahlen beruht auf den algebraischen Eigenschaften von ZZ bezüglich der Addition und der

Mehr

Lineare Schieberegisterfolgen

Lineare Schieberegisterfolgen Lineare Schieberegisterfolgen Sei K ein endlicher Körper. Man nehme zwei Vektoren x 0 a0 x n 1, a n 1 K n n 1 x n := a i x i und betrachte die lineare Abbildung : K n K n, die durch i=0, berechne x 0 x

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG MATHEMATISCHES INSTITUT SEMINAR: QUADRATISCHE FORMEN ÜBER DEN RATIONALEN ZAHLEN SOMMERSEMESTER 2007 DOZENT: PROF. DR. KAY WINGBERG ASSISTENT: JOHANNES BARTELS KAPITEL

Mehr

4.1. Vektorräume und lineare Abbildungen

4.1. Vektorräume und lineare Abbildungen 4.1. Vektorräume und lineare Abbildungen Mengen von Abbildungen Für beliebige Mengen X und Y bezeichnet Y X die Menge aller Abbildungen von X nach Y (Reihenfolge beachten!) Die Bezeichnungsweise erklärt

Mehr

WURZEL Werkstatt Mathematik Polynome Grundlagen

WURZEL Werkstatt Mathematik Polynome Grundlagen Die WURZEL Werkstatt Mathematik Polynome Grundlagen Wer lange genug über hunderten von Problemen gebrütet hat, kann bei vielen bereits erraten, aus welchem Land sie kommen. So lieben die Briten etwa die

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. Jochen Schröder Einführung in Algebra und Zahlentheorie Übungsblatt 10 1 Aufgabe 1 (4 Punkte) Sei

Mehr

8. Polynome. Mathias Schacht Mathematik I für Informatiker WiSe 2016/17 8. Polynome / 1

8. Polynome. Mathias Schacht Mathematik I für Informatiker WiSe 2016/17 8. Polynome / 1 8. Polynome Mathias Schacht Mathematik I für Informatiker WiSe 2016/17 8. Polynome / 1 Polynome über Körpern Definition (Polynome) Sei K ein Körper und X ein Unbekannte/Variable. Ein Ausdruck der Form

Mehr

Einführung in die Algebra

Einführung in die Algebra Einführung in die Algebra Vorlesung im Sommersemester 2000 Technische Universität Berlin gehalten von Prof. Dr. M. Pohst Inhaltsverzeichnis 0 Vorbemerkungen 2 1 Ringe 3 1.1 Definition Ring....................................

Mehr

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 12 (WS 2015/16) 1. Abgabetermin: Donnerstag, 28. Januar.

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 12 (WS 2015/16) 1. Abgabetermin: Donnerstag, 28. Januar. Algebra I Prof. Dr. M. Rost Übungen Blatt 12 (WS 2015/16) 1 Abgabetermin: Donnerstag, 28. Januar http://www.math.uni-bielefeld.de/~rost/a1 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige

Mehr

3 Allgemeine Algebren

3 Allgemeine Algebren Grundlagen der Mathematik für Informatiker 1 3 Allgemeine Algebren Definition 3.1 Für eine Menge A nennen wir eine n-stellige Funktion ω : A n A eine n-äre algebraische Operation. Bemerkung zum Fall n

Mehr

$Id: korper.tex,v /05/10 12:25:27 hk Exp $

$Id: korper.tex,v /05/10 12:25:27 hk Exp $ $Id: korper.tex,v 1.17 2012/05/10 12:25:27 hk Exp $ 4 Körper In der letzten Sitzung hatten wir den Körperbegriff eingeführt und einige seiner elementaren Eigenschaften vorgeführt. Insbesondere hatten wir

Mehr

1.1 Teilbarkeit, Primzahlen und Teilerfremdheit

1.1 Teilbarkeit, Primzahlen und Teilerfremdheit Kapitel Primzahlen Bevor wir uns allgemeineren Themen und Begriffen der Algebra zuwenden, wollen wir einige zugleich elementare und schöne Ideen aus der Theorie der Primzahlen zusammenstellen, da diese

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Definition: Ring. Definition: kommutativer Ring. Definition: Unterring. Unterringkriterium. Definition: Ringhomomorphismus

Definition: Ring. Definition: kommutativer Ring. Definition: Unterring. Unterringkriterium. Definition: Ringhomomorphismus http://matheplanet.com, Stefan K 1 1 2 Ring kommutativer Ring 3 4 Unterring Unterringkriterium 5 6 Ringhomomorphismus Kern/Bild eines Ringhomomorphismus 7 8 Charakterisierung injektiver Ringhomomorphismus

Mehr

11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16

11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16 11. Übung zur Vorlesung Aufgabe 41. Zeige, dass das Polynom (X 2 13)(X 2 17)(X 2 13 17) Z[X] modulo jeder natürlichen Zahl n N eine Nullstelle hat, aber keine Nullstelle in Z besitzt. Aufgabe 42. Sei p

Mehr

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie 9. Primitivwurzeln 9.1. Satz. Sei G eine zyklische Gruppe der Ordnung m und g G ein erzeugendes Element. Das Element a := g k, k Z, ist genau dann ein erzeugendes Element von G, wenn k zu m teilerfremd

Mehr

Einführung in die Algebra

Einführung in die Algebra Einführung in die Algebra Vorlesung im Sommersemester 2006 Technische Universität Berlin gehalten von Prof. Dr. M. Pohst Contents i CHAPTER 2 Ringe 1. Definition Eine nicht leere Menge R mit zwei inneren

Mehr

Die inverse Diskrete Fourier Transformation

Die inverse Diskrete Fourier Transformation Die inverse Diskrete Fourier Transformation Konvertierung von der Point-value Form in Koeffizientenform. Dazu stellen wir die DFT als Matrix-Vektor Produkt dar 1 1 1... 1 1 ω n ωn 2... ωn n 1 a 0 y 0 1

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Übungen zur Algebra I. F. Lorenz, F. Lemmermeyer

Übungen zur Algebra I. F. Lorenz, F. Lemmermeyer Übungen zur Algebra I F. Lorenz, F. Lemmermeyer. April 007 Inhaltsverzeichnis Übungen zu Kapitel 1 Übungen zu Kapitel 7 Übungen zu Kapitel 3 9 Übungen zu Kapitel 4 13 Übungen zu Kapitel 5 Übungen zu Kapitel

Mehr

Skript zur Vorlesung Ringe und Moduln. gehalten von Peter Maier an der TU Darmstadt im Wintersemester 2000/2001

Skript zur Vorlesung Ringe und Moduln. gehalten von Peter Maier an der TU Darmstadt im Wintersemester 2000/2001 Skript zur Vorlesung Ringe und Moduln gehalten von Peter Maier an der TU Darmstadt im Wintersemester 2000/2001 Inhaltsverzeichnis 1 Ringe und Moduln 1 1.1 Ringe und Schiefkörper.............................

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

3 Kommutative Ringe. Algebra I c Rudolf Scharlau,

3 Kommutative Ringe. Algebra I c Rudolf Scharlau, Algebra I c Rudolf Scharlau, 2002 2010 119 3 Kommutative Ringe In diesem Kapitel stellen wir die grundlegende Theorie der kommutativen Ringe dar, wobei das Ziel letztlich ein tieferes Verständnis der Polynomringe

Mehr

VL Algebra I. Lösungvorschläge zu den ausgewählten Aufgaben der. Prof. U. Kühn SS von. Anna Posingies 1, Markus Hihn 2. 4.

VL Algebra I. Lösungvorschläge zu den ausgewählten Aufgaben der. Prof. U. Kühn SS von. Anna Posingies 1, Markus Hihn 2. 4. Lösungvorschläge zu den ausgewählten Aufgaben der VL Algebra I Prof. U. Kühn SS 2005 von Anna Posingies 1, Markus Hihn 2 4. Juli 2005 1 email: Anna(dot)Posingies(at)gmx(dot)de 2 email: mhihn(at)mathematik(dot)hu-berlin(dot)de

Mehr

Angewandte Diskrete Mathematik

Angewandte Diskrete Mathematik Vorabskript zur Vorlesung Angewandte Diskrete Mathematik Wintersemester 2010/ 11 Prof. Dr. Helmut Maier Dipl.-Math. Hans- Peter Reck Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Universität

Mehr

4. Übung zur Linearen Algebra I -

4. Übung zur Linearen Algebra I - 4. Übung zur Linearen Algebra I - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. WS 2009-10. Aufgabe 13 Auf dem Cartesischen Produkt Z Z werden 2 Verknüpfungen, definiert durch: Man zeige: (a

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr