3. Rentenrechnung mit Excel
|
|
|
- Maya Schmidt
- vor 10 Jahren
- Abrufe
Transkript
1 132 Rentenrechnung mit Excel 3. Rentenrechnung mit Excel 3.1 Einführung Bei der Rentenrechnung ist die Verwendung folgender Größen und Symbole üblich: r r e konstante regelmäßige Zahlung (Rentenrate) jährlich nachschüssige Ersatzrentenrate R n Rentenendwert bei t = n (in ) R 0 Rentenbarwert bei t = 0 (in ) R t Rentenkapital im Jahr t (in ) q n = (1 + i) n Aufzinsungsfaktor n Laufzeit der Rentenzahlung (in a) m n p i r, i k Zahl der unterjährigen Zahlungsperioden pro Jahr Laufzeit (in unterjährigen Zahlungsperioden) relativer bzw. konformer unterjähriger Zinssatz Für grundlegende Rentenberechnungen eignet sich das in Bild 3.1e dargestellte Tabellengerüst, das sich von Excel-Tabelle Bild 1.1e nur wenig unterscheidet. Insbesondere die regelmäßigen Zahlungen stellen ein neues Element dar. Bild 3.1e Tabellenvorlage für die Rentenrechnung
2 Rentenrechnung mit Excel 133 Mit dieser Tabelle wird eine neue Excel-Mappe namens "Renten.xls" angelegt, in die alle weiteren Tabellen für dieses Kapitel aufgenommen werden. 3.2 Jährliche Rentenzahlungen Beispiel 3.1: Für jährliche Ratenzahlungen in Höhe von auf ein Sparkonto wird ein Festzinssatz von 5,5 % p.a. gewährt. Auf welchen Betrag ist das Kapital nach 10 Jahren angewachsen, wenn die Zahlungen jeweils a) am Jahresende und b) am Jahresbeginn erfolgen? Für beide Zahlungsreihen ist auch der Barwert zu bestimmen. Es handelt sich bei a) um jährlich nachschüssige und bei b) um jährlich vorschüssige Rentenzahlungen. Die Zinszahlung erfolgt generell jährlich nachschüssig, wenn nichts anderes vereinbart ist. Für den Rentenendwert R 10 und den Rentenbarwert R 0 würden zu a) folgende Rechnungen gelten: Gl. Zahlenrechnung Excel-Formel in C12/C5 Ergebnis (3.3) (1 0,055) 10 1 R =B6*((1+B7)^B9-1)/B ,85 0,055 (3.5) (1 0,055) ,055 (1 0,055) 10 R =C12/(1+B7)^B ,30 Zur Berechnung des Rentenendwertes kann in Zelle C12 auch die Excel-Funktion =ZW(B7;B9;-B6) verwendet werden, die bereits aus der Zinseszinsrechnung bekannt ist (vgl. Bild 1.16e). Während bei t = 0 jedoch keine Zahlung erfolgt und demnach bei Bw nichts einzutragen ist, steht bei Rmz jetzt die Rate aus Zelle B6 mit negativem Vorzeichen für Auszahlungen (s. Bild 3.2e). Eine entsprechende Excel-Funktion gibt es auch für die Bestimmung des Barwertes in Zelle C5. Sie kann unter Zuhilfenahme des Funktionsassistenten erstellt werden und muss lauten =BW(B7;B9;-B6).
3 134 Rentenrechnung mit Excel Bild 3.2e Excel-Tabelle für Beispiel 3.1a Für den Fall b) ist anstelle der tatsächlichen Rate r gemäß Gl. (3.15) die nachschüssige Ersatzrentenrate r e (1 0,055) einzusetzen. Die dazu erforderliche Zwischenrechnung mit der Excel-Formel =B6*(1+B7) erfolgt in Zelle B11, was in den Excel-Funktionen zu berücksichtigen ist (s. Bild 3.3e). Bild 3.3e Excel-Tabelle für Beispiel 3.1b Bevor weitere Möglichkeiten für den Umgang mit dieser Tabelle erörtert werden, soll zunächst die Berücksichtigung unterjähriger Rentenzahlungen einbezogen werden.
4 Rentenrechnung mit Excel Unterjährliche Rentenzahlungen Beispiel 3.2: Beispiel 3.1 wird dahingehend abgeändert, dass nicht jährlich, sondern 200 monatlich auf das Sparkonto übertragen werden, und zwar jeweils a) am Monatsende und b) am Monatsanfang. Über die Art der unterjährigen Verzinsung liegen keine Angaben vor. Deshalb werden verschiedene Versionen, die praktisch relevant sind, berücksichtigt Unterjährliche Renten- und Zinszahlungen Wenn bei unterjährlichen Ratenzahlungen die Zinsen mit derselben Periodizität nachschüssig gezahlt werden, dann besteht mathematisch kein Unterschied zur jährlich nachschüssigen Renten- und Zinszahlung. Es muss nur beachtet werden, dass anstelle des Jahreszinssatzes der Zinssatz der jeweiligen unterjährigen Periode eingesetzt werden muss. Wenn von einem nominellen Jahreszins i ausgegangen wird, ist weiterhin zu berücksichtigen, ob innerhalb der unterjährigen Perioden lineare oder exponentielle Verzinsung vorgesehen ist. Danach richtet sich die Bestimmung des unterjährigen Zinssatzes als relativer Zinssatz i r oder als konformer Zinssatz i k. Ausgehend von i = 5,5 % für Beispiel 3.1 und 3.2 ergibt sich nach Gln. (1.13) bzw. (1.24): Gl. Zahlenrechnung Excel-Formel in D7 Ergebnis (1.13) i 0,055/ 12 =B7/B8 0, ˆ 0,46 % r (1.24) i ( 1 0,055) =(1+B7)^(1/B8)-1 0, ˆ 0,45 % k Die Excel-Tabelle von Bild 3.3e ist entsprechend zu modifizieren. Zunächst wird in Zeile 8 die Zahl der unterjährigen Perioden m ergänzt. Dann wird die zusätzliche Zelle D7 für den unterjährigen Zinssatz eingerichtet, die in alle anderen Formeln anstelle von Zelle B7 eingeht (s. Bild 3.4e). In diese Tabelle soll außerdem eine Wahlmöglichkeit für unterjährig lineare oder unterjährig exponentielle Verzinsung eingebaut werden. Dazu ist die Erstellung kleiner Makros erforderlich.
5 136 Rentenrechnung mit Excel Bild 3.4e Excel-Tabelle für Beispiel 3.2 mit unterjährig linearer Verzinsung Makros aufzeichnen Für die Excel-Tabelle Bild 3.4e soll ein Makro erstellt werden, das unterjährig exponentielle Verzinsung bei der Berechnung von Rentenend- und Rentenbarwerten berücksichtigt. Ein solches Makroprogramm entsteht automatisch, indem alle Tabellenänderungen aufgezeichnet werden. Das Vorgehen ist wie folgt: Im Menü EXTRAS ist auf MAKRO zu zeigen und auf AUFZEICHNEN zu klicken. In das sich öffnende Fenster wird ein Makroname eingegeben, z. B. der Text "exponentiell" (s. Bild 3.5e), und eventuell eine Auswahltaste. Bild 3.5e Excel-Tabelle für Beispiel 3.2 mit unterjährig linearer Verzinsung Zugleich erscheint im Bildschirmfenster eine spezielle Symbolleiste, mit der die Aufzeichnung später beendet werden kann.
6 Rentenrechnung mit Excel 137 Die Tabellenänderungen, die das Makro vornehmen soll, werden nun in beliebiger Reihenfolge ausgeführt. Im Beispiel ist lediglich die Formel zur Berechnung des konformen Zinssatzes in Zelle D7 einzutragen (s. oben) und der Index r im Symbol für den unterjährigen Zinssatz durch k zu ersetzen. Durch linken Mausklick in der Symbolleiste AUFZEICHNEN BEENDEN oder im Menü EXTRAS/MAKRO/AUFZEICHNUNG BEENDEN wird das Makro fertiggestellt. Die Ausführung des Makros kann (wenn keine Tastenkombination zugeordnet wurde) aus dem Menü EXTRAS/MAKRO/MAKROS.../AUSFÜHREN erfolgen. Hier soll noch eine komfortablere Möglichkeit aufgezeigt werden, die Nutzung einer Optionsschaltfläche. Durch rechten Mausklick auf eine beliebige Symbolleiste erscheint ein Kontextmenü, mit dem sich die Symbolleiste "Formular" einblenden lässt. Darin ist die gewünschte Optionsschaltfläche auszuwählen und an geeigneter Stelle in der Tabelle anzuordnen (s. Bild 3.6e). Durch rechten bzw. linken Mausklick kann die Schaltfläche markiert, der Standardtext durch "exponentiell" ersetzt und das aufgezeichnete Makro namens "exponentiell" zugewiesen werden. Mit der linken Maustaste lässt sich die Optionsschaltfläche aktivieren und das Makro ausführen (s. Bild 3.6e). In gleicher Weise muss nun noch ein zweites Makro "linear" für die unterjährig lineare Verzinsung aufgezeichnet werden, das einer Optionsschaltfläche "linear" zugewiesen wird, um den Ausgangszustand von Bild 3.4e wieder herstellen zu können. Bild 3.6e Excel-Tabelle für Beispiel 3.2 mit unterjährig exponentieller Verzinsung
7 138 Rentenrechnung mit Excel Unterjährlich nachschüssige Rentenzahlungen bei jährlicher Zinszahlung Um die Unterschiede zwischen unterjährlicher und jährlicher Zinszahlung zu erkennen, wird am Beispiel 3.2 mit den Zahlen von Beispiel 3.1 festgehalten. Das Berechnungsprinzip besteht darin, den Rhythmus der Rentenzahlungen durch äquivalente Raten, nämlich jährlich nachschüssige Ersatzrentenraten r e, der Zinszahlung anzupassen. Grundlage ist eine Kopie der Excel-Tabelle von Bild 3.3e mit der zusätzlichen Eingabezeile 8 für die Zahl der unterjährigen Perioden m, die um die Berechnung der Ersatzrentenrate in Zelle C11 erweitert wird. Bei unterjährig linearer Verzinsung ergibt sich: Gl. Zahlenrechnung Excel-Formel in C11 Ergebnis (3.23) 11 r e ,055 2 =B6*(B8+B7*(B8-1)/2) 2.460,50 Mit dieser Ersatzrentenrate gelten die Formeln für jährlich nachschüssige Rentenzahlungen. In die entsprechenden Excel-Funktionen =ZW( ) und =BW( ) in den Zellen C12 bzw. C5 ist der Jahreszinssatz i, die Laufzeit n (in Jahren) und anstelle der tatsächlichen unterjährlichen Rate r die jährliche Ersatzrentenrate r e einzusetzen (s. Bild 3.7e). Bild 3.7e Excel-Tabelle für Beispiel 3.2 mit unterjährig linearer Verzinsung Dasselbe gilt entsprechend bei unterjährig exponentieller Verzinsung. Die Ergebnisse zeigt Bild 3.8e, einer Kopie der Excel-Tabelle von Bild 3.6e (ohne Optionsschaltflächen). Für die Ersatzrentenrate ergibt sich:
8 Rentenrechnung mit Excel 139 Gl. Zahlenrechnung Excel-Formel in C11 Ergebnis (3.26) 0,055 r e 200 =B6*B7/D ,92 0, Ein Vergleich mit den Ergebnissen von Bild 3.6e lässt keine Unterschiede erkennen, weil bei unterjährig exponentieller Verzinsung der Kapitalisierungszeitpunkt der Zinsen ohne Belang für die Kapitalentwicklung ist (vgl. Teil 1, Abschn ). Bild 3.8e Excel-Tabelle für Beispiel 3.2 mit unterjährig exponentieller Verzinsung Unterjährlich vorschüssige Rentenzahlungen bei jährlicher Zinszahlung Die Berechnung von Rentenend- und Rentenbarwert bei periodisch vorschüssigen Ratenzahlungen ist in Spalte B der betreffenden Excel-Tabellen vorgesehen. Das einzige, was sich gegenüber den unterjährlich nachschüssigen Zahlungen (s. Abschn ) ändert, ist die Berechnung der jährlich nachschüssigen Ersatzrentenrate. Bei unterjährig linearer Verzinsung gilt: Gl. Zahlenrechnung Excel-Formel in B11 Ergebnis (3.31) 13 r e ,055 2 =B6*(B8+B7*(B8+1)/2) 2.471,50
9 140 Rentenrechnung mit Excel Dieser Wert ist in den Excel-Funktionen =ZW( ) sowie =BW( ) in den Zellen B12 bzw. B5 als regelmäßige Zahlung Rmz mit negativem Vorzeichen zu berücksichtigen (s. Bild 3.7e). Analog gilt bei unterjährig exponentieller Verzinsung: Gl. Zahlenrechnung Excel-Formel in B11 Ergebnis (3.32) 1, r e 200 0,055 =B6*B7*(1+D7)/D ,92 0, Auch die sich hieraus ergebenden Rentenend- und Rentenbarwerte (s. Bild 3.8e) sind wie bei nachschüssigen Rentenraten identisch mit denen in Bild 3.6e. Zusammenfassend ergeben sich in Auswertung verschiedener Rechnungen für die Beispiele 3.1 und 3.2 folgende Schlussfolgerungen: 1. Die Excel-Tabelle in Bild 3.6e berücksichtigt jährlich nach- und vorschüssige Rentenzahlungen als Sonderfall mit m = 1. Die Art der unterjährigen Verzinsung beeinflusst die Ergebnisse dabei nicht. Demzufolge sind die Tabellen von Bild 3.2e und 3.3e in Bild 3.6e integriert und selbst überflüssig. 2. Die Excel-Tabelle in Bild 3.6e berücksichtigt mit ihren Optionsmöglichkeiten unterjährlich nachschüssige sowie vorschüssige Rentenzahlungen uneingeschränkt, wenn Zins- und Ratenzahlungen periodisch synchron erfolgen. Bei unterjährig linearer Verzinsung und jährlicher Zinszahlung gilt diese Tabelle nur bei m = Bei jährlicher Zinszahlung und unterjährig linearer Zinsrechnung kann auf die Berechnung einer jährlich nachschüssigen Ersatzrentenrate nicht verzichtet werden. Die eigens dafür bereit gestellte Excel-Tabelle in Bild 3.7e ist nur anwendbar, wenn die Laufzeit ganze Jahre umfasst. Dem gegenüber kann bei unterjährig exponentieller Zinsrechnung auf die Berechnung einer jährlichen Ersatzrentenrate generell verzichtet werden; die Excel-Tabelle in Bild 3.6e gilt unabhängig vom Zinszahlungsmodus, und die Excel-Tabelle von Bild 3.8e ist überflüssig! Weitere Anwendungen Beispiel 3.3: Welcher gleichbleibende Geldbetrag müsste monatlich vorschüssig gespart werden, um bei einem Zinssatz von 4,2 % p.a. nach 20 Jahren ein Kapital von anzusammeln?
10 Rentenrechnung mit Excel 141 Bei diesen sogenannten Sparplänen schreiben deutsche Banken und Sparkassen in der Regel alljährlich einfache Zinsen gut. Also ist die Excel-Tabelle von Bild 3.7e zu verwenden, damit zunächst eine jährlich nachschüssige Ersatzrentenrate berechnet werden kann. Für unterjährlich vorschüssige Ratenzahlungen wird diese Ersatzrentenrate in Zelle B11 und der Rentenendwert in Zelle B12 berechnet. Zelle B12 dient als Zielzelle für die Zielwertsuche; der Zielwert beträgt und als veränderliche Zelle wird B6 markiert (s. Bild 3.9e). Als Ergebnis wird iterativ eine monatliche Rate von 267,993 ermittelt. Rechnerisch ergibt sich aus der Monatsrate im ersten Schritt die Ersatzrentenrate r e Gl. Zahlenrechnung Excel-Formel in B11 Ergebnis (3.31) 13 r e 267, ,042 2 =B6*(B8+B7*(B8+1)/2) 3.289,08 und daraus in einem zweiten Schritt der Rentenendwert R 20 : Gl. Zahlenrechnung Excel-Formel in B12 Ergebnis (3.3) 1, R ,08 0,042 =B6*((1+B7)^B9-1)/B Anmerkung: Für monatlich nachschüssige Ratenzahlungen wird die Ersatzrentenrate in Zelle C11 und der zugehörige Rentenendwert in Zelle C12 berechnet. Bild 3.9e Excel-Tabelle für Beispiel 3.3
11 142 Rentenrechnung mit Excel Beispiel 3.4: Welche Rentenrate könnte 15 Jahre lang monatlich nachschüssig ausgezahlt werden, wenn dafür ein Kapitalbetrag von zur Verfügung steht, der mit 3,75 % p.a. verzinst wird? Hierbei handelt es sich um einen sogenannten Auszahl- oder Entnahmeplan, eine Rentenzahlung, für die bei t = 0 ein Anfangskapital als Rentenbarwert R 0 zur Verfügung steht. Zur Excel-Lösung eignet sich bei unterjährig linearer Verzinsung und jährlich nachschüssiger Zinszahlung ebenfalls die Tabelle aus Bild 3.7e. Für die gesuchte nachschüssige Monatsrate in Zelle B6 wird in Zelle C11 die Ersatzrentenrate und in Zelle C5 der Rentenbarwert ermittelt. Also ist in Zelle C5 durch Zielwertsuche ein Wert von vorzugeben und als veränderliche Zelle B6 zu wählen (s. Bild 3.10e). Als Ergebnis wird iterativ eine monatliche Rate von 724,022 errechnet. Die rechnerische Nachprüfung muss wiederum in den folgenden zwei Schritten erfolgen, erstens der Bestimmung der Ersatzrentenrate r e Gl. Zahlenrechnung Excel-Formel in C11 Ergebnis (3.23) 11 r e 724, , =B6*(B8+B7*(B8-1)/2) 8.837,59 und zweitens der Berechnung des Rentenbarwertes R 0 : Gl. Zahlenrechnung Excel-Formel in C5 Ergebnis (3.5) 1, ,59 0,0375 1, R =B6*((1+B7)^B9-1)/B Dank der Möglichkeit von Excel, die Lösung durch Zielwertsuche iterativ zu bestimmen, kann auf die Umstellung von Gl. (3.5) nach r e und von Gl. (3.23) nach r verzichtet werden. Eine Kombination der Beispiele 3.3 und 3.4, also die Verbindung eines Auszahlplanes mit einem vorgeschalteten Sparplan, stellt das grundlegende Finanzierungsmodell für die private oder betriebliche Altersvorsorge dar. Eigens für diesen Zweck könnte man zwei Tabellenrechnungen koppeln, indem man beispielsweise den in Bild 3.7e belegten Tabellenbereich A4:D13 kopiert und zweimal untereinander anordnet (s. Beispiel 3.5 mit Bild 3.11e).
12 Rentenrechnung mit Excel 143 Bild 3.10e Excel-Tabelle für Beispiel 3.4 Beispiel 3.5: Welcher Betrag muss 20 Jahre lang monatlich vorschüssig eingezahlt werden (Sparplan), wenn daran anschließend eine 15-jährige monatlich nachschüssige Rente von 500 ausgezahlt werden soll (Auszahlplan). Für den gesamten Zeitraum sei ein Festzinssatz von 4 % p.a. (unterjährig linear, jährliche Zahlung) vereinbart. Der auszuzahlenden nachschüssigen Rente, deren Berechnung im unteren Tabellenbereich von Bild 3.11e erfolgt, kann in Zelle C16 eindeutig ein Rentenbarwert von ,35 zugeordnet werden. (Zwecks besserer Übersichtlichkeit sind die nicht benötigten Zellen gelöscht worden.) Der erste Teil der Aufgabe, das Ansparen, wird im oberen Tabellenbereich von Bild 3.11e ausgeführt. Für die noch unbekannte Rate r ist in Zelle B6 zunächst ein beliebiger Wert einzutragen, worauf in Zelle B12 der zugehörige Rentenendwert R 20 erscheint. Dieser Wert muss aber identisch sein mit dem Barwert für den Auszahlplan. Man könnte nun (mit Zielwertsuche für Zelle B12) den Barwert für den Auszahlplan als Zielwert vorgeben und die zugehörige Sparrate bestimmen. Einfacher für die Eingabe ist die Definition einer gesonderten Zielzelle, mit der die beiden Zahlungsvorgänge direkt gekoppelt werden. Die Kopplung wird in Zelle C14 realisiert, indem die Differenz von Renten-
13 144 Rentenrechnung mit Excel endwert des Sparplanes und Rentenbarwert des Auszahlplanes mittels der Excel-Formel =B12 C16 gebildet und mit Zielwertsuche der Zielwert 0 als Vorgabe für die veränderliche Zelle B6 eingegeben wird (s. Bild 3.11e). Als Resultat ergibt sich eine Sparrate von r = 186,08. Bild 3.11e Excel-Tabelle für Beispiel 3.5
14 Rentenrechnung mit Excel 145 Beispiel 3.6: Ein längerfristiger Sparplan mit monatlich vorschüssigen Raten von 100 ist am Ende der Laufzeit von zehn Jahren mit einem zusätzlichen Bonus ausgestattet (sog. Prämiensparen). Wie hoch ist das Endkapital, wenn jährlich nachschüssig 3% Zinseszinsen gezahlt werden und der Bonus am Ende 10% der insgesamt eingezahlten Raten beträgt, und wie hoch ist der effektive Jahreszins? Als Rentenendwert (ohne Bonus) ergibt sich mit der Excel-Tabelle von Bild 3.7e ein Wert von ,20. In einer Kopie dieser Tabelle (s. Bild 3.12e) kann für den Bonus eine zusätzliche Zelle und für den gesamten Endwert (mit Bonus) eine weitere Zelle mit folgender Berechnung eingerichtet werden: Gl. Zahlenrechnung Excel-Formel in B14 Ergebnis K ,20 0, =B12+D9*B6*B8*B ,20 Bild 3.12e Excel-Tabelle für Beispiel 3.6 Der Effektivzinssatz ist derjenige Jahreszins, mit dem bei alleiniger Zahlung der monatlichen Raten, also ohne Berücksichtigung des Bonus, ein Endwert von ,20 erzielt wird. Weil hierbei unterjährig exponentielle Verzinsung zu berücksichtigen ist, muss die Excel-Tabelle von Bild 3.8e benutzt werden. Bei Vorgabe des Endwertes als Zielwert in Zelle B14 ergibt sich mit Zielwertsuche in Abhängigkeit von der veränderlichen Zelle B7 ein effektiver Jahreszins von 4,60 % (s. Bild 3.13e).
15 146 Rentenrechnung mit Excel Bild 3.13e Bestimmung des Effektivzinssatzes für Beispiel 3.6 Ewige Renten Ein Auszahlplan kann so angelegt sein, dass die Rentenrate den Zinsertrag nicht übersteigt. Dann bleibt das Kapital in seiner anfänglichen Höhe R 0 unverändert (sogenannte "kapitalerhaltende" Rente). Für den Fall, dass die Rentenrate gar unter dem Zinsertrag liegt, würde der Auszahlplan zugleich einen Sparplan für die nicht ausgezahlten Zinsanteile enthalten ("kapitalerhöhende" Rente). Unveränderte Bedingungen vorausgesetzt, d. h. gleichbleibender Zinssatz und konstante Rentenrate, handelt es sich theoretisch um ewige Renten, auch wenn die Laufzeit praktisch jederzeit abgebrochen werden kann. Im umgekehrten Sinne können zeitlich langfristige Zahlungsvorgänge, wie beispielsweise die Pacht für Immobilien, als ewige Rente angesehen und mit einem entsprechenden Barwert bewertet werden. Beispiel 3.7: Welche ewige Rente kann monatlich nachschüssig ausgezahlt werden, wenn dafür ein Kapitalbetrag von zur Verfügung steht, der mit 3,75 % p.a. verzinst wird? Es wird wiederum unterstellt, dass die Zinsen unterjährig linear berechnet und jährlich nachschüssig kapitalisiert werden. Deshalb dient für dieses Beispiel die Excel-Tabelle von Bild 3.7e als Grundlage und wird innerhalb der Excel-Mappe gesondert kopiert und mit der Überschrift "Ewige Rentenzahlungen" versehen (s. Bild 3.14e).
16 Rentenrechnung mit Excel 147 Bild 3.14e Excel-Tabelle für Beispiel 3.7 Die Berechnung der Rentenendwerte entfällt. Die Barwerte in Zelle C5 bzw. B5 sind von der jährlichen Ersatzrentenrate, die gleich dem jährlichen Zinsbetrag ist, gemäß Gl. (3.12) zu bilden. Die Transformationsbeziehungen zwischen der fiktiven Ersatzrentenrate r e und der tatsächlichen unterjährlich nach- oder vorschüssigen Zahlung r Rechnungen, die innerhalb der Jahresperiode gelten und von der Laufzeit unabhängig sind bleiben unverändert. Die Lösung findet man durch Zielwertsuche für den Barwert in Zelle C5, da die Rentenzahlungen monatlich nachschüssig erfolgen sollen. (Bei monatlich vorschüssigen Zahlungen wäre B5 die Zielzelle.) Als Zielwert ist und als veränderliche Zelle B6 einzutragen. Durch Iteration stellt sich eine Rentenrate von r = 307,22 ein (s. Bild 3.14e). Bei monatlich vorschüssigen Rentenzahlungen würde die Rate r = 306,28 betragen, was aus derselben jährlich nachschüssige Ersatzrentenrate resultiert. Dieses Ergebnis ist mit der Excel-Tabelle von Bild 3.14e leicht zu ermitteln und soll durch progressive Rechnung nachgeprüft werden. Aus r folgt Gl. Zahlenrechnung Excel-Formel in C11 Ergebnis (3.31) 306, ,0375 6,5 r =B6*(B8+B7*(B8-1)/2) e und daraus der Rentenbarwert
17 148 Rentenrechnung mit Excel Gl. Zahlenrechnung Excel-Formel in C5 Ergebnis (3.12) R 0 =C11/C ,0375 Für langfristige Rentenzahlungen ist von Interesse, wie sich der Rentenbarwert dem der ewigen Rente nähert. Dies ist gleichbedeutend mit der Frage, inwieweit zukünftige Zahlungen aus gegenwärtiger Sicht ins Gewicht fallen. Beispiel 3.8: Es ist tabellarisch und grafisch darzustellen, wie sich der Rentenbarwert einer jährlich nachschüssigen Rente in Abhängigkeit von Laufzeit n und Zinssatz i an den Barwert der ewigen Rente annähert. Unter Berücksichtigung von Gln. (3.3) für R 0 und Gl. (3.12) für den Barwert der ewigen Rente R 0 ew ergibt sich R0 Rew 0 n 1 i 1 1 i n i n R0 und lim 1. (3.11a) n R ew Für i = 10 % und n = 50 Jahre würde sich beispielsweise ergeben: Gl. Zahlenrechnung Excel-Formel in E9 Ergebnis R0 1 ew 1 R 1 0,10 =1-(1+E$3)^(-$A9) 0,9915 (3.11a) 50 0 D. h. alle Ratenzahlungen, die mehr als 50 Jahre später erfolgen, gehen in den Rentenbarwert mit weniger als 1 % ein. Die Excel-Tabelle und das daraus erstellte Diagramm zeigt Bild 3.15e. Die Excel- Formel von Zelle E9, in der die Kopfzeile 3 sowie die Kopfspalte A mit $-Zeichen fixiert sind, kann in den gesamten Tabellenbereich B4:G14 kopiert werden. Aus den Ergebnissen ist zu erkennen, dass sich der Rentenbarwert umso früher an den Barwert der ewigen Rente annähert, je höher der Zinssatz ist. 0
18 Rentenrechnung mit Excel 149 Bild 3.15e Excel-Tabelle für Beispiel Annuitätenmethode der Investitionsrechnung Beispiel 3.9: Wie hoch muss die jährliche Überschussannuität für die Investition in Beispiel 2.1 mindestens sein, damit diese gerade noch als vorteilhaft eingeschätzt werden kann? Welcher äquivalenten Annuität entsprechen die im Beispiel berücksichtigten Periodenüberschüsse? Zur Lösung dieser Aufgabe muss die Anfangsauszahlung A 0 in Höhe von über die beabsichtigte Nutzungsdauer des Investitionsobjekts von fünf Jahren "verrentet", d. h. in äquivalente jährlich nachschüssige Auszahlungen A t (t = 1, 2,..., 5) von jeweils
19 150 Rentenrechnung mit Excel gleicher Höhe umgewandelt werden. Das geschieht durch Multiplikation mit dem Annuitätenfaktor auf Basis des Kalkulationszinssatzes i = 6 %: Gl. Zahlenrechnung Excel-Funktion in B10 Ergebnis 0,06 1,065 (3.10) w 5 =RMZ(B5-1;G3;-1) 0, ,065 1 (3.8) A t , = B4*B10 in D Für diese Rechnung wird eine Kopie der Tabelle von Bild 2.1e mit der Überschrift "Annuitätenmethode" versehen und um einige Elemente erweitert (s. Bild 3.16e). Bild 3.16e Excel-Tabelle für Beispiel 3.9 Die Annuität der Einzahlungen E t = P, die sich aus dem Nettobarwert der Periodenüberschüsse P t ergibt, muss diesen Wert A t übersteigen, damit die Vorteilhaftigkeit der Investition gegeben ist: Gl. Zahlenrechnung Excel-Funktion in B12 Ergebnis (3.8) E , =NBW(B5-1;C4:G4)*B t Der Nettobarwert der Überschüsse kann in Zelle B12 neu berechnet oder aus Zelle B7 übernommen werden. Mit ist die Überschussannuität größer als die Annuität der Anfangsauszahlung und die Vorteilhaftigkeitsbedingung somit erfüllt. Die gleiche Aussage, ausgedrückt als Differenz zwischen jährlicher Ein- und Auszahlungsannuität, ergibt sich, wenn der Kapitalwert in eine jährlich nachschüssige Rente, die so genannte Kapitalwertannuität, umgewandelt wird:
20 Rentenrechnung mit Excel 151 Gl. Zahlenrechnung Excel-Formel in G12 Ergebnis (3.8) E A , = B8*B t t Daraus ist ersichtlich, dass die Ergebnisse von Annuitäten- und Kapitalwertmethode übereinstimmen und sich nur um den Faktor w n unterscheiden. Faktoren für die Rentenrechnung Beispiel 3.10: Für die wichtigsten Faktoren der Zinseszins- und Rentenrechnung insbesondere zur Berechnung des Rentenend- und Rentenbarwertes sowie der Rentenrate ist eine Tabelle zu erstellen, aus der diese Faktoren in Abhängigkeit vom Zinssatz und von der Laufzeit zu ersehen sind. Die Bereitstellung verschiedener Faktoren der Rentenrechnung erleichtert die sofortige Ermittlung des Rentenendwertes, des Rentenbarwertes oder der Rentenrate. Deshalb e- xistieren in der Fachliteratur 66 entsprechende Tabellenwerke. So wurde im vorhergehenden Beispiel 3.9 die Verwendung des Kapitalwiedergewinnungs- oder Annuitätenfaktors w n für Investitionsentscheidungen demonstriert. Weitere praktische Anwendungen finden sich etwa im Rahmen der Kredit- und Tilgungsrechnung. Die Berechnung der wichtigsten Faktoren (Aufzinsungsfaktor q n, Rentenendwertfaktor s n, Rentenbarwertfaktor b n und Annuitätenfaktor w n ) wird hier zunächst für n = 3 Jahre und i = 6 % gezeigt: Gl. Zahlenrechnung Excel-Formel Excel-Funktion Zelle Ergebnis (1.17) q 3 ( 1 0,06) 3 =(1+D4)^B6 =POTENZ(1+D4;B6) A10 1, (3.4) 1, s 3 =(A10-1)/D4 =ZW(D4;B6;-1) B10 3, ,06 (3.6) (3.10) 3, b 3 1, =B10/A10 =BW(D4;B6;-1) C10 2, w 3 2, =1/C10 =RMZ(D4;B6;-1) D10 0, vgl. Däumler (1989)
21 152 Rentenrechnung mit Excel Anstelle der Formeln können zur Berechnung der Faktoren auch die entsprechenden Excel-Formeln herangezogen werden. Die zugehörige Excel-Tabelle zeigt Bild 3.17e. Diese Tabelle ermöglicht die Berechnung aller dieser Faktoren auch für unterjährige Perioden, wenn als Periodenzinssatz der konforme unterjährige Zinssatz gemäß Gl. (1.24) verwendet und somit unterjährig exponentielle Verzinsung zu Grunde gelegt wird. Bild 3.17e Excel-Tabelle für Beispiel 3.10
SS 2014 Torsten Schreiber
SS 2014 Torsten Schreiber 221 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode eingezahlt, so spricht
SS 2014 Torsten Schreiber
SS 2014 Torsten Schreiber 204 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Bei der Rentenrechnung geht es um aus einem angesparten Kapital bzw. um um das Kapital aufzubauen, die innerhalb
Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung
4.2 Grundbegriffe der Finanzmathematik Im weiteren werden die folgenden Bezeichnungen benutzt: K 0 Anfangskapital p Zinsfuß pro Zeiteinheit (in %) d = p Zinssatz pro Zeiteinheit 100 q = 1+d Aufzinsungsfaktor
Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen
1 3.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind
SS 2014 Torsten Schreiber
SS 2014 Torsten Schreiber 193 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Bei einer Abschreibung werden eines Gutes während der Nutzungsdauer festgehalten. Diese Beträge stellen dar und dadurch
Zinsen, Zinseszins, Rentenrechnung und Tilgung
Zinsen, Zinseszins, Rentenrechnung und Tilgung 1. Zinsen, Zinseszins 2. Rentenrechnung 3. Tilgung Nevzat Ates, Birgit Jacobs Zinsrechnen mit dem Dreisatz 1 Zinsen Zinsrechnen mit den Formeln Zinseszins
Mathematik 1 für Wirtschaftsinformatik
Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Äquivalenzprinzip der Finanzmathematik Das Äquivalenzprinzip der Finanzmathematik für Vergleich von Zahlungen, welche
Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1
Tutorium zur Mathematik WS 2004/2005) - Finanzmathematik Seite 1 Finanzmathematik 1.1 Prozentrechnung K Grundwert Basis, Bezugsgröße) p Prozentfuß i Prozentsatz i = p 100 ) Z Prozentwert Z = K i bzw. Z
Finanzmathematik. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.
Finanzmathematik Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.de Das Tilgungsrechnen Für Kredite gibt es drei unterschiedliche
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2015/16 Hochschule Augsburg Rentenrechnung Definition Rente: Zahlungsstrom mit Zahlungen in gleichen
Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen
5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei
n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)
3. Finanzmathematik 3.1. Zinsrechnung 3.1.1. Grundbegriffe K... Kapital (caput - das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen
Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens
in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Unterjährige Raten und jährliche Verzinsung Aufteilung der Zinsperiode in mehrere gleich
SS 2014 Torsten Schreiber
SS 2014 Torsten Schreiber 239 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Durch die wird ein Zahlungsstrom beschrieben, der zur Rückführung eines geliehenen Geldbetrags dient. Der zu zahlende
Finanzmathematik - Grundlagen
Finanzmathematik - Grundlagen Formelsammlung Zugelassene Formelsammlung zur Klausur im Sommersemester 2005 Marco Paatrifon Institut für Statistik und Mathematische Wirtschaftstheorie Zinsrechnung Symbole
Finanzmathematik mit Excel
Finanzmathematik mit Excel Seminar zur Finanzwirtschaft im Wintersemester 2014/15 Dipl.-Math. Timo Greggers B.Sc. VWL Janina Mews M.Sc. BWL Dienstag 14.15-15.45 (Beginn: 28.10.2014) PC-Labor (Walter-Seelig-Platz
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Grundlagentest Ungleichungen! Testfrage: Ungleichungen 1 Die Lösungsmenge
b) Wie hoch ist der Betrag nach Abschluss eines Studiums von sechs Jahren?
Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 [email protected] Übungen zur Mathematik für Prüfungskandidaten und Prüfungskandidatinnen Unterjährliche
Wirtschaftsmathematik für International Management (BA)
Wirtschaftsmathematik für International Management (BA) Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Lineare Algebra 4 Lineare Programme 5 Folgen und Reihen 6
Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. [email protected] http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.
Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Finanzmathematik 1 11 Folgen und Reihen 1 111 Folgen allgemein 1 112
, und wie zuvor. 2. Einmalanlage mehrjährig mit festen Zinssatz (Kapitalentwicklung): mit Endkapital, Anfangskapital und 1 %
Themenerläuterung Das Thema verlangt von dir die Berechnung von Zinsen bzw. Zinseszinsen, Anfangskapital, Endkapital und Sparraten. In seltenen Fällen wird auch einmal die Berechnung eines Kleinkredites
Professionelle Seminare im Bereich MS-Office
Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion
Definition Gegenwartswert (Barwert) Der Wert des Geldes ist, über den man in der Gegenwart verfügen kann, ist grösser als der Wert des Geldes, den man in der Zukunft erhalten/zahlen wird. Diskontierung
Rentenrechnung 5. unterjhrige Verzinsung mit Zinseszins K n. q m n =K 0. N=m n N= m=anzahl der Zinsperioden n=laufzeit. aa) K 10
Rentenrechnung 5 Kai Schiemenz Finanzmathematik Ihrig/Pflaumer Oldenburg Verlag 50.Am 0.0.990 wurde ein Sparkonto von 000 eröffnet. Das Guthaben wird vierteljährlich mit % verzinst. a.wie hoch ist das
AZK 1- Freistil. Der Dialog "Arbeitszeitkonten" Grundsätzliches zum Dialog "Arbeitszeitkonten"
AZK 1- Freistil Nur bei Bedarf werden dafür gekennzeichnete Lohnbestandteile (Stundenzahl und Stundensatz) zwischen dem aktuellen Bruttolohnjournal und dem AZK ausgetauscht. Das Ansparen und das Auszahlen
Excel Pivot-Tabellen 2010 effektiv
7.2 Berechnete Felder Falls in der Datenquelle die Zahlen nicht in der Form vorliegen wie Sie diese benötigen, können Sie die gewünschten Ergebnisse mit Formeln berechnen. Dazu erzeugen Sie ein berechnetes
Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S;
1 5.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit
Aufgabe 5 Excel 2013 (Fortgeschrittene)
- 1 - Aufgabe 5 Excel 2013 (Fortgeschrittene) 1. Starten Sie Excel und geben die Tabelle Hypothekenanalyse ein. Achten Sie bitte darauf, dass in den Zellen B10 und C11:G21 noch keine Angaben erfolgen.
Beschreibung der einzelnen Berechnungsarten
Beschreibung der einzelnen Berechnungsarten 1.0 Historische Wertentwicklungen 1.1 Berechnung einer Einzelanlage in Prozent Die Berechnung der Wertentwicklung erfolgt nach den Vorgaben des BVI: Die Berechnung
Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster
Es gibt in Excel unter anderem die so genannten Suchfunktionen / Matrixfunktionen Damit können Sie Werte innerhalb eines bestimmten Bereichs suchen. Als Beispiel möchte ich die Funktion Sverweis zeigen.
Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt
Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Finanzmathematik Literatur Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band 1, 17. Auflage,
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
Aufgabensammlung Grundlagen der Finanzmathematik
Aufgabensammlung Grundlagen der Finanzmathematik Marco Papatrifon Zi.2321 Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg 1 Zinsrechnung Aufgabe 1 Fred überweist 6000 auf
Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre
Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 3, 4, 5 und 6, SS 2012 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Einsendearbeit 2 (SS 2012)
5. Finanzwirtschaft 5.1 Inhalt und Aufgaben
5. Finanzwirtschaft 5.1 Inhalt und Aufgaben Die Funktionalbereiche der Unternehung und die Eingliederung der Finanzwirtschaft: Finanzwirtschaft Beschaffung Produktion Absatz Märkte für Produktionsfaktoren
Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe 8.1 Ein Auto wird auf Leasingbasis zu folgenden Bedingungen erworben:
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 22, Tel. 394 [email protected] Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe
Doing Economics with the Computer Sommersemester 2002. Excel Solver 1
Universität Bern Kurt Schmidheiny / Manuel Wälti Doing Economics with the Computer Sommersemester 2002 Excel Solver 1 Mit dem Solver unterstützt Excel eine Funktion, mit der u.a. komplex verschachtelte
Übungsaufgaben zur Einführung in die Finanzmathematik. Dr. Sikandar Siddiqui
Übungsaufgaben zur Einführung in die Finanzmathematik Übungsaufgaben Aufgabe 1: A hat B am 1.1.1995 einen Betrag von EUR 65,- geliehen. B verpflichtet sich, den geliehenen Betrag mit 7% einfach zu verzinsen
Finanzwirtschaft. Teil II: Bewertung
Sparpläne und Kreditverträge 1 Finanzwirtschaft Teil II: Bewertung Sparpläne und Kreditverträge Agenda Sparpläne und Kreditverträge 2 Endliche Laufzeit Unendliche Laufzeit Zusammenfassung Sparpläne und
3.3. Tilgungsrechnung
3.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit Es
HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN
HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN Zinsen haben im täglichen Geschäftsleben große Bedeutung und somit auch die eigentliche Zinsrechnung, z.b: - Wenn Sie Ihre Rechnungen zu spät
Hinweise zum Ausfüllen der Zeiterfassung
Hinweise zum Ausfüllen der Zeiterfassung Generelle Hinweise zu Excel Ab Version VSA 4.50 wird die dezimale Schreibweise für Zeiteingaben verwendet. Die Zeiterfassung, die Sie erhalten haben wurde für Excel
Ermittlung von Tantiemen mittels Excel-Zielwertsuche für Bemessungsgrundlagen nach Gewerbesteuer und nach der Tantieme selbst
Newsletter März 2005 Ermittlung von Tantiemen mittels Excel-Zielwertsuche für Bemessungsgrundlagen nach Gewerbesteuer und nach der Tantieme selbst Die Ermittlung von Tantiemen, deren Bemessungsgrundlage
Zinseszins- und Rentenrechnung
Zinseszins- und Rentenrechnung 1 Berechnen Sie den Zeitpunkt, an dem sich das Einlagekapital K bei a) jährlicher b) monatlicher c) stetiger Verzinsung verdoppelt hat, wobei i der jährliche nominelle Zinssatz
Erweiterung der Aufgabe. Die Notenberechnung soll nicht nur für einen Schüler, sondern für bis zu 35 Schüler gehen:
VBA Programmierung mit Excel Schleifen 1/6 Erweiterung der Aufgabe Die Notenberechnung soll nicht nur für einen Schüler, sondern für bis zu 35 Schüler gehen: Es müssen also 11 (B L) x 35 = 385 Zellen berücksichtigt
Programm GArtenlisten. Computerhinweise
Programm GArtenlisten Computerhinweise Liebe/r Vogelbeobachter/in, anbei haben wir Ihnen ein paar wichtige Tipps für ein reibungsloses Funktionieren der mitgelieferten Ergebnisdatei auf Ihrem Computer
Banken und Börsen, Kurs 41520 (Inhaltlicher Bezug: KE 1)
1 Lösungshinweise zur Einsendearbeit 1: SS 2012 Banken und Börsen, Kurs 41520 (Inhaltlicher Bezug: KE 1) Fristentransformation 50 Punkte Die Bank B gibt im Zeitpunkt t = 0 einen Kredit mit einer Laufzeit
Anwendungen in der elementaren Zinsrechnung. Kapitalwert zum Zeitpunkt j (nach j Zinsperioden) Bsp. 1. 0 1 2 3 4 Zeitpunkte
Anwendungen in der elementaren Zinsrechnung Zinssatz (Rendite) je Zinsperiode i = p% p= Prozentpunkte Zinsfaktor (Aufzinsungsfaktor) q =1+i Diskontfaktor (Abzinsungsfaktor) v =1/(1 + i) =q 1 Laufzeit n
Finanzmathematik. Zinsrechnung I 1.)
Finanzmathematik Zinsrechnung I 1.) Ein Vater leiht seinem Sohn am 1.1. eines Jahres 1.000.- DM. Es wird vereinbart, dass der Sohn bei einfacher Verzinsung von 8% das Kapital einschließlich der Zinsen
Zeichen bei Zahlen entschlüsseln
Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren
Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.
Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines
Hypothekendarlehen. Festlegungen im Kreditvertrag. Beispiel 1. Beispiel 1 / Lösung 16.04.2012. Finanzmathematik HYPOTHEKENDARLEHEN
Finanzmathematik Kapitel 3 Tilgungsrechnung Prof. Dr. Harald Löwe Sommersemester 2012 Abschnitt 1 HYPOTHEKENDARLEHEN Festlegungen im Kreditvertrag Der Kreditvertrag legt u.a. folgende Daten fest Kreditsumme
Fakultät für Wirtschaftswissenschaft
Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 3, 4, 5 und 6, SS 2012 1 Fakultät für Wirtschaftswissenschaft 2. Einsendearbeit zum Kurs 00091: Kurseinheit: Finanzierungs- und entscheidungstheoretische
Tilgungsplan im NTCS Controlling
im Der bietet die Möglichkeit, neue oder bestehende Darlehen und Kredite in übersichtlicher Form zu erfassen. Ebenso können gewährte Darlehen dargestellt werden. Neue Darlehen und Kredite Der Einstieg
R. Brinkmann http://brinkmann-du.de Seite 1 23.02.2013
R. Brinkmann http://brinkmann-du.de Seite 1 23.02.2013 SEK I Lösungen zur Zinseszinsrechnung I Ergebnisse und ausführliche Lösungen zum nblatt SEK I Rechnen mit Zinseszinsen I. Zinseszins Rechenaufgaben
Excel 2010 Kommentare einfügen
EX.015, Version 1.0 25.02.2014 Kurzanleitung Excel 2010 Kommentare einfügen Beim Arbeiten mit Tabellen sind Kommentare ein nützliches Hilfsmittel, sei es, um anderen Personen Hinweise zu Zellinhalten zu
Mediumwechsel - VR-NetWorld Software
Mediumwechsel - VR-NetWorld Software Die personalisierte VR-NetWorld-Card wird mit einem festen Laufzeitende ausgeliefert. Am Ende der Laufzeit müssen Sie die bestehende VR-NetWorld-Card gegen eine neue
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@th-koeln.
Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 [email protected] Übungen zur Vorlesung QM2 Nachschüssige Verzinsung Aufgabe
Inhaltsverzeichnis... 1. Was sind Funktionen?... 2. Bestandteile einer Funktion... 2. Beispiele für einfache Funktionen... 2
Inhaltsverzeichnis Inhaltsverzeichnis... 1 Was sind Funktionen?... 2 Bestandteile einer Funktion... 2 Beispiele für einfache Funktionen... 2 Als Tabelle definierten Zellbereich schnell auswerten... 3 Die
Berechnung der Erhöhung der Durchschnittsprämien
Wolfram Fischer Berechnung der Erhöhung der Durchschnittsprämien Oktober 2004 1 Zusammenfassung Zur Berechnung der Durchschnittsprämien wird das gesamte gemeldete Prämienvolumen Zusammenfassung durch die
Hilfe zur Urlaubsplanung und Zeiterfassung
Hilfe zur Urlaubsplanung und Zeiterfassung Urlaubs- und Arbeitsplanung: Mit der Urlaubs- und Arbeitsplanung kann jeder Mitarbeiter in Coffee seine Zeiten eintragen. Die Eintragung kann mit dem Status anfragen,
Zinsrechner. Bedienungsanleitung
Zinsrechner Bedienungsanleitung Medcontroller Dragonerstraße 35 30163 Hannover Telefon: 0511 397 0990 [email protected] www.medcontroller.de Inhaltsverzeichnis Hintergrund... 2 Nutzungsbedingungen
Excel 2013. Fortgeschrittene Techniken. Peter Wies. 1. Ausgabe, März 2013 EX2013F
Excel 2013 Peter Wies 1. Ausgabe, März 2013 Fortgeschrittene Techniken EX2013F 15 Excel 2013 - Fortgeschrittene Techniken 15 Spezielle Diagrammbearbeitung In diesem Kapitel erfahren Sie wie Sie die Wert-
2. Einrichtung der ODBC-Schnittstelle aus orgamax (für 32-bit-Anwendungen)
1. Einführung: Über den ODBC-Zugriff können Sie bestimmte Daten aus Ihren orgamax-mandanten in anderen Anwendungen (beispielsweise Microsoft Excel oder Microsoft Access) einlesen. Dies bietet sich beispielsweise
Handbuch ECDL 2003 Modul 4: Tabellenkalkulation Formatierungen von Zahlen- und Datumswerten
Handbuch ECDL 2003 Modul 4: Tabellenkalkulation Formatierungen von Zahlen- und Datumswerten Dateiname: ecdl4_05_01_documentation.doc Speicherdatum: 26.11.2004 ECDL 2003 Modul 4 Tabellenkalkulation - Formatierungen
.DXIPlQQLVFKHV5HFKQHQ =LQVUHFKQHQ. Für jeden Kaufmann unentbehrlich und vielseitig einsetzbar ist die Zinsrechnung. :DVVLQG=LQVHQ"
=LQVUHFKQHQ Für jeden Kaufmann unentbehrlich und vielseitig einsetzbar ist die Zinsrechnung. :DVVLQG=LQVHQ" =LQV =LQVVDW]=LQVIX =HLW -DKU 0RQDW der Preis für die Nutzung eines Kapitals während einer bestimmten
Lösungshinweise zur Einsendearbeit 2 SS 2011
Lösungshinweise zur Einsendearbeit 2 zum Kurs 41500, Finanzwirtschaft: Grundlagen, SS2011 1 Lösungshinweise zur Einsendearbeit 2 SS 2011 Finanzwirtschaft: Grundlagen, Kurs 41500 Aufgabe Finanzierungsbeziehungen
Finanzmathematik mit Excel 1
Finanzmathematik mit Excel 1 Einfache Zinsrechnung 2 Folgende Begriffe werden benötigt: Begriff Definition Kapital Geldbetrag, der angelegt oder einem anderen überlassen wird. Laufzeit Dauer der Überlassung.
Übung 2 Erfolgsrechnung
Controlling in deutschen Unternehmen Übung 2 Erfolgsrechnung Dipl.-Kfm. Florian Böckling, MBA Dipl.-Kfm. Franz Zinser, MBA Lehrstuhl für Controlling Prof. Dr. Louis Velthuis Johannes Gutenberg-Universität
FlowFact Alle Versionen
Training FlowFact Alle Versionen Stand: 29.09.2005 Rechnung schreiben Einführung Wie Sie inzwischen wissen, können die unterschiedlichsten Daten über verknüpfte Fenster miteinander verbunden werden. Für
Jedes Jahr mehr Zinsen!
Aufgabe 21 Zinsen erhält man für gewöhnlich nur für ein Jahr. Wenn man aber schon vorher an Erspartes möchte, muss man die Tageszinsen ermitteln. Erstelle eine Tabelle, die nach der Eingabe von Kapital,
Übungsaufgaben Tilgungsrechnung
1 Zusatzmaterialien zu Finanz- und Wirtschaftsmathematik im Unterricht, Band 1 Übungsaufgaben Tilgungsrechnung Überarbeitungsstand: 1.März 2016 Die grundlegenden Ideen der folgenden Aufgaben beruhen auf
Kostenstellen verwalten. Tipps & Tricks
Tipps & Tricks INHALT SEITE 1.1 Kostenstellen erstellen 3 13 1.3 Zugriffsberechtigungen überprüfen 30 2 1.1 Kostenstellen erstellen Mein Profil 3 1.1 Kostenstellen erstellen Kostenstelle(n) verwalten 4
Senkung des technischen Zinssatzes und des Umwandlungssatzes
Senkung des technischen Zinssatzes und des Umwandlungssatzes Was ist ein Umwandlungssatz? Die PKE führt für jede versicherte Person ein individuelles Konto. Diesem werden die Beiträge, allfällige Einlagen
Aufgabe 6 Excel 2013 (Fortgeschrittene) Musterlösung
- 1 - Aufgabe 6 Excel 2013 (Fortgeschrittene) Musterlösung 1. Die Tabelle mit den Werten und Gewichten der Gegenstände, sowie die Spalte mit der Anzahl ist vorgegeben und braucht nur eingegeben zu werden
8. Berechnung der kalkulatorischen Zinsen
8. Berechnung der kalkulatorischen Zinsen 8.1. Allgemeines In der laufenden Rechnung werden im Konto 322.00 Zinsen nur die ermittelten Fremdkapitalzinsen erfasst. Sobald aber eine Betriebsabrechnung erstellt
Prozentrechnung. Klaus : = Karin : =
Prozentrechnung Klaus erzählt, dass bei der letzten Mathe-Arbeit 6 seiner Mitschüler die Note gut erhalten hätten. Seine Schwester Karin hat auch eine Arbeit zurück bekommen. In ihrer Klasse haben sogar
Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig)
(K n + R n = ln n = ln q 1 K 0 + R q 1 (K n q + R q 1 K 0 q + R q 1 ) / ln(q) (nachschüssig) ) / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. Tilgungsrechnung
1. So einfach ist der Excel-Bildschirm
1. So einfach ist der Excel-Bildschirm So sieht Excel aus, wenn ich es gestartet habe. Leider ist bei vielen Symbolen in der Menüleiste nicht auf den ersten Blick zu erkennen, welche Funktion sie übernehmen.
3. GLIEDERUNG. Aufgabe:
3. GLIEDERUNG Aufgabe: In der Praxis ist es für einen Ausdruck, der nicht alle Detaildaten enthält, häufig notwendig, Zeilen oder Spalten einer Tabelle auszublenden. Auch eine übersichtlichere Darstellung
Neues in Invest for Excel 3.5
Neues in Invest for Excel 3.5 Excel 2007 Symbolleisten...2 Russische Sprache...3 Mehr Zeilen in der Tabelle Kennzahlen...3 Geänderte Definition des Profitabiliätsindex (PI)...3 Rentabilitätsrechnung auf
Textfunktionen. Die Tabellenfunktion LINKS. Zellinhalte extrahieren
Kapitel 5 201 Die sind dann sehr wertvoll, wenn Sie Texte in Tabellen bearbeiten oder anpassen möchten. Oft müssen vor allem Daten, die aus Fremdsystemen kommen, in Excel umgewandelt und in eine besser
Web-Kürzel. Krishna Tateneni Yves Arrouye Deutsche Übersetzung: Stefan Winter
Krishna Tateneni Yves Arrouye Deutsche Übersetzung: Stefan Winter 2 Inhaltsverzeichnis 1 Web-Kürzel 4 1.1 Einführung.......................................... 4 1.2 Web-Kürzel.........................................
Suche schlecht beschriftete Bilder mit Eigenen Abfragen
Suche schlecht beschriftete Bilder mit Eigenen Abfragen Ist die Bilderdatenbank über einen längeren Zeitraum in Benutzung, so steigt die Wahrscheinlichkeit für schlecht beschriftete Bilder 1. Insbesondere
Computeria Rorschach Mit Excel Diagramme erstellen
Mit Excel Diagramme erstellen 25.12.2010 Roland Liebing Mit Excel Diagramme erstellen Diagramme können Zahlenwerte veranschaulichen, das heisst, mit Hilfe eines Diagramms können Zahlen besser miteinander
Noten ausrechnen mit Excel/Tabellenkalkulation. 1) Individuellen Notenschlüssel/Punkteschlüssel erstellen
Noten ausrechnen mit Excel/Tabellenkalkulation online unter: www.lehrerfreund.de/in/schule/1s/notenschluessel-excel Dies ist eine Einführung in die Funktionen von Excel, die Sie brauchen, um Noten und
Zwischenablage (Bilder, Texte,...)
Zwischenablage was ist das? Informationen über. die Bedeutung der Windows-Zwischenablage Kopieren und Einfügen mit der Zwischenablage Vermeiden von Fehlern beim Arbeiten mit der Zwischenablage Bei diesen
Klassische Finanzmathematik (Abschnitt KF.1 )
Die Finanzatheatik ist eine Disziplin der angewandten Matheatik, die sich insbesondere it der Analyse und de Vergleich von Zahlungsströen und die theoretisch Erittlung des Geldwertes von Finanzprodukten.
2. Ein Unternehmer muss einen Kredit zu 8,5 % aufnehmen. Nach einem Jahr zahlt er 1275 Zinsen. Wie hoch ist der Kredit?
Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Zinsrechnung 1. Wie viel Zinsen sind
Gewinnvergleichsrechnung
Gewinnvergleichsrechnung Die Gewinnvergleichsrechnung stellt eine Erweiterung der Kostenvergleichsrechnung durch Einbeziehung der Erträge dar, die - im Gegensatz zu der Annahme bei der Kostenvergleichsrechnung
Mathematik-Klausur vom 4.2.2004
Mathematik-Klausur vom 4.2.2004 Aufgabe 1 Ein Klein-Sparer verfügt über 2 000, die er möglichst hoch verzinst anlegen möchte. a) Eine Anlage-Alternative besteht im Kauf von Bundesschatzbriefen vom Typ
Handbuch ECDL 2003 Basic Modul 6: Präsentation Diagramm auf einer Folie erstellen
Handbuch ECDL 2003 Basic Modul 6: Präsentation Diagramm auf einer Folie erstellen Dateiname: ecdl6_05_01_documentation_standard.doc Speicherdatum: 14.02.2005 ECDL 2003 Basic Modul 6 Präsentation - Diagramm
Mediumwechsel - VR-NetWorld Software
Mediumwechsel - VR-NetWorld Software Die personalisierte VR-BankCard mit HBCI wird mit einem festen Laufzeitende ausgeliefert. Am Ende der Laufzeit müssen Sie die bestehende VR-BankCard gegen eine neue
E-MAIL VERWALTUNG. Postfächer, Autoresponder, Weiterleitungen, Aliases. http://www.athost.at. Bachstraße 47, 3580 Mödring office@athost.
E-MAIL VERWALTUNG Postfächer, Autoresponder, Weiterleitungen, Aliases http://www.athost.at Bachstraße 47, 3580 Mödring [email protected] Loggen Sie sich zunächst unter http://www.athost.at/kundencenter
Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang
sysplus.ch outlook - mail-grundlagen Seite 1/8 Outlook Mail-Grundlagen Posteingang Es gibt verschiedene Möglichkeiten, um zum Posteingang zu gelangen. Man kann links im Outlook-Fenster auf die Schaltfläche
Einführung in das Arbeiten mit MS Excel. 1. Bearbeitungs
Einführung in das Arbeiten mit MS Excel 1. Bildschirmaufbau Die Tabellenkalkulation Excel basiert auf einem Rechenblatt, das aus Spalten und Zeilen besteht. Das Rechenblatt setzt sich somit aus einzelnen
Grundfunktionen und Bedienung
Kapitel 13 Mit der App Health ist eine neue Anwendung in ios 8 enthalten, die von vorangegangenen Betriebssystemen bislang nicht geboten wurde. Health fungiert dabei als Aggregator für die Daten von Fitness-
Kreditmanagement. EK Finanzwirtschaft
EK Finanzwirtschaft a.o.univ.-prof. Mag. Dr. Christian KEBER Fakultät für Wirtschaftswissenschaften www.univie.ac.at/wirtschaftswissenschaften [email protected] Kreditmanagement 1 Kreditmanagement
BERECHNUNGSHILFE FÜR KOSTENNOTE NACH PKV
BERECHNUNGSHILFE FÜR KOSTENNOTE NACH PKV B e r e c h n u n g s h i l f e f ü r K o s t e n n o t e n a c h P K V S e i t e 1 Inhalt Installation... 3 Erste Schritte... 3 Wie verwenden Sie die Berechnungshilfe?...
BERECHNUNGSHILFE FÜR KOSTENNOTE NACH PKV
BERECHNUNGSHILFE FÜR KOSTENNOTE NACH PKV B e r e c h n u n g s h i l f e f ü r K o s t e n n o t e V 2 n a c h P K V S e i t e 1 Inhalt Installation... 3 Erste Schritte... 3 Wie verwenden Sie die Berechnungshilfe?...
