Geometrie. Hallo Welt! für Fortgeschrittene Simon Kuhnle. 11. Juli

Größe: px
Ab Seite anzeigen:

Download "Geometrie. Hallo Welt! für Fortgeschrittene Simon Kuhnle. 11. Juli"

Transkript

1 Geometrie Hallo Welt! für Fortgeschrittene 2008 Simon Kuhnle 11. Juli 2008 Simon Kuhnle Geometrie / 33

2 Übersicht Übersicht 1 Grundlagen 2 ccw 3 Konvexe Hülle 4 Closest Pair 5 Bereichssuche Simon Kuhnle Geometrie / 33

3 Geraden Grundlagen Unendlich lange, gerade Linie Strecke: Linie, begrenzt zwei Punkten Geradengleichung: y = mx + t m ist die Steigung der Geraden. m = y 2 y1 = tan(ϕ) x2 x1 Simon Kuhnle Geometrie / 33

4 Dreiecke Grundlagen Satz von Pythagoras: a 2 + b 2 = c 2 sin α = Gegenkathete Hypotenuse cos α = Ankathete Hypotenuse tan α = Gegenkathete Ankethete Simon Kuhnle Geometrie / 33

5 Kreise Grundlagen Pi Umfang U = 2πr Fläche A = πr 2 M d r Simon Kuhnle Geometrie / 33

6 Polygone Grundlagen Denition Ein Polygon ist ein Vieleck bestehend aus n Punkten P = (P 1, P 2,..., P n ), P i R, 1 i n die durch Strecken miteinander verbunden eine geschlossene Figur ergeben. Beispiele Simon Kuhnle Geometrie / 33

7 Konvex Grundlagen Sternförmige und konvexe Polygone Sternförmige Polygone haben einen Punkt von dem aus jeder Punkt sichtbar ist Bei konvexen Polygonen kann man von allen Punkten aus jeden Punkt sehen Simon Kuhnle Geometrie / 33

8 Punkt im Polygon Grundlagen Bendet sich ein Punkt X innerhalb eines Polygons? Punkt P auÿerhalb des Polygons suchen Zähle die Schnittpunkte mit den Kanten des Polygons Ungerade: innerhalb des Polygons Gerade: auÿerhalb des Polygons Sonderfälle P liegt auf einem Eckpunkt des Polygons Auf der Strecke zwischen P und X liegt eine Kante Simon Kuhnle Geometrie / 33

9 CCW CCW ccw bool ccw(punktp 1, PunktP 2, PunktP 3 ); P 1 P 2 P 3 gegen den/im Uhrzeigersinn? Kreuzprodukt der drei Punkte gibt die Richtung an Kreuzprodukt gröÿer 0: im Uhrzeigersinn Kreuzprodukt kleiner 0: gegen den Uhrzeigersinn Kreuzprodukt gleich 0: Kollinear Simon Kuhnle Geometrie / 33

10 ccw CCW Simon Kuhnle Geometrie / 33

11 CCW Code CCW / Kreuzprodukt der drei Punkte ergibt die Richtung / int ccw(p1, p2, p3) { int ccw; / (p1 p0) x (p2 p0) / ccw = (p2.x p1.x) (p3.y p1.y) (p3.x p1.x) (p2.y p1.y); } if (ccw > 0) return 1; else if (ccw < 0) return 1; else return 0; Simon Kuhnle Geometrie / 33

12 CCW Punkt im konvexen Polygon ccw für konvexe Polygone Um herauszunden ob ein Punkt in einem Polygon liegt, von dem wir wissen, dass dieses konvex ist (z.b. Dreieck), reicht es zu überprüfen, ob die ccw-werte gleich sind. Mit den Punkten des Dreiecks a, b, c und dem gesuchten Punkt p ccw(a, b, p) == ccw(b, c, p) == ccw(c, a, p) Simon Kuhnle Geometrie / 33

13 Intersect CCW Schneiden sich zwei Geraden? Richtung (ccw) der 4 Endpunkte berechnen Es kann sein, dass einer der Punkte auf der anderen Geraden liegt Überprüfe ob dieser Punkt genau zwischen zwei Endpunkten liegt Simon Kuhnle Geometrie / 33

14 Intersect CCW bool intersect (p1, p2, p3, p4) { d1 = ccw(p3, p4, p1); d2 = ccw(p3, p4, p2); d3 = ccw(p1, p2, p3); d4 = ccw(p1, p2, p4); if ((d1 > 0 && d2 < 0) (d1 < 0 && d2 > 0) (d3 > 0 && d4 < 0) (d3 < 0 && d4 > 0)) return true ; else if ((d1 == 0 && onsegment(p3, p4, p1)) (d2 == 0 && onsegment(p3, p4, p2)) (d3 == 0 && onsegment(p1, p2, p3)) (d4 == 0 && onsegment(p1, p2, p4)) return true ; else return false ; } bool onsegment(pi, pj, pk) { if (min(pi.x, pj.x) <= pk.x <= max(pi.x, pj.x) && min(pi.y, pj.y) <= pk.y <= max(pi.y, pj.y) return true ; return false ; Simon } Kuhnle Geometrie / 33

15 Intersect CCW Simon Kuhnle Geometrie / 33

16 Konvexe Hülle Konvexe Hülle Denition Die Konvexe Hülle ist das kleinste Polygon P, bei dem alle Punkte eines Polygons X entweder innerhalb des Polygons P oder auf der Grenze von P liegen. Simon Kuhnle Geometrie / 33

17 Konvexe Hülle Konvexe Hülle Algorithmen zur Berechnung der Konv. Hülle n = Anzahl der Punkte, h = Anzahl der Punkte auf der Hülle Einwickeln (auch bekannt als Jarvi's march) O(n h) Durchsuchen nach Graham O(n log h) Simon Kuhnle Geometrie / 33

18 Einwickeln Konvexe Hülle Idee Einwickeln mit einer Schnur Algorithmus 1 Startpunkt S auswählen. Wichtig: dieser muss sicher Teil der Hülle sein (z.b. der Punkt P mit dem kleinsten y-wert) 2 Schnur parallel zur x-achse spannen und solange gegen den Uhrzeigersinn gehen, bis die Schnur den nächsten Punkt berührt. 3 Wiederhole 2. bis Punkt P = Startpunkt S Simon Kuhnle Geometrie / 33

19 Graham Scan Konvexe Hülle Algorithmus 1 Startpunkt suchen (Punkt mit dem kleinsten y-wert) 2 Punkte nach Winkel sortieren. Bei Punkten mit gleichem Winkel wird nur der Punkt berücksichtigt, der am weitesten vom Startpunkt entfernt ist. 3 Ist ccw(p 1, P 2, P neu ) kleiner Null (d.h. wir biegen links ab) ist der Punkt P neu Teil der Hülle, rechts abbiegen bedeutet der letzte Punkt vor P neu (P 2 ) iegt raus und wir überprüfen nochmals die ccw. 4 Aufwand ergibt sich durch die Sortierung Simon Kuhnle Geometrie / 33

20 Graham Scan Konvexe Hülle Simon Kuhnle Geometrie / 33

21 Graham Scan Konvexe Hülle s.sortbyangle(); // Nach Winkel sortieren stack.push(s. get (0)); // Punkt mit dem kleinsten y Wert stack.push(s. get (1)); stack.push(s. get (2)); int ct = 3; for ( int i = 3; i < n; i++) { // ct 2 = vorletztes Element, ct 1 = letzte Element // i aktuelles Element (noch nicht auf dem Stack!) while (ccw(stack.get(ct 2), stack.get(ct 1), s.get( i )) > 0) { stack.pop(); ct ; } stack.push(s. get( i )); ct++; } Simon Kuhnle Geometrie / 33

22 Closest-Pair-Problem Closest Pair Was? Bei einer Punktmenge von mehr als 2 Punkten das Paar nden, welches am nähesten beieinander liegt. Aufwand Naiver Ansatz sehr aufwändig ( n 2) = O(n 2 ) Besser: Teile und Herrsche O(n log n) Simon Kuhnle Geometrie / 33

23 Teile und Herrsche Closest Pair Teile Punktmenge wird durch eine senkrechte Linie in zwei Hälften geteilt, so dass die linke und die rechte Menge die gleiche Anzahl an Punkten besitzen Herrsche Rekursiver Aufruf auf die linke/rechte Hälfte. Minimaldistanz d = min(d links, d rechts ) Zusammenfügen Nachdem wir den minimalen Abstand d aus dem Bereich einer der beiden Hälften gefunden haben, bleibt das Problem, dass ein noch kleinerer Abstand zwischen zwei Punkten aus unterschiedlichen Hälften existieren könnte! Simon Kuhnle Geometrie / 33

24 Teile und Herrsche Closest Pair Vorgehen Array anlegen, in dem nur Punkte enthalten sind, die maximal d (nach links und rechts in x-richtung) von der Trennlinie entfernt sind (der Grenzbereich) Für jeden Punkt dieses Arrays wird nun im Umkreis von d nach anderen Punkten gesucht und die Entfernung d' dafuer berechnet maximal 7 Punkte pro untersuchten Punkt des Arrays falls ein d' kleiner als d ist, haben wir eine neue Minimaldistanz gefunden (ansonsten bleibt d die Minimaldistanz) Simon Kuhnle Geometrie / 33

25 Teile und Herrsche Closest Pair Simon Kuhnle Geometrie / 33

26 Bereichssuche Bereichssuche Was? Aunden aller Datensätze (Punkte) mit bestimmten Attributen (d.h. innerhalb eines Intervalls). Wie? 1-dimensional Sortieren und im Intervall suchen Binärbaum erstellen 2- bzw. N-dimensional Projektion Gitterverfahren 2-dimensionale bzw. k-dimensionale Bäume Simon Kuhnle Geometrie / 33

27 Gitterverfahren Bereichssuche Vorgehen Aufteilen des Bereichs in gleich groÿe Quadrate Alle Punkte innerhalb eines Quadrats in einer Liste speichern Suche auf Quadrate beschränkt, die durch den Suchbereich überdeckt werden Problem: Wahl der Gröÿe Zu groÿ: Viele Punkte pro Quadrat Zu klein: Viele (leere) Quadrate Simon Kuhnle Geometrie / 33

28 Bereichssuche Aufwand Gitterverfahren Aufwand Im besten Fall: O(M), M = Anzahl der Punkte eines Quadrats Worst-case: O(n) Simon Kuhnle Geometrie / 33

29 Gitterverfahren Bereichssuche Simon Kuhnle Geometrie / 33

30 2D-Bäume Bereichssuche Idee Einen Binärbaum aus den Punkten erstellen, mit den x- und y-koordinaten als Schlüssel Einfügen Wurzel wählen Nächsten Punkt wählen y-wert gröÿer als der y-wert der Wurzel rechts einfügen y-wert kleiner links einfügen Nächsten Punkt einfügen an Hand des x-wertes relativ zur Wurzel und an Hand des y-wertes des darauf folgenden Knotens (falls vorhanden) Ständiger Wechsel zwischen x- und y-wert Simon Kuhnle Geometrie / 33

31 2D-Bäume Bereichssuche Simon Kuhnle Geometrie / 33

32 Mehr Dimensionen Bereichssuche Verfahren auch für mehr Dimensionen möglich Problem beim Gitterverfahren: sinnvolle gröÿe für die Gitter kd-bäume: Bäume entarten sehr schnell Simon Kuhnle Geometrie / 33

33 Literatur Literatur 1 T.H.Cormen, C.E.Leiserson, R.L.Rivest: Introduction to Algorithms 2nd Ed, The MIT Press, R.Sedgewick: Algorithms in C++, Addison-Wesley, 1984 Simon Kuhnle Geometrie / 33

Hallo Welt für Fortgeschrittene

Hallo Welt für Fortgeschrittene Hallo Welt für Fortgeschrittene Geometrie I Markus Götze Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Grundlagen Polygone ccw Pick's Theorem Konvexe Hülle Hallo Welt für Fortgeschrittene

Mehr

Geometrie I. Sebastian Redinger Informatik 2 Programmiersysteme Martensstraße Erlangen

Geometrie I. Sebastian Redinger Informatik 2 Programmiersysteme Martensstraße Erlangen Geometrie I Sebastian Redinger 01.07.2015 Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Grundlagen CCW Polygone Picks Theorem Konvexe Hülle - Graham Scan - Jarvis March 2 Gliederung

Mehr

Hallo Welt! für Fortgeschrittene. Geometrie I. Philipp Erhardt. 19. Juli Philipp Erhardt Geometrie I 19. Juli / 27

Hallo Welt! für Fortgeschrittene. Geometrie I. Philipp Erhardt. 19. Juli Philipp Erhardt Geometrie I 19. Juli / 27 Hallo Welt! für Fortgeschrittene Geometrie I Philipp Erhardt 19. Juli 2011 Philipp Erhardt Geometrie I 19. Juli 2011 1 / 27 Gliederung 1 Grundlagen 2 CCW 3 Punkt-in-Polygon 4 Pick s Theorem 5 Konvexe Hülle

Mehr

Geometrie 1. Christian Bay Christian Bay Geometrie / 46

Geometrie 1. Christian Bay Christian Bay Geometrie / 46 Geometrie 1 Christian Bay 02.07.2013 Christian Bay Geometrie 1 02.07.2013 1 / 46 Inhaltsverzeichnis Grundlagen CCW Polygone Picks Theorem Konvexe Hülle Christian Bay Geometrie 1 02.07.2013 2 / 46 Geometrie

Mehr

Geometrie I. Tobias Langer Tobias Langer Geometrie I / 59

Geometrie I. Tobias Langer Tobias Langer Geometrie I / 59 Geometrie I Tobias Langer 02.07.2010 Tobias Langer Geometrie I 02.07.2010 1 / 59 1 Schulgeometrie Punkte & Geraden Dreieck Kreis Polygon 2 Schnitt von Geraden und Strecken 3 Punkt in Polygon Tobias Langer

Mehr

Geometrie I. Laura Lawniczak Hallo Welt -Seminar - LS 2

Geometrie I. Laura Lawniczak Hallo Welt -Seminar - LS 2 Geometrie I Laura Lawniczak 12.07.2017 Hallo Welt -Seminar - LS 2 Inhalt Grundlagen Abstandsberechnung Punkt-Gerade Punkt-Segment CCW Polygone Punkt in Polygon Pick s Theorem Konvexe Hülle 12.07.2017 Laura

Mehr

Hallo Welt für Fortgeschrittene

Hallo Welt für Fortgeschrittene Hallo Welt für Fortgeschrittene Geometrie II Tiago Joao Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Inhalt Koordinatenkompression Beispiel: SafeJourney Typische compress-funktion Bereichssuche

Mehr

Geometrie 2. Julian Fischer Julian Fischer Geometrie / 30

Geometrie 2. Julian Fischer Julian Fischer Geometrie / 30 Geometrie 2 Julian Fischer 6.7.2009 Julian Fischer Geometrie 2 6.7.2009 1 / 30 Themen 1 Bereichssuche und kd-bäume 1 Bereichssuche 2 kd-bäume 2 Divide and Conquer 1 Closest pair 2 Beispiel: Points (IOI

Mehr

Geometrie I. Polygone. Dominik Huber Hallo Welt! für Fortgeschrittene. Informatik 2 Programmiersysteme Martensstraße Erlangen

Geometrie I. Polygone. Dominik Huber Hallo Welt! für Fortgeschrittene. Informatik 2 Programmiersysteme Martensstraße Erlangen Geometrie I Polygone Dominik Huber 28.5.2018 Hallo Welt! für Fortgeschrittene Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Wiederholung Analytische Geometrie Abstand Punkt

Mehr

Geometrie II Hallo Welt! für Fortgeschrittene

Geometrie II Hallo Welt! für Fortgeschrittene Geometrie II Hallo Welt! für Fortgeschrittene - 2010 Thorsten Wißmann 2. Juli 2010 Stand: 1. Juli 2010 Thorsten Wißmann Geometrie II 2. Juli 2010 1 / 40 Inhalt 1 Datentypen 2 Bereichssuche Gitterverfahren

Mehr

Hallo Welt für Fortgeschrittene

Hallo Welt für Fortgeschrittene Hallo Welt für Fortgeschrittene Geometrie II Benjamin Zenke Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Inhalt Closest Pair Divide & Conquer Bereichssuche Gitterverfahren k-d-tree Sweep-Line-Algorithmen

Mehr

Geometrie 1. Roman Sommer. Informatik 2 Programmiersysteme Martensstraße Erlangen

Geometrie 1. Roman Sommer. Informatik 2 Programmiersysteme Martensstraße Erlangen Geometrie 1 Roman Sommer Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Grundlagen Punkte, Vektoren Schreibweise: Skalar: Vektor: Komponente: Punkt: (spitzer) Winkel zw. zwei Vektoren:

Mehr

Seminar. Algorithmische Geometrie

Seminar. Algorithmische Geometrie Seminar Algorithmische Geometrie WS 2000/2001 Thema: Konvexe Hülle Mirko Dennler 21439 Inhaltsverzeichnis Konvexe Hülle 1. Problemstellung 3 2. GRAHAMS SCAN 4-5 3. JARVIS' MARCH 5-6 4. QUICK HULL 6-7 5.

Mehr

July 04, Geometrie I. Hallo Welt! für Fortgeschrittene. Daniel Uebler

July 04, Geometrie I. Hallo Welt! für Fortgeschrittene. Daniel Uebler July 04, 2012 Geometrie I Hallo Welt! für Fortgeschrittene Daniel Uebler Einleitung Einleitung Algorithmische Geometrie Die algorithmische Geometrie ist der Zweig der Informatik, der Algorithmen zum Lösen

Mehr

Geometrische Algorithmen Einige einfache Definitionen: Ist ein Punkt in einem Polygon? Punkt-in-Polygon-Problem. Das Punkt-in-Polygon-Problem

Geometrische Algorithmen Einige einfache Definitionen: Ist ein Punkt in einem Polygon? Punkt-in-Polygon-Problem. Das Punkt-in-Polygon-Problem Geometrische Algorithmen Einige einfache Definitionen: Punkt: im n-dimensionalen Raum ist ein n-tupel (n Koordinaten) Gerade: definiert durch zwei beliebige Punkte auf ihr Strecke: definiert durch ihre

Mehr

Hallo Welt für Fortgeschrittene. Geometrie I. Lukas Batz. Informatik 2 Programmiersysteme Martensstraße Erlangen

Hallo Welt für Fortgeschrittene. Geometrie I. Lukas Batz. Informatik 2 Programmiersysteme Martensstraße Erlangen Hallo Welt für Fortgeschrittene Geometrie I Lukas Batz Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Gliederung Grundlagen Vektoren Geradengleichungen Skalar- und Kreuzprodukt Abstand

Mehr

Geometrische Algorithmen

Geometrische Algorithmen Geometrische Algorithmen Thomas Röfer Motivation Scan-line-Prinzip Konvexe Hülle Distanzprobleme Voronoi-Diagramm Rückblick Manipulation von Mengen Vorrangwarteschlange Heap HeapSort swap(a, 0, 4) 1 5

Mehr

Konvexe Hülle. Konvexe Hülle. Mathematik. Konvexe Hülle: Definition. Mathematik. Konvexe Hülle: Eigenschaften. AK der Algorithmik 5, SS 2005 Hu Bin

Konvexe Hülle. Konvexe Hülle. Mathematik. Konvexe Hülle: Definition. Mathematik. Konvexe Hülle: Eigenschaften. AK der Algorithmik 5, SS 2005 Hu Bin Konvexe Hülle Konvexe Hülle AK der Algorithmik 5, SS 2005 Hu Bin Anwendung: Computergraphik Boundary Kalkulationen Geometrische Optimierungsaufgaben Konvexe Hülle: Definition Mathematik Konvex: Linie zwischen

Mehr

Übersicht über Informatik und Softwaresystemtechnik WS 99/00, Prof. Dr. Andreas Schwill

Übersicht über Informatik und Softwaresystemtechnik WS 99/00, Prof. Dr. Andreas Schwill Konvexe Hülle Hierbei handelt es sich um ein klassisches Problem aus der Algorithmischen Geometrie, dem Teilgebiet der Informatik, in dem man für geometrische Probleme effiziente Algorithmen bestimmt.

Mehr

Das Divide - and - Conquer Prinzip. Quicksort Formulierung und Analyse des Prinzips Geometrisches Divide and Conquer - Closest-Pair - Segmentschnitt

Das Divide - and - Conquer Prinzip. Quicksort Formulierung und Analyse des Prinzips Geometrisches Divide and Conquer - Closest-Pair - Segmentschnitt Divide and Conquer Das Divide - and - Conquer Prinzip Quicksort Formulierung und Analyse des Prinzips Geometrisches Divide and Conquer - Closest-Pair - Segmentschnitt 2 Quicksort: Sortieren durch Teilen

Mehr

M. Pester 29. Ein konvexes d-polytop ist eine begrenzte d-dimensionale polyedrale Menge. (d = 3 Polyeder, d = 2 Polygon)

M. Pester 29. Ein konvexes d-polytop ist eine begrenzte d-dimensionale polyedrale Menge. (d = 3 Polyeder, d = 2 Polygon) M. Pester 29 6 Konvexe Hülle 6.1 Begriffe Per Definition ist die konvexe Hülle für eine Menge S von lich vielen Punkten die kleinste konvexe Menge, die S enthölt (z.b. in der Ebene durch ein umspannes

Mehr

Geometrische Algorithmen Voronoi-Diagramme. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Voronoi-Diagramme

Geometrische Algorithmen Voronoi-Diagramme. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Voronoi-Diagramme Folie 1 von 32 Geometrische Algorithmen Voronoi-Diagramme Folie 2 von 32 Voronoi-Diagramme Übersicht Problemstellung Animation zur Konstruktion eines Voronoi-Diagramms Definition, Eigenschaften eines Voronoi-Diagramms

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 03.12.2013 Algorithmische Geometrie: Schnitte von Strecken Sweep-Line INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 29.05.2011 Das Postamt-Problem b(p, q) = {x R 2 : xp = xq } p q h(p, q) h(q, p) = {x :

Mehr

Algorithmische Techniken für Geometrische Probleme

Algorithmische Techniken für Geometrische Probleme Algorithmische Techniken für Geometrische Probleme Berthold Vöcking 14. Juni 2007 Inhaltsverzeichnis 1 Die Sweepline-Technik 2 1.1 Schnitte orthogonaler Liniensegmente............... 2 1.2 Schnitte beliebiger

Mehr

Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle. zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"):

Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle. zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung Algorithmische Geometrie): Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"): 1 Erzeugung des Voronoi-Diagramms (siehe Vorlesung "Algorithmische

Mehr

Algorithmische Geometrie Thema: Konvexe Hüllen

Algorithmische Geometrie Thema: Konvexe Hüllen Algorithmische Geometrie Thema: Konvexe Hüllen Christoph Hermes Hermes@hausmilbe.de 17. Juni 2003 Ausblick auf den Vortrag 1/32 1 Was sind konvexe Hüllen? Wozu braucht man sie? Wie kann man sie berechnen

Mehr

Kapitel 6: Algorithmen der Computer-Geometrie

Kapitel 6: Algorithmen der Computer-Geometrie LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Kapitel 6: Algorithmen der Computer-Geometrie Skript zur Vorlesung Geo-Informationssysteme Wintersemester 2015/16 Ludwig-Maximilians-Universität

Mehr

Geometrie II. Deniz Neufeld Deniz Neufeld Geometrie II / 39

Geometrie II. Deniz Neufeld Deniz Neufeld Geometrie II / 39 Geometrie II Deniz Neufeld 20.06.2016 Deniz Neufeld Geometrie II 20.06.2016 1 / 39 Ziel Umgehen mit großen, mehrdimensionalen Datenmengen Bereichssuche Nearest-Neighbour-Search Mehrdimensionale Datenverarbeitung

Mehr

Geometrische Algorithmen Segmentschnitt

Geometrische Algorithmen Segmentschnitt Folie 1 von 36 Geometrische Algorithmen Segmentschnitt Folie 2 von 36 Segmentschnitt Übersicht Zwei Segmente Lage zweier Segmente Prüfung auf Schnittfreiheit Formeln zum Geradenschnitt Feststellen des

Mehr

Geometrische Algorithmen Segmentschnitt

Geometrische Algorithmen Segmentschnitt Folie 1 von 36 Geometrische Algorithmen Segmentschnitt Folie 2 von 36 Segmentschnitt Übersicht Zwei Segmente! Lage zweier Segmente! Prüfung auf Schnittfreiheit! Formeln zum Geradenschnitt! Feststellen

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/36 Datenstrukturen und Algorithmen Vorlesung 20: (K33) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-15/dsal/

Mehr

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.06.2014 1 Das Postamt-Problem b(p, q) = {x 2 R 2 : xp = xq } p q h(p, q) h(q, p) = {x

Mehr

Informatik II Prüfungsvorbereitungskurs

Informatik II Prüfungsvorbereitungskurs Informatik II Prüfungsvorbereitungskurs Tag 4, 23.6.2016 Giuseppe Accaputo g@accaputo.ch 1 Programm für heute Repetition Datenstrukturen Unter anderem Fragen von gestern Point-in-Polygon Algorithmus Shortest

Mehr

Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale Roboter 1

Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale Roboter 1 Vorlesung Geometrische Algorithmen Sichtbarkeitsgraphen und kurzeste Wege Sven Schuierer Uberblick 1. Kurzeste Wege 2. Sichtbarkeitsgraphen 3. Berechnung des Sichtbarkeitsgraphen 4. Kurzeste Wege fur polygonale

Mehr

Geometrische Algorithmen Segmentschnitt. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Segmentschnitt

Geometrische Algorithmen Segmentschnitt. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Segmentschnitt Folie 1 von 37 Geometrische Algorithmen Segmentschnitt Folie 2 von 37 Segmentschnitt Übersicht Zwei Segmente Lage zweier Segmente Prüfung auf Schnittfreiheit Formeln zum Geradenschnitt Feststellen des

Mehr

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Suchen. Lineare Suche. Such-Algorithmen. Sommersemester Dr.

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Suchen. Lineare Suche. Such-Algorithmen. Sommersemester Dr. Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 0 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Fortgeschrittene Datenstrukturen Such-Algorithmen

Mehr

Übungsblatt 7 - Voronoi Diagramme

Übungsblatt 7 - Voronoi Diagramme Karlsruher Institut für Technologie Algorithmische Geometrie Fakultät für Informatik Sommersemester 2012 ITI Wagner Martin Nöllenburg/Andreas Gemsa Übungsblatt 7 - Voronoi Diagramme 1 Voronoi-Zellen Sei

Mehr

Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen

Lineare Funktionen. Das rechtwinklige (kartesische) Koordinatensystem. Funktionen Das rechtwinklige (kartesische) Koordinatensystem Funktionen Funktion: Eine Funktion ist eine eindeutige Zuordnung. Jedem x D wird genau eine reelle Zahl zugeordnet. Schreibweise: Funktion: f: x f (x)

Mehr

Algorithmische Geometrie: Delaunay Triangulierung (Teil 2)

Algorithmische Geometrie: Delaunay Triangulierung (Teil 2) Algorithmische Geometrie: Delaunay Triangulierung (Teil 2) Nico Düvelmeyer WS 2009/2010, 2.2.2010 Überblick 1 Delaunay Triangulierungen 2 Berechnung der Delaunay Triangulierung Randomisiert inkrementeller

Mehr

Algorithmische Geometrie

Algorithmische Geometrie Algorithmische Geometrie Martin Peternell TU Wien 31. Fortbildungstagung für Geometrie 2010, Strobl 1 Themen der Algorithmische Geometrie Entwurf von Algorithmen für geometrische Fragestellungen betreffend

Mehr

Dualität + Quad-trees

Dualität + Quad-trees Übung Algorithmische Geometrie Dualität + Quad-trees LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 30.06.2011 Übersicht Übungsblatt 10 - Dualität

Mehr

Algorithmische Geometrie, SoSe 2005 Skriptmitschrift vom 29. April 2005

Algorithmische Geometrie, SoSe 2005 Skriptmitschrift vom 29. April 2005 Algorithmische Geometrie, SoSe 2005 Skriptmitschrift vom 29. April 2005 Antonia Wittmers Igor Savchenko Konvexe Hüllen Inkrementeller Algorithmus für die konvexe Hülle Dabei heißt inkrementeller Algorithmus,

Mehr

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Geometrisches Problem: Problem: Nächstes Paar Eingabe: n Punkte in der Ebene Ausgabe: Das Paar q,r mit geringstem Abstand

Mehr

2.1. Konvexe Hülle in 2D

2.1. Konvexe Hülle in 2D Wir wollen die konvexe Hülle einer Menge von Punkten P = {p 1,..., p n } in der Ebene R 2 bestimmen. y y x x Def. 21: Eine Teilmenge S der Ebene ist konvex gdw für jedes Paar das Liniensegment pq in S

Mehr

Quad-trees. Benjamin Niedermann Übung Algorithmische Geometrie

Quad-trees. Benjamin Niedermann Übung Algorithmische Geometrie Übung Algorithmische Geometrie Quad-trees LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Benjamin Niedermann 02.07.2014 Übersicht Übungsblatt 11 - Quadtrees Motivation:

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Minimale Spannbäume Maike Buchin 18.7., 20.7.2017 Einführung Motivation: Verbinde Inseln mit Fähren oder Städte mit Schienen und verbrauche dabei möglichst wenig Länge. Problem:

Mehr

Kapitel 9 Algorithm. Geometrie. Kürzeste Abstände Konvexe Hülle

Kapitel 9 Algorithm. Geometrie. Kürzeste Abstände Konvexe Hülle Kapitel 9 Algorithm. Geometrie Kürzeste Abstände Konvexe Hülle Überblick Teilgebiet der Informatik, in dem es um die Entwicklung effizienter Algorithmen und die Bestimmung der algorithmischen Komplexität

Mehr

f 1 (n) = log(n) + n 2 n 5 f 2 (n) = n 3 + n 2 f 3 (n) = log(n 2 ) f 4 (n) = n n f 5 (n) = (log(n)) 2

f 1 (n) = log(n) + n 2 n 5 f 2 (n) = n 3 + n 2 f 3 (n) = log(n 2 ) f 4 (n) = n n f 5 (n) = (log(n)) 2 Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Lösung - Präsenzübung.05.0 F. Corzilius, S. Schupp, T. Ströder Aufgabe (Asymptotische Komplexität): (6 + 0 + 6 = Punkte) a) Geben Sie eine formale

Mehr

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn!

Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher Umlaufsinn! Berechnungen in Dreiecken Allgemeines zu Dreiecken Innenwinkelsatz α + β + γ = 180 Besondere Dreiecke Gleichschenkliges Dreieck Die Ecken werden immer gegen den Uhrzeigersinn beschriftet, sonst falscher

Mehr

1.1. Geradengleichung aus Steigung und y-achsenabschnitt

1.1. Geradengleichung aus Steigung und y-achsenabschnitt Version vom 4. Januar 2007 Gleichungen von Geraden in der Ebene 1999 Peter Senn * 1.1. Geradengleichung aus Steigung und y-achsenabschnitt In dieser Form lautet die Gleichung der Geraden wie folgt: g:

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

Algorithmische Geometrie. Prof. Dr. Thomas Ottmann. Mitarbeit: PD Dr. Sven Schuierer Dr. Stefan Edelkamp

Algorithmische Geometrie. Prof. Dr. Thomas Ottmann. Mitarbeit: PD Dr. Sven Schuierer Dr. Stefan Edelkamp Algorithmische Geometrie Prof. Dr. Thomas Ottmann Mitarbeit: PD Dr. Sven Schuierer Dr. Stefan Edelkamp Literatur: M. de Berg, M. van Krefeld, M. Overmars O. Schwarzkopf: Computational Geometry (Algorithms

Mehr

2. Triangulation ebener Punktmengen. 3. Definition und Eigenschaften der Delaunay Triangulation

2. Triangulation ebener Punktmengen. 3. Definition und Eigenschaften der Delaunay Triangulation Delaunay Triangulation 1. Motivation 2. Triangulation ebener Punktmengen 3. Definition und Eigenschaften der Delaunay Triangulation 4. Berechnung der Delaunay Triangulation (randomisiert, inkrementell)

Mehr

Suchen in Texten. Naives Suchen Verfahren von Knuth-Morris-Pratt Verfahren von Boyer-Moore Ähnlichkeitssuchen Editierdistanz

Suchen in Texten. Naives Suchen Verfahren von Knuth-Morris-Pratt Verfahren von Boyer-Moore Ähnlichkeitssuchen Editierdistanz Suchen in Texten Naives Suchen Verfahren von Knuth-Morris-Pratt Verfahren von Boyer-Moore Ähnlichkeitssuchen Editierdistanz Textsuche Gegeben ist ein Zeichensatz (Alphabet) Σ. Für einen Text T Σ n und

Mehr

Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3

Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3 Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3 LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 26.06.2012 Prüfung! Termine: 20. Juli 27.

Mehr

Merkhilfe Grundwissen

Merkhilfe Grundwissen Merkhilfe Grundwissen 1. Umkreis eines Dreiecks Inkreis 2. gleichschenkliges Dreieck gleichseitiges Dreieck Parallelogramm Trapez Raute Drachenviereck 3. x 2 + px + q = 0 pq-formel x 1/2 =? x 4 7x 2 +

Mehr

Übung Computergrafik 3

Übung Computergrafik 3 1.Übungsblatt: Geometrie Institut für Computervisualistik 17. Juni 2013 Aufgabe 1: Fragezeichen Gegeben: Menge zufälliger 2D-Punkte Entsprechende Anzahl zufälliger Farben Kegel zeichnen Spitze auf Punkt

Mehr

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet

Mehr

Das Voronoi Diagramm. 1. Definition. 2. Eigenschaften. 3. Größe und Speicherung. 4. Konstruktion. 5. Verwendung

Das Voronoi Diagramm. 1. Definition. 2. Eigenschaften. 3. Größe und Speicherung. 4. Konstruktion. 5. Verwendung Das Voronoi Diagramm 1. Definition 2. Eigenschaften 3. Größe und Speicherung 4. Konstruktion 5. Verwendung Das Voronoi- Diagramm Voronoi Regionen Euklidische Distanz: d(p,q) = (px-qx)^2+(py-qy)^2 Das Voronoi-Diagramm

Mehr

Parallele Algorithmen in der Bildverarbeitung

Parallele Algorithmen in der Bildverarbeitung Seminar über Algorithmen - SoSe 2009 Parallele Algorithmen in der Bildverarbeitung von Christopher Keiner 1 Allgemeines 1.1 Einleitung Parallele Algorithmen gewinnen immer stärker an Bedeutung. Es existieren

Mehr

Algebra 4.

Algebra 4. Algebra 4 www.schulmathe.npage.de Aufgaben In einem kartesischen ( Koordinatensystem ) sind die Punkte A( ), B( ), C(5 ), D( 4 0) und S gegeben. a) Die Punkte A, B und C liegen in einer Ebene E. Stellen

Mehr

Heapsort. 1. Erstelle aus dem gegebenen Array einen Max-Heap (DownHeap) 2. Tausche erstes und letztes Element des Arrays

Heapsort. 1. Erstelle aus dem gegebenen Array einen Max-Heap (DownHeap) 2. Tausche erstes und letztes Element des Arrays Heapsort Beispiel für einen eleganten Algorithmus, der auf einer effizienten Datenstruktur (dem Heap) beruht [Williams, 1964] Daten liegen in einem Array der Länge n vor 1. Erstelle aus dem gegebenen Array

Mehr

Konvexe Hülle im R 3 + WSPD

Konvexe Hülle im R 3 + WSPD Übung Algorithmische Geometrie Konvexe Hülle im R 3 + WSPD LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 12.07.2012 Ablauf Konvexe Hülle im R 3

Mehr

Übersicht. Begriffserklärung Motivation / Anwendungen Drei Algorithmen Zusammenfassung Fragen Quellen. Triangulierung von Steffen Ernst 2

Übersicht. Begriffserklärung Motivation / Anwendungen Drei Algorithmen Zusammenfassung Fragen Quellen. Triangulierung von Steffen Ernst 2 Triangulierung Übersicht Begriffserklärung Motivation / Anwendungen Drei Algorithmen Zusammenfassung Fragen Quellen Triangulierung von Steffen Ernst 2 Begriffserklärung Ein Graph ist trianguliert, wenn

Mehr

2D-Clipping. Kapitel Clipping von Linien. y max. y min x min. x max

2D-Clipping. Kapitel Clipping von Linien. y max. y min x min. x max Kapitel 5 2D-Clipping Ziel: Nur den Teil einer Szene darstellen, der innerhalb eines Fensters sichtbar ist. y max y min x min x max Abbildung 5.1: Clip-Fenster 5.1 Clipping von Linien Zu einer Menge von

Mehr

Sommersemester Jewgeni Rose. Technische Universität Braunschweig

Sommersemester Jewgeni Rose. Technische Universität Braunschweig P r o b e k l a u s u r Z u s a t z a u f g a b e n E i n f ü h r u n g i n d a s P r o g r a m m i e r e n Sommersemester 2013 Jewgeni Rose Technische Universität Braunschweig j.rose@tu-bs.de 1 Aufgabe

Mehr

Geometrische Algorithmen

Geometrische Algorithmen Geometrische Algorithmen Bin Hu Algorithmen und Datenstrukturen 2 Arbeitsbereich für Algorithmen und Datenstrukturen Institut für Computergraphik und Algorithmen Technische Universität Wien Einführung

Mehr

Algorithmische Anwendungen. Algorithmen zur Berechnung konvexer Hüllen von Punkten

Algorithmische Anwendungen. Algorithmen zur Berechnung konvexer Hüllen von Punkten Algorithmische Anwendungen Algorithmen zur Berechnung konvexer Hüllen von Punkten Gruppe: C Team: lila Benz Andreas Matrikel-Nr.: 11036930 Radke Eugen Matrikel-Nr.: 11037089 Inhaltsverzeichnis 1. Einführung...3

Mehr

Algorithmische Geometrie: Delaunay Triangulierung (Teil 1)

Algorithmische Geometrie: Delaunay Triangulierung (Teil 1) Algorithmische Geometrie: Delaunay Triangulierung (Teil 1) Nico Düvelmeyer WS 2009/2010, 26.1.2010 Überblick 1 Motivation Interpolation von Höhendaten 2 Triangulierungen von ebenen Punktmengen 3 Delaunay

Mehr

Parametrische Suche als Algorithmen Paradigma

Parametrische Suche als Algorithmen Paradigma Parametrische Suche als Algorithmen Paradigma Verena Miller, Leo Knoll, Daniel Wagner Universität Salzburg 27. Januar 2017 Inhalt 1 Einführung und Denitionen 2 Parametrische Suche als Algorithmen Paradigma

Mehr

Merkhilfe Grundwissen

Merkhilfe Grundwissen Merkhilfe Grundwissen 1. Umkreis eines Dreiecks Inkreis 2. gleichschenkliges Dreieck gleichseitiges Dreieck Parallelogramm Trapez Raute Drachenviereck 3. x 2 + px + q = 0 pq-formel x 1/2 =? x 4 7x 2 +

Mehr

Unterrichtsreihe zur Parabel

Unterrichtsreihe zur Parabel Unterrichtsreihe zur Parabel Übersicht: 1. Einstieg: Satellitenschüssel. Konstruktion einer Parabel mit Leitgerade und Brennpunkt 3. Beschreibung dieser Punktmenge 4. Konstruktion von Tangenten 5. Beweis

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) Bei einer Folge a 1, a 2, a 3,... ist a 1 = 7 2 = 49. Für das nächste Glied der Folge nimmt man die Quersumme der Zahl, addiert 1 und quadriert diese Zahl, also a 2 = (4 + 9 + 1)

Mehr

Geradenarrangements und Dualität von Punkten und Geraden

Geradenarrangements und Dualität von Punkten und Geraden Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare

Mehr

Übung Computergrafik 3

Übung Computergrafik 3 Übung Computergrafik 3 1.Übungsblatt: Geometrie Stephan Groß (Dank an Irini Schmidt und Jakob Bärz) Institut für Computervisualistik Universität Koblenz-Landau 6. Juli 2011 Aufgabe 1: Fragezeichen Gegeben:

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 14 FS 16

Datenstrukturen & Algorithmen Lösungen zu Blatt 14 FS 16 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 8. Juni

Mehr

Abitur 2013 Mathematik Geometrie V

Abitur 2013 Mathematik Geometrie V Seite 1 http://www.abiturloesung.de/ Seite Abitur 1 Mathematik Geometrie V Teilaufgabe b ( BE) Ein auf einer horizontalen Fläche stehendes Kunstwerk besitzt einen Grundkörper aus massiven Beton, der die

Mehr

Geradenarrangements und Dualität von Punkten und Geraden

Geradenarrangements und Dualität von Punkten und Geraden Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare

Mehr

B6.1 Introduction. Algorithmen und Datenstrukturen. Algorithmen und Datenstrukturen. B6.1 Introduction. B6.3 Analyse. B6.4 Ordnungsbasierte Methoden

B6.1 Introduction. Algorithmen und Datenstrukturen. Algorithmen und Datenstrukturen. B6.1 Introduction. B6.3 Analyse. B6.4 Ordnungsbasierte Methoden Algorithmen und Datenstrukturen 11. April 2018 B6. Binäre Suchbäume a Algorithmen und Datenstrukturen B6. Binäre Suchbäume 1 Marcel Lüthi and Gabriele Röger Universität Basel 11. April 2018 a Folien basieren

Mehr

Softwarepraktikum WS 2003 Thema: Schnitt von Halbebenen. Markus Esch Jörg Jakoby Alexander Betz

Softwarepraktikum WS 2003 Thema: Schnitt von Halbebenen. Markus Esch Jörg Jakoby Alexander Betz Softwarepraktikum WS 2003 Thema: Schnitt von Halbebenen Markus Esch Jörg Jakoby Alexander Betz Universität Trier Prof. Stefan Näher Algorithms and Data Structures Group Inhaltsverzeichnis I Einleitung...Seite

Mehr

Sortieren und Suchen. Jens Wächtler Hallo Welt! -Seminar LS 2

Sortieren und Suchen. Jens Wächtler Hallo Welt! -Seminar LS 2 Sortieren und Suchen Jens Wächtler 17.05.2017 Hallo Welt! -Seminar LS 2 Überblick Sortieren kurze Wiederholung Binäre & Ternäre Suche Binäre Suche in einer Liste Bisektionsverfahren (Nullstellensuche)

Mehr

Geradenarrangements und Dualität von Punkten und Geraden

Geradenarrangements und Dualität von Punkten und Geraden Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.06.2014 1 Dualitätsabbildung Bisher haben wir Dualität für planare

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Teil 7: Geometrische Algorithmen Martin Hofmann LFE Theoretische Informatik, Institut für Informatik, Ludwig-Maximilians Universität, München 16. April 2016 Martin Hofmann

Mehr

Fit in Mathe. Februar Klassenstufe 10 Nichtlineare Gleichungssysteme

Fit in Mathe. Februar Klassenstufe 10 Nichtlineare Gleichungssysteme Thema Musterlösungen Februar Klassenstufe 0 Nichtlineare Gleichungssysteme Gegeben sind eine Gerade mit y= x 5 und eine Parabel mit y=x 3 x. Bestimme die Schnittpunkte falls vorhanden! In den Schnittpunkten

Mehr

Sortieren II / HeapSort Heaps

Sortieren II / HeapSort Heaps Organisatorisches VL-07: Sortieren II: HeapSort (Datenstrukturen und Algorithmen, SS 2017) Vorlesung: Gerhard Woeginger (Zimmer 4024 im E1) Email: dsal-i1@algo.rwth-aachen.de Webseite: http://algo.rwth-aachen.de/lehre/ss17/dsa.php

Mehr

Algorithmische Geometrie 3. Schnitte von Liniensegmenten

Algorithmische Geometrie 3. Schnitte von Liniensegmenten Algorithmische Geometrie 3. Schnitte von Liniensegmenten JProf. Dr. Heike Leitte Computergraphik und Visualisierung Inhaltsverzeichnis 1. Einführung 2. Konvexe Hülle 3. Schnitte von Liniensegmenten 4.

Mehr

Graphalgorithmen Minimale Spannbäume. Kruskal: Minimaler Spannbaum

Graphalgorithmen Minimale Spannbäume. Kruskal: Minimaler Spannbaum Kruskal: Minimaler Spannbaum (Folie 414, Seite 78 im Skript) 4 6 2 3 1 2 5 3 7 1 4 Kruskals Algorithmus Implementierung (Folie 415, Seite 78 im Skript) Algorithmus function Kruskal(G, w) : A := ; for each

Mehr

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone Was bisher geschah Motivation, Beispiele geometrische Objekte im R 2 : Punkt, Gerade, Halbebene, Strecke, Polygon, ebene Zerlegung in Regionen (planare Graphen) maschinelle Repräsentation geometrischer

Mehr

Kollisionserkennung

Kollisionserkennung 1 Kollisionserkennung von Jens Schedel, Christoph Forman und Philipp Baumgärtel 2 1. Einleitung Wozu wird Kollisionserkennung benötigt? 3 - für Computergraphik 4 - für Simulationen 5 - für Wegeplanung

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr

Mehr

Auswählen nach Rang (Selektion)

Auswählen nach Rang (Selektion) Auswählen nach Rang (Selektion) Geg.: Folge X von n Schlüsseln, eine Zahl k mit k n Ges.: ein k-kleinster Schlüssel von X, also den Schlüssel x k für X sortiert als x x 2 L x n trivial lösbar in Zeit O(kn)

Mehr

a) Wie hoch ist die Leiter? b) Wie weit stehen die beiden Fußpunkte auseinander? Abbildung 1: Eine Stehleiter

a) Wie hoch ist die Leiter? b) Wie weit stehen die beiden Fußpunkte auseinander? Abbildung 1: Eine Stehleiter 1. Berechnen Sie die jeweils fehlenden Größen (Winkel α, β und γ, Seiten a, b und c) in den folgenden Dreiecken: a) a = 5 cm, b = 9 cm, γ = 90 b) c = 9 cm, a = 6 cm, γ = 56, 3 (Überlegen Sie zuerst, wo

Mehr

Informatik II Vorlesung am D-BAUG der ETH Zürich. Vorlesung 7, Fallstudie Point-In-Polygon Algorithmus Diskretisierung: Linien zeichnen

Informatik II Vorlesung am D-BAUG der ETH Zürich. Vorlesung 7, Fallstudie Point-In-Polygon Algorithmus Diskretisierung: Linien zeichnen Informatik II Vorlesung am D-BAUG der ETH Zürich Vorlesung 7, 11.4.2016 Fallstudie Point-In-Polygon Algorithmus Diskretisierung: Linien zeichnen Fallstudie: Point-In-Polygon Algorithmus Annahme: abgegrenztes

Mehr

Abitur 2011 G8 Musterabitur Mathematik Geometrie VI

Abitur 2011 G8 Musterabitur Mathematik Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur G8 Musterabitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem ist ein Würfel W der Kantenlänge gegeben. Die Eckpunkte G ( ) und D ( ) legen

Mehr

Algorithmen und Datenstrukturen Wintersemester 2018/2019 Übung#5, Christian Rieck, Arne Schmidt

Algorithmen und Datenstrukturen Wintersemester 2018/2019 Übung#5, Christian Rieck, Arne Schmidt Institute of Operating Systems and Computer Networks Algorithms Group Algorithmen und Datenstrukturen Wintersemester 208/209 Übung#5, 3.2.208 Christian Rieck, Arne Schmidt Konvexe Hülle Konvexe Hülle:

Mehr

Stack. Seniorenseminar Michael Pohlig

Stack. Seniorenseminar Michael Pohlig Stack Seniorenseminar 21.06.2013 Michael Pohlig (pohlig@kit.edu) Übersicht 1. Axiomatik eins Kellers und seine Software- Realisierung 2. Bedeutung der Rekursion in der Mathematik 3. Rekursive Programmierung.

Mehr

{0,1} rekursive Aufteilung des Datenraums in die Quadranten NW, NE, SW und SE feste Auflösung des Datenraums in 2 p 2 p Gitterzellen

{0,1} rekursive Aufteilung des Datenraums in die Quadranten NW, NE, SW und SE feste Auflösung des Datenraums in 2 p 2 p Gitterzellen 4.4 MX-Quadtrees (I) MatriX Quadtree Verwaltung 2-dimensionaler Punkte Punkte als 1-Elemente in einer quadratischen Matrix mit Wertebereich {0,1} rekursive Aufteilung des Datenraums in die Quadranten NW,

Mehr

Abitur 2011 G8 Abitur Mathematik Geometrie VI

Abitur 2011 G8 Abitur Mathematik Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur 0 G8 Abitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem sind die Punkte A( 7 ), B(6 7 ) und C( ) gegeben. Teilaufgabe a (4 BE) Weisen

Mehr