Formale Systeme. Peano-Arithmetik. Prof. Dr. Bernhard Beckert, WS 2014/ KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK

Größe: px
Ab Seite anzeigen:

Download "Formale Systeme. Peano-Arithmetik. Prof. Dr. Bernhard Beckert, WS 2014/ KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK"

Transkript

1 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 Peano-Arithmetik KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

2 Guiseppe (Ioseph) Peano Geboren 1858 in Spinetta Gestorben 1932 in Turin Beiträge zur Mathematik und Linguistik Eine zentrale Publikation: Arithmetices principia: nova methodo exposita erschienen 1889 im Verlag Augustae Taurinorum online Version http: // arithmeticespri00peangoog# page/n6/mode/2up Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 2/10

3 Signatur Σ PA Konstantensymbole 0, 1 für Null und Eins zweistelliges Funktionszeichen für + für Addition zweistelliges Funktionszeichen für für Multiplikation Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 3/10

4 Signatur Σ PA Konstantensymbole 0, 1 für Null und Eins zweistelliges Funktionszeichen für + für Addition zweistelliges Funktionszeichen für für Multiplikation Die Peano Axiome PA. 1. x(x + 1 = 0) 2. x y(x + 1. = y + 1 x. = y) 3. x(x + 0. = x) 4. x y(x + (y + 1). = (x + y) + 1) 5. x(x 0. = 0) 6. x y(x (y + 1). = (x y) + x) (prädikatenlogische Version) 7. Für jede Σ PA -Formel φ z((φ(0) x(φ(x) φ(x + 1))) x(φ)) Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 3/10

5 Induktionsaxiom Axiom 7 ist ein Axiomenschema. Beispiel Für die Formel φ = x + z. = z + x ergibt sich die Instanziierung des Induktionsschemas: z( 0 + z. = z + 0 x(x + z. = z + x (x + 1) + z. = z + (x + 1)) x(x + z. = z + x)) Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 4/10

6 Induktionsaxiom Axiom 7 ist ein Axiomenschema. Beispiel Für die Formel φ = x + z. = z + x ergibt sich die Instanziierung des Induktionsschemas: z( 0 + z. = z + 0 x(x + z. = z + x (x + 1) + z. = z + (x + 1)) x(x + z. = z + x)) Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 4/10

7 Induktionsaxiom Axiom 7 ist ein Axiomenschema. Beispiel Für die Formel φ = x + z. = z + x ergibt sich die Instanziierung des Induktionsschemas: z( 0 + z. = z + 0 x(x + z. = z + x (x + 1) + z. = z + (x + 1)) x(x + z. = z + x)) Induktionsvariable x Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 4/10

8 Induktionsaxiom Axiom 7 ist ein Axiomenschema. Beispiel Für die Formel φ = x + z. = z + x ergibt sich die Instanziierung des Induktionsschemas: z( 0 + z. = z + 0 x(x + z. = z + x (x + 1) + z. = z + (x + 1)) x(x + z. = z + x)) Induktionsvariable x Parameter z Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 4/10

9 Induktionsaxiom Axiom 7 ist ein Axiomenschema. Beispiel Für die Formel φ = x + z. = z + x ergibt sich die Instanziierung des Induktionsschemas: z( 0 + z. = z + 0 x(x + z. = z + x (x + 1) + z. = z + (x + 1)) x(x + z. = z + x)) Induktionsvariable x Parameter z Induktionsanfang x = 0 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 4/10

10 Induktionsaxiom Axiom 7 ist ein Axiomenschema. Beispiel Für die Formel φ = x + z. = z + x ergibt sich die Instanziierung des Induktionsschemas: z( 0 + z. = z + 0 x(x + z. = z + x (x + 1) + z. = z + (x + 1)) x(x + z. = z + x)) Induktionsvariable x Parameter z Induktionsanfang x = 0 Induktionsschritt x x + 1 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 4/10

11 Erste Folgerungen aus PA Die folgenden beiden Formeln sind aus PA ableitbar: 1. w(w + 0. = 0 + w) Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 5/10

12 Erste Folgerungen aus PA Die folgenden beiden Formeln sind aus PA ableitbar: 1. w(w + 0. = 0 + w) Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 5/10

13 Erste Folgerungen aus PA Die folgenden beiden Formeln sind aus PA ableitbar: 1. w(w + 0. = 0 + w) Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 5/10

14 Erste Folgerungen aus PA Die folgenden beiden Formeln sind aus PA ableitbar: 1. w(w + 0. = 0 + w) Folgerung von 2. aus 1. Aus Axiom 3 x(x + 0 =. x) 1 folgt für x 1 2 Teil 1 mit w 1. Axiom 1 x(x + 1 = 0) = =. 1 3 mit x aus 2 und 3 folgt 1 0 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 5/10

15 Ein erster Induktionsbeweis PA w(w + 0. = 0 + w) Induktionsanfang = Gleichheitsaxiom der Logik Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 6/10

16 Ein erster Induktionsbeweis PA w(w + 0. = 0 + w) Induktionsanfang = Gleichheitsaxiom der Logik Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 6/10

17 Ein erster Induktionsbeweis PA w(w + 0. = 0 + w) Induktionsanfang = Gleichheitsaxiom der Logik Induktionsschritt. (w + 1) + 0 = w + 1 Axiom 3 von links nach rechts mit x (w + 1). = (w + 0) + 1 Axiom 3 von rechts nach links mit x w. = (0 + w) + 1 Induktionsvoraussetzung. = 0 + (w + 1) Axiom 4 von rechts nach links mit x 0, y w Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 6/10

18 Assoziativität der Addition PA u v w((u + v) + w. = u + (v + w)) Induktion nach w Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 7/10

19 Assoziativität der Addition PA u v w((u + v) + w. = u + (v + w)) Induktionsanfang: (u + v) + 0. = u + (v + 0) (u + v) + 0 v + 0. = u + v Ax 3 x (u + v). = v Ax 3 x v Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 7/10

20 Assoziativität der Addition PA u v w((u + v) + w. = u + (v + w)) Induktionshypothese (u + v) + w. = u + (v + w) Induktionsbehauptung (u + v) + (w + 1). = u + (v + (w + 1)) Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 7/10

21 Assoziativität der Addition PA u v w((u + v) + w. = u + (v + w)) Induktionshypothese (u + v) + w. = u + (v + w) Induktionsbehauptung (u + v) + (w + 1). = u + (v + (w + 1)) (u + v) + (w + 1). = ((u + v) + w) + 1 Ax 4 x, y (u + v), w. = (u + (v + w)) + 1 IndHyp. = (u + ((v + w) + 1) Ax 4 x, y u, v + w. = u + (v + (w + 1)) Ax 4 x, y v, w Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 7/10

22 Vollständigkeit von PA? Kann man alle wahren Aussagen über die Struktur N = N, +,, 0, 1 aus den Axiomen PA herleiten? Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 8/10

23 Vollständigkeit von PA? Kann man alle wahren Aussagen über die Struktur N = N, +,, 0, 1 aus den Axiomen PA herleiten? Notation: Th(N ) = {φ Fml ΣPA N = φ} Cn(PA) = {φ Fml ΣPA PA φ} Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 8/10

24 Vollständigkeit von PA? Kann man alle wahren Aussagen über die Struktur N = N, +,, 0, 1 aus den Axiomen PA herleiten? Notation: Fakten: 1. Cn(PA) Th(N ) Th(N ) = {φ Fml ΣPA N = φ} Cn(PA) = {φ Fml ΣPA PA φ} Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 8/10

25 Vollständigkeit von PA? Kann man alle wahren Aussagen über die Struktur N = N, +,, 0, 1 aus den Axiomen PA herleiten? Notation: Fakten: 1. Cn(PA) Th(N ) Th(N ) = {φ Fml ΣPA N = φ} Cn(PA) = {φ Fml ΣPA PA φ} 2. Cn(PA) ist rekursiv aufzählbar Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 8/10

26 Vollständigkeit von PA? Kann man alle wahren Aussagen über die Struktur N = N, +,, 0, 1 aus den Axiomen PA herleiten? Notation: Fakten: 1. Cn(PA) Th(N ) Th(N ) = {φ Fml ΣPA N = φ} Cn(PA) = {φ Fml ΣPA PA φ} 2. Cn(PA) ist rekursiv aufzählbar Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 8/10

27 Vollständigkeit von PA? Kann man alle wahren Aussagen über die Struktur N = N, +,, 0, 1 aus den Axiomen PA herleiten? Notation: Fakten: 1. Cn(PA) Th(N ) Th(N ) = {φ Fml ΣPA N = φ} Cn(PA) = {φ Fml ΣPA PA φ} 2. Cn(PA) ist rekursiv aufzählbar Frage: Cn(PA) = Th(N ) Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 8/10

28 Vollständigkeit von PA? Kann man alle wahren Aussagen über die Struktur N = N, +,, 0, 1 aus den Axiomen PA herleiten? Notation: Fakten: 1. Cn(PA) Th(N ) Th(N ) = {φ Fml ΣPA N = φ} Cn(PA) = {φ Fml ΣPA PA φ} 2. Cn(PA) ist rekursiv aufzählbar Frage: Cn(PA) = Th(N ) Anwort: Nein. Denn: Th(N ) ist nicht rekursiv aufzählbar (nicht axiomatisierbar) 1. Gödelscher Unvollständigkeitssatz Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 8/10

29 Unentscheidbarkeit Bemerkung Für alle φ Fml ΣPA gilt: φ Th(N ) oder φ Th(N ) Darum: Wäre Th( N, +, 0, 1 ) rekursiv aufzählbar, dann wäre Th( N, +, 0, 1 ) auch entscheidbar. Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 9/10

30 Unentscheidbarkeit Bemerkung Für alle φ Fml ΣPA gilt: φ Th(N ) oder φ Th(N ) Darum: Wäre Th( N, +, 0, 1 ) rekursiv aufzählbar, dann wäre Th( N, +, 0, 1 ) auch entscheidbar. Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 9/10

31 Unentscheidbarkeit Bemerkung Für alle φ Fml ΣPA gilt: φ Th(N ) oder φ Th(N ) Darum: Wäre Th( N, +, 0, 1 ) rekursiv aufzählbar, dann wäre Th( N, +, 0, 1 ) auch entscheidbar. Presburger Arithmetik Th( N, +, 0, 1 ) (ohne Multiplikation) ist rekursiv aufzählbar und entscheidbar Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 9/10

32 Nichtaxiomatisierbarkeit von Th(N ) Cn(PA) Th(N ) Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/ /10

33 Nichtaxiomatisierbarkeit von Th(N ) Cn(PA) Th(N ) Bedeutung der Lücke zwischen Cn(PA) und Th(N ) für die Praxis? Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/ /10

34 Nichtaxiomatisierbarkeit von Th(N ) Cn(PA) Th(N ) Bedeutung der Lücke zwischen Cn(PA) und Th(N ) für die Praxis? Gering! Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/ /10

35 Nichtaxiomatisierbarkeit von Th(N ) Cn(PA) Th(N ) Bedeutung der Lücke zwischen Cn(PA) und Th(N ) für die Praxis? Gering! Wenig relevante/verständliche Beispiele für φ mit φ Th(N ) und φ Cn(PA) Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/ /10

36 Nichtaxiomatisierbarkeit von Th(N ) Cn(PA) Th(N ) Bedeutung der Lücke zwischen Cn(PA) und Th(N ) für die Praxis? Gering! Wenig relevante/verständliche Beispiele für φ mit φ Th(N ) und φ Cn(PA) Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/ /10

37 Nichtaxiomatisierbarkeit von Th(N ) Cn(PA) Th(N ) Bedeutung der Lücke zwischen Cn(PA) und Th(N ) für die Praxis? Gering! Wenig relevante/verständliche Beispiele für φ mit φ Th(N ) und φ Cn(PA) Nichtstandardmodelle von PA sind alle seltsam (Modelle, die nicht isomorph zu N sind) Satz von Tennenbaum: In allen Nichtstandardmodellen von PA sind Addition und Multiplikation nicht-berechenbare Funktionen. Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/ /10

Formale Systeme. Wiederholung. Prof. Dr. Bernhard Beckert, WS 2017/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Wiederholung. Prof. Dr. Bernhard Beckert, WS 2017/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Wiederholung KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Themen Aussagenlogik

Mehr

Modelltheorie (Einige Impulse)

Modelltheorie (Einige Impulse) Modelltheorie (Einige Impulse) Formale Systeme werden oft entworfen, um mathematische Strukturen zu beschreiben. In der Modelltheorie geht es um das Studium der Beziehungen zwischen formalen Systemen und

Mehr

Formale Systeme Hilbert-Kalku l Prof. Dr. Peter H. Schmitt

Formale Systeme Hilbert-Kalku l Prof. Dr. Peter H. Schmitt Formale Systeme Hilbert-Kalku l Prof. Dr. Peter H. Schmitt KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Formale Systeme. Beweistheorie: Motivierendes Beispiel. Prof. Dr. Bernhard Beckert, WS 2014/

Formale Systeme. Beweistheorie: Motivierendes Beispiel. Prof. Dr. Bernhard Beckert, WS 2014/ Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 Beweistheorie: Motivierendes Beispiel KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK KIT Universita t des Landes Baden-Wu rttemberg und nationales

Mehr

Prädikatenlogiken. Mathematische Logik. Vorlesung 8. Alexander Bors. 27. April., 4. & 11. Mai A. Bors Logik

Prädikatenlogiken. Mathematische Logik. Vorlesung 8. Alexander Bors. 27. April., 4. & 11. Mai A. Bors Logik Mathematische Logik Vorlesung 8 Alexander Bors 27. April., 4. & 11. Mai 2017 1 Überblick 1 Formale Prädikatenlogiken erster Stufe (Quelle: Ziegler, pp. 3 24) Der Gödelsche und Folgerungen 2 Erinnerung

Mehr

Formale Systeme. Hilbertkalku l. Prof. Dr. Bernhard Beckert, WS 2018/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Hilbertkalku l. Prof. Dr. Bernhard Beckert, WS 2018/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2018/2019 Hilbertkalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft David Hilbert

Mehr

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2017/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2017/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Pra dikatenlogik: Tableaukalku l (ohne Gleichheit) KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der

Mehr

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Pra dikatenlogik: Tableaukalku l (ohne Gleichheit) KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der

Mehr

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2015/2016.

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2015/2016. Formale Systeme Prof. Dr. Bernhard Beckert, WS 2015/2016 Aussagenlogik: Syntax und Semantik KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum

Mehr

Formale Systeme. Tableaukalku l (ohne Gleichheit) Prof. Dr. Bernhard Beckert, WS 2015/ KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK

Formale Systeme. Tableaukalku l (ohne Gleichheit) Prof. Dr. Bernhard Beckert, WS 2015/ KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert, WS 2015/2016 Tableaukalku l (ohne Gleichheit) KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum

Mehr

Peano-Axiome und Peano-Strukturen

Peano-Axiome und Peano-Strukturen Peano-Axiome und Peano-Strukturen Filippo Leonardi 27. März 2012 1 Peano-Arithmetik Der Folgende Abschnitt beruht auf Abschnitt 3.3 in [Rau08] und benützt dieselbe Notation. In diesem Abschnitt arbeiten

Mehr

5. Induktive Strukturen und Induktion

5. Induktive Strukturen und Induktion 5. Induktive Strukturen und Induktion Übersicht über den geplanten Inhalt: Motivation: weshalb braucht man Induktion? Induktive Strukturen und strukturelle Induktion Gleichungstheorie und induktive Theorie

Mehr

Der erste Gödelsche Unvollständigkeitssatz

Der erste Gödelsche Unvollständigkeitssatz Der erste Gödelsche Unvollständigkeitssatz Referent: Tobias Gleißner 29. Januar 2013 (syntaktischer Aufbau eines arithmetischen Terms) - Jede Zahl ist ein Term - Jede Variable ist ein Term - Sind und Terme,

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche Zahl hat genau einen Nachfolger d.h. n : (n N! n

Mehr

Das deduktive System F

Das deduktive System F Das deduktive System Ziel: Konstruiere ein geeignetes deduktives System = (Ax, R) für die Prädikatenlogik erster Stufe. Geeignet: Korrektheit ( ) und Vollständigkeit ( ) A gdw. = A Σ A gdw. Σ = A Die Definition

Mehr

Formale Systeme Beweistheorie: Motivierendes Beispiel Prof. Dr. Peter H. Schmitt

Formale Systeme Beweistheorie: Motivierendes Beispiel Prof. Dr. Peter H. Schmitt Formale Systeme Beweistheorie: Motivierendes Beispiel Prof. Dr. Peter H. Schmitt KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum

Mehr

Formale Systeme. Pra dikatenlogik: Semantik. Prof. Dr. Bernhard Beckert, WS 2014/ KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK

Formale Systeme. Pra dikatenlogik: Semantik. Prof. Dr. Bernhard Beckert, WS 2014/ KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert, WS 2014/2015 Pra dikatenlogik: Semantik KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum

Mehr

- SMT und DPLL(T ) Entscheidungsverfahren mit Anwendungen in der Softwareverifikation.

- SMT und DPLL(T ) Entscheidungsverfahren mit Anwendungen in der Softwareverifikation. SMT und DPLL(T ) Entscheidungsverfahren mit Anwendungen in der Softwareverifikation STEPHAN FALKE INSTITUT FÜR THEORETISCHE INFORMATIK (ITI) 0 KIT 6. Universität Mai 2013 des S. Landes Falke Baden-Württemberg

Mehr

Formale Systeme. Prädikatenlogik: Tableaukalkül (ohne Gleichheit) Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Prädikatenlogik: Tableaukalkül (ohne Gleichheit) Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Formale Systeme. Endliche Automaten. Prof. Dr. Bernhard Beckert, WS 2015/ KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK

Formale Systeme. Endliche Automaten. Prof. Dr. Bernhard Beckert, WS 2015/ KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert, WS 2015/2016 Endliche Automaten KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum

Mehr

Formale Systeme. LTL und Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. LTL und Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2017/2018

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2017/2018 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Aussagenlogik: Syntax und Semantik KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

UE GRUNDBEGRIFFE DER MATHEMATISCHEN LOGIK SS 2016

UE GRUNDBEGRIFFE DER MATHEMATISCHEN LOGIK SS 2016 SS 206 VERA FISCHER Die Gesamtnote ergibt sich je zur Hälfte aus der Teilnote Kreuzerlliste und der Teilnote Zwischentest, gerundet auf freundlichen Weise. Für eine positive Benotung müssen beide Teilnoten

Mehr

Vorlesung Diskrete Strukturen Die natürlichen Zahlen

Vorlesung Diskrete Strukturen Die natürlichen Zahlen Vorlesung Diskrete Strukturen Die natürlichen Zahlen Bernhard Ganter WS 2009/10 Alles ist Zahl? Wenn in der modernen Mathematik alles auf Mengen aufgebaut ist, woher kommen dann die Zahlen? Sind Zahlen

Mehr

Klausur zur Vorlesung Mathematische Logik

Klausur zur Vorlesung Mathematische Logik Universität Heidelberg 25. Januar 2012 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Klausur zur Vorlesung Mathematische Logik LÖSUNGEN Aufgabe 1 (Aussagenlogik - 8 Punkte)

Mehr

Vorlesung Diskrete Strukturen Die natürlichen Zahlen

Vorlesung Diskrete Strukturen Die natürlichen Zahlen Vorlesung Diskrete Strukturen Die natürlichen Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 12 Wir haben bisher nur Axiomensysteme in Sinne einer beliebigen Ausdrucksmenge Γ L S gesprochen, die im Allgemeinen

Mehr

Logik und Beweisbarkeit

Logik und Beweisbarkeit Logik und Beweisbarkeit Einleitung Martin Mundhenk Univ. Jena, Institut für Informatik. Februar 0 Einleitung: U ber Sinn und Form Symbolisches Addieren Al-Chwarizmi (etwa 8 80) Problem: Was ist MMMDCCCXCIX

Mehr

Relativierte Berechnungen und die arithmetische Hierachie

Relativierte Berechnungen und die arithmetische Hierachie Berechenbarkeit und Komplexität Wintersemester 2010/2011 1 Relativierte Berechnungen und die arithmetische Hierachie Relativierte Berechnungen und Orakel Definition 1 Eine Menge A ist entscheidbar mit

Mehr

SE MODALLOGIK UND ANDERE PHILOSOPHISCH RELEVANTE LOGIKEN WS 2015/16 ESTHER RAMHARTER & GÜNTHER EDER

SE MODALLOGIK UND ANDERE PHILOSOPHISCH RELEVANTE LOGIKEN WS 2015/16 ESTHER RAMHARTER & GÜNTHER EDER SE MODALLOGIK UND ANDERE PHILOSOPHISCH RELEVANTE LOGIKEN WS 2015/16 ESTHER RAMHARTER & GÜNTHER EDER DEFIZITE DER PL ERSTER STUFE Klassische Prädikatenlogik erster Stufe (first-order logic, kurz FOL) hat

Mehr

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)!

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)! WS 015/1 Hausaufgaben zur Vorlesung Vollständige Induktion 1. Beweist folgende Formeln zu beweisen ist nur die Gleichheit mit dem! -Zeichen : a 5 + + 7 + 8 + + 4 + n n 4 + i! nn+9 b 1 + + 9 + + n 1 n 1

Mehr

Repräsentierbarkeit arithmetischer Prädikate

Repräsentierbarkeit arithmetischer Prädikate Repräsentierbarkeit arithmetischer Prädikate Michael Schatz 9. Mai 2012 Dieses Handout richtet sich nach Kapitel 6.3 in [R], wobei es 2 wesentliche Änderungen zu beachten gilt: (a) Rautenberg arbeitet

Mehr

Induktion und Rekursion

Induktion und Rekursion Induktion und Rekursion Induktion und Rekursion Vorkurs Informatik Theoretischer Teil WS 013/14. Oktober 013 Vorkurs Informatik WS 013/14 1/1 Vollständige Induktion Vorkurs Informatik WS 013/14 /1 Ziel

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 13 Erststufige Peano-Arithmetik - Folgerungen und Ableitungen Die in der zweiten Stufe formulierten Dedekind-Peano-Axiome

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2016 Einführung in die mathematische Logik Vorlesung 12 Wir haben bisher nur von Axiomensystemen im Sinne einer beliebigen Ausdrucksmenge Γ L S gesprochen, die im Allgemeinen

Mehr

Formale Systeme. Aussagenlogik: Resolutionskalku l. Prof. Dr. Bernhard Beckert, WS 2018/2019

Formale Systeme. Aussagenlogik: Resolutionskalku l. Prof. Dr. Bernhard Beckert, WS 2018/2019 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2018/2019 Aussagenlogik: Resolutionskalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

1 Aussagenlogik. Junktoren, z.b.,,,,, Ø, Aussagenvariablen (Atome), z.b. p, q, r, s,...

1 Aussagenlogik. Junktoren, z.b.,,,,, Ø, Aussagenvariablen (Atome), z.b. p, q, r, s,... Grundlagen der Mathematik für Informatiker 1 1 Aussagenlogik Junktoren, z.b.,,,,, Ø, Aussagenvariablen (Atome), z.b. p, q, r, s,... Definition 1 (induktiv) Die Menge Ä(P) aller (aussagenlogischen) Formeln

Mehr

Handout zu Gödel: Die Unvollständigkeitssätze

Handout zu Gödel: Die Unvollständigkeitssätze Handout zu Gödel: Die Unvollständigkeitssätze Juanfernando Angel-Ramelli, Christine Schär, Katja Wolff December 4, 2014 Contents 1 Einleitung 1 1.1 Gödels Theoreme (1931)..............................

Mehr

Klausur zur Vorlesung Mathematische Logik

Klausur zur Vorlesung Mathematische Logik Universität Heidelberg 13. Februar 2014 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Klausur zur Vorlesung Mathematische Logik Musterlösung Aufgabe 1 (Aussagenlogik

Mehr

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch Belegungen, Wahrheitsfunktionen 1. Wie viele binäre Funktionen gibt es auf der Menge {0, 1} (d.h., Funktionen von {0, 1} 2 nach {0, 1})? Geben Sie alle diese Funktionen an, und finden Sie sinnvolle Namen

Mehr

8 Der Kompaktheitssatz und der Satz von Löwenheim und Skolem

8 Der Kompaktheitssatz und der Satz von Löwenheim und Skolem 8 Der Kompaktheitssatz und der Satz von Löwenheim und Skolem 8.1 Der Kompaktheitssatz Kompaktheitssatz Endlichkeitssatz Der Kompaktheitssatz ist auch unter dem Namen Endlichkeitssatz bekannt. Unter Verwendung

Mehr

Logik I. Symbole, Terme, Formeln

Logik I. Symbole, Terme, Formeln Logik I Symbole, Terme, Formeln Wie jede geschriebene Sprache basiert die Prädikatenlogik erster Stufe auf einem Alphabet, welches aus den folgenden Symbolen besteht: (a) Variabeln wie zum Beispiel v 0,v

Mehr

Logik und Beweisbarkeit

Logik und Beweisbarkeit Logik und Beweisbarkeit Folien zur Vorlesung im Sommersemester 2016 Teil 1 Martin Mundhenk Univ. Jena, Institut für Informatik 12. April 2016 Vorlesung Logik und Beweisbarkeit (Sommer 2016) 1. Aussagenlogik

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 21 Repräsentierbarkeit der Halteeigenschaft Ein Durchlauf eines Registerprogramms P bis zum Rechenschritt t wird am

Mehr

Vollständige Induktion

Vollständige Induktion Angenommen, wir wollen zeigen, dass eine Aussage P(n) für alle n N wahr ist. Anders ausgedrückt: Es gilt n N : P(n) Hierzu können wir die Technik der vollständigen Induktion verwenden. Wir zeigen, dass

Mehr

Seminar Automatentheorie der Presburger Arithmetik. Vorgetragen von Viktor Rach

Seminar Automatentheorie der Presburger Arithmetik. Vorgetragen von Viktor Rach Seminar Automatentheorie der Presburger Arithmetik Vorgetragen von Viktor Rach Vortragsgliederung: Kapitel 1 Presburger Arithmetik 1.1 Grundlagen der Presburger Arithmetik.... 3 1.2 Einführung in Presburger

Mehr

Prädikatenlogiken. Mathematische Logik. Vorlesung 7. Alexander Bors. 6. & 27. April A. Bors Logik

Prädikatenlogiken. Mathematische Logik. Vorlesung 7. Alexander Bors. 6. & 27. April A. Bors Logik Prädikatenlogiken Mathematische Logik Vorlesung 7 Alexander Bors 6. & 27. April 2017 1 Prädikatenlogiken Überblick 1 Formale Prädikatenlogiken erster Stufe (Quelle: Ziegler, pp. 3 24) (Abgeleitete) Axiome

Mehr

2. Grundlagen. A) Mengen

2. Grundlagen. A) Mengen Chr.Nelius: Zahlentheorie (SoSe 2019) 5 A) Mengen 2. Grundlagen Eine Menge ist durch Angabe ihrer Elemente bestimmt. Man kann eine Menge aufzählend oder beschreibend definieren. Im ersten Falle werden

Mehr

Logik und Beweisbarkeit

Logik und Beweisbarkeit Logik und Beweisbarkeit VL 10 Martin Mundhenk Univ. Jena, Institut für Informatik 22. Januar 2019 Vorlesung 11: Beweissysteme 3. Berechenbarkeitstheorie VL08: URM-berechenbare Funktionen und die These

Mehr

Prädikatenlogiken. Mathematische Logik. Vorlesung 6. Alexander Bors. 30. März & 6. April A. Bors Logik

Prädikatenlogiken. Mathematische Logik. Vorlesung 6. Alexander Bors. 30. März & 6. April A. Bors Logik Mathematische Logik Vorlesung 6 Alexander Bors 30. März & 6. April 2017 1 Überblick 1 Formale Prädikatenlogiken erster Stufe (Quelle: Ziegler, pp. 3 24) 2 Erinnerung Letztes Mal haben wir begonnen, ein

Mehr

Entscheidungsverfahren mit Anwendungen in der Softwareverifikation

Entscheidungsverfahren mit Anwendungen in der Softwareverifikation Entscheidungsverfahren mit Anwendungen in der Softwareverifikation VI: SMT, DPLL(T) Carsten Sinz Institut für Theoretische Informatik 21.11.2018 Inhalt Theorien SMT-LIB DPLL(T): Idee Abstraktes DPLL(T)!2

Mehr

Satz 1.18 (Kompaktheitssatz der Aussagenlogik)

Satz 1.18 (Kompaktheitssatz der Aussagenlogik) Satz 1.18 (Kompaktheitssatz der Aussagenlogik) Σ F ist erfüllbar genau dann, wenn jede endliche Teilmenge von Σ erfüllbar ist. Σ F ist unerfüllbar genau dann, wenn es eine unerfüllbare endliche Teilmenge

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 23 Der erste Gödelsche Unvollständigkeitssatz Wir haben gesehen, dass die Unentscheidbarkeit des Halteproblems über

Mehr

Kapitel 1.5 und 1.6. Ein adäquater Kalkül der Aussagenlogik

Kapitel 1.5 und 1.6. Ein adäquater Kalkül der Aussagenlogik Kapitel 1.5 und 1.6 Ein adäquater Kalkül der Aussagenlogik Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Mathematische Logik (WS 2010/11) Kapitel 1.5 und 1.6: Kalküle 1 /

Mehr

Ein adäquater Kalkül der Prädikatenlogik

Ein adäquater Kalkül der Prädikatenlogik Ein adäquater Kalkül der Prädikatenlogik Teil 1 Der Shoenfield-Kalkül für PL: Axiome und Regeln, Korrektheit, Zulässige Regeln Mathematische Logik (WS 2010/11) Shoenfields Kalkül der PL 1 / 45 Der Shoenfield-Kalkül

Mehr

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert, WS 2017/2018

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert, WS 2017/2018 Formale Systeme Prof. Dr. Bernhard Beckert, WS 27/28 Binary Decision Diagrams KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Shannon-Formeln

Mehr

Inferenzmethoden. Einheit 13. Zahlen und Induktion

Inferenzmethoden. Einheit 13. Zahlen und Induktion Inferenzmethoden Einheit 13 Zahlen und Induktion 1. Axiomatische Induktionsbehandlung 2. Induktion mit Theoriekonnektionen 3. Induktionslose Induktion Induktion Essentiell für mathematische Beweisführung

Mehr

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Das Erfu llbarkeitsproblem KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

- Kombination von Entscheidungsverfahren

- Kombination von Entscheidungsverfahren Kombination von Entscheidungsverfahren Entscheidungsverfahren mit Anwendungen in der Softwareverifikation STEPHAN FALKE INSTITUT FÜR THEORETISCHE INFORMATIK (ITI) 0 KIT 17. Universität Juni 2013 des S.

Mehr

Vorkurs Mathematik für Informatiker 6 Logik, Teil 2

Vorkurs Mathematik für Informatiker 6 Logik, Teil 2 6 Logik, Teil 2 Michael Bader, Thomas Huckle, Stefan Zimmer 1. 9. Oktober 2008 Kap. 6: Logik, Teil 2 1 Aussagenformen Aussage mit Parameter (zum Beispiel x) Aussage wahr oder falsch abhängig vom Parameter

Mehr

Unvollständigkeit der Arithmetik

Unvollständigkeit der Arithmetik Unvollständigkeit der Arithmetik Slide 1 Unvollständigkeit der Arithmetik Hans U. Simon (RUB) Email: simon@lmi.rub.de Homepage: http://www.ruhr-uni-bochum.de/lmi Unvollständigkeit der Arithmetik Slide

Mehr

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2017/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2017/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Aussagenlogik: Tableaukalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Aussagenlogik: Tableaukalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Übungen zur VP Mathematische Logik

Übungen zur VP Mathematische Logik Übungen zur VP Mathematische Logik Alexander Bors 1. März 2017 Werden je nach Bedarf im Laufe des Semesters noch um weitere Übungen ergänzt. Übungen zur naiven Mengenlehre von Cantor (Vorlesung 1) Übung

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 2. Induktion Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Induktion Zentrale Rolle Wesentliches Beweisprinzip in Mathematik

Mehr

Kurseinheit 1 Einführung und mathematische Grundlagen Aussagenlogik

Kurseinheit 1 Einführung und mathematische Grundlagen Aussagenlogik Kurseinheit 1 Einführung und mathematische Grundlagen Aussagenlogik Fragen Seite Punkte 1. Was ist die Mathematische Logik? 3 2 2. Was sind die Aussagenlogik und die Prädikatenlogik? 5 4 3. Was sind Formeln,

Mehr

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel I. Natürliche Zahlen

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel I. Natürliche Zahlen Version 12.12. Oktober 2006 MIA Analysis einer reellen Veränderlichen WS 06/07 Kurzfassung Martin Schottenloher Kapitel I. Natürliche Zahlen 1 Vollständige Induktion (1.1) Beweisprinzip der vollständigen

Mehr

Fundamentale Sätze. versuche folgendes: gib eine Formelmenge Φ an, so dass Mod(Φ) = {(N, +, )}

Fundamentale Sätze. versuche folgendes: gib eine Formelmenge Φ an, so dass Mod(Φ) = {(N, +, )} Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 4.7 Prädikatenlogik Fundamentale Sätze 171 Fundamentale Sätze versuche folgendes: gib eine Formelmenge Φ an, so dass Mod(Φ) = {(R, +, )} gib

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 8 Grundlagen der Mathematik Präsenzaufgaben (P13) Primfaktorzerlegungen Die Primfaktorzerlegungen lauten: a) 66 =

Mehr

Mengenlehre und vollständige Induktion

Mengenlehre und vollständige Induktion Fachschaft MathPhys Heidelberg Mengenlehre und vollständige Induktion Vladislav Olkhovskiy Vorkurs 018 Inhaltsverzeichnis 1 Motivation 1 Mengen.1 Grundbegriffe.................................. Kostruktionen

Mehr

Ein Entscheidungsverfahren für die Presburger Arithmetik

Ein Entscheidungsverfahren für die Presburger Arithmetik Proseminar SoSe 8 Perlen der Informatik, Prof. Nipkow Autor: Armin Heller Ein Entscheidungsverfahren für die Presburger Arithmetik Einführung Die Presburger Arithmetik (PrA) ist ein Axiomensystem der Prädikatenlogik

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6. Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Logik erster Stufe FO

Logik erster Stufe FO Logik erster Stufe FO Sonderstellung als die Logik für die Grundlegung der Mathematik natürliche Semantik (Tarski) und große Ausdrucksstärke vollständige Beweiskalküle (Gödelscher Vollständigkeitssatz)

Mehr

2.3 Deduktiver Aufbau der Aussagenlogik

2.3 Deduktiver Aufbau der Aussagenlogik 2.3 Deduktiver Aufbau der Aussagenlogik Dieser Abschnitt beschäftigt sich mit einem axiomatischen Aufbau der Aussagenlogik mittels eines Deduktiven Systems oder eines Kalküls. Eine syntaktisch korrekte

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 6 Grundlagen der Mathematik Präsenzaufgaben (P9) Die Ordnung der natürlichen Zahlen I Wir hatten in der Vorlesung

Mehr

Klausur zur Vorlesung: Mathematische Logik SS 2011

Klausur zur Vorlesung: Mathematische Logik SS 2011 Klausur zur Vorlesung: Mathematische Logik SS 2011 Geben Sie am Ende Der Klausur Ihre Lösungen einschließlich dieses Deckblatts ab. Schreiben Sie auf jedes Blatt Ihren Namen und Ihre Matrikelnummer. Viel

Mehr

6. Rekursive Funktionen und Induktion

6. Rekursive Funktionen und Induktion 6. Rekursive Funktionen und Induktion 6.1 Rekursive Funktionen Definition rekursiver Funktionen Terminierung 6.2 Beweisen durch Induktion 6.3 Fundierte Relationen Maschinelles Beweisen mit PVS 6 1 6.1

Mehr

SS Juli Übungen zur Vorlesung Logik Blatt 11

SS Juli Übungen zur Vorlesung Logik Blatt 11 SS 2011 06. Juli 2011 Übungen zur Vorlesung Logik Blatt 11 Prof. Dr. Klaus Madlener Abgabe bis 13. Juli 2011 10:00 Uhr 1. Aufgabe: [Axiomatisierung, Übung] 1. Definieren Sie eine Formel A n der Prädikatenlogik

Mehr

Mathematik und Logik

Mathematik und Logik Mathematik und Logik 5. Übungsaufgaben 2006-11-21 1. Beweisen Sie, daß die Aussage allgemeingültig ist. A = A Beweis. Dies ist ein Spezialfall von (((A = B) = B) = B) = (A = B), was wir wie folgt beweisen.

Mehr

Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017

Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Endliche Automaten KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Endliche

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

2. Natürliche Zahlen und vollständige Induktion. Mathias Schacht Mathematik I für Informatiker WiSe 2016/17 2. N und Induktion / 1

2. Natürliche Zahlen und vollständige Induktion. Mathias Schacht Mathematik I für Informatiker WiSe 2016/17 2. N und Induktion / 1 2. Natürliche Zahlen und vollständige Induktion Mathias Schacht Mathematik I für Informatiker WiSe 2016/17 2. N und Induktion / 1 Natürliche Zahlen Definition Mit N bezeichnen wir die Menge der natürlichen

Mehr

Kapitel 3. Ein adäquater Kalkül der Prädikatenlogik. Teil 2. Deduktionstheorem und Rückführung des Vollständigkeitssatzes auf das Erfüllbarkeitslemma

Kapitel 3. Ein adäquater Kalkül der Prädikatenlogik. Teil 2. Deduktionstheorem und Rückführung des Vollständigkeitssatzes auf das Erfüllbarkeitslemma Kapitel 3 Ein adäquater Kalkül der Prädikatenlogik Teil 2 Deduktionstheorem und Rückführung des Vollständigkeitssatzes auf das Erfüllbarkeitslemma Mathematische Logik (WS 2012/13) Kap. 3: Shoenfields Kalkül

Mehr

Prädikatenlogiken. Mathematische Logik. Vorlesung 9. Alexander Bors. 11. & 18. Mai A. Bors Logik

Prädikatenlogiken. Mathematische Logik. Vorlesung 9. Alexander Bors. 11. & 18. Mai A. Bors Logik Mathematische Logik Vorlesung 9 Alexander Bors 11. & 18. Mai 2017 1 Überblick 1 Formale Prädikatenlogiken erster Stufe (Un-)sresultate (Quellen heute: http://homepages.abdn.ac.uk/k.vdeemter/pages/ teaching/cs3518/abdn.only/monadicfopl.pdf

Mehr

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen

Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Einführung in Berechenbarkeit, Komplexität und Formale Sprachen V8, 5.11.09 Willkommen zur Vorlesung Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Friedhelm Meyer auf der Heide 1 Rückblick

Mehr

Formale Systeme, WS 2014/2015 Übungsblatt 5

Formale Systeme, WS 2014/2015 Übungsblatt 5 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Bernhard Beckert Thorsten Bormer, Dr. Vladimir Klebanov, Dr. Mattias Ulbrich Formale Systeme, WS 2014/2015 Übungsblatt

Mehr

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel II. Die reellen Zahlen

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel II. Die reellen Zahlen Version 23.11. November 2006 MIA Analysis einer reellen Veränderlichen WS 06/07 Kurzfassung Martin Schottenloher Kapitel II. Die reellen Zahlen Die reellen Zahlen werden in diesem Kapitel axiomatisch eingeführt

Mehr

Vollständige Induktion

Vollständige Induktion Kantonsschule Olten Hardwald 4600 Olten Vollständige Induktion Andreas Stoll Andreas Pulfer Erfänzungsfach Anwendungen der Mathematik (2017/18) 1 Beweisen 1.1 Axiome und Prämissen Bei einem Beweis wird

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 18.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 18. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 18. Januar 2017 Kalküle (1) Kalküle (m) sind Regelsysteme, mit denen sich allgemeingültige

Mehr

Formale Systeme. Modallogik. Prof. Dr. Bernhard Beckert, WS 2017/ in der Helmholtz-Gemeinschaft KIT I NSTITUT F UR

Formale Systeme. Modallogik. Prof. Dr. Bernhard Beckert, WS 2017/ in der Helmholtz-Gemeinschaft KIT I NSTITUT F UR Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Modallogik T HEORETISCHE I NFORMATIK KIT I NSTITUT F UR.kit.edu in der Helmholtz-Gemeinschaft KIT Die Forschungsuniversitat Modale Logik Im Unterschied

Mehr

Formale Spezifikationund Induktion

Formale Spezifikationund Induktion Formale Spezifikationund Induktion 1 Was ist ein SW-System mathematisch? 1. Sicht: operational Ein SW-System ist ein Automat mit Zustand, Zustandsübergängen und mit Abläufen. 2. Sicht: algebraisch Ein

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet.

1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet. Grundlagen der Mathematik für Informatiker 1 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage)

Mehr